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Input-output framework for robust stability of time-varying delay systems

The paper is devoted to the stability analysis of linear time varying delay. We first model the time varying delay system as an interconnected system between a known linear transformation and some operators depending explicitly on the delay. Embedding operators related to the delay into an uncertain set, stability of such system is then performed by adopting the quadratic separation approach. Having recognized that the conservatism comes from the choice of the feedback modeling and the operators definition, these first results are afterwards enhanced by using some redundant equation and scaling filter. At last, numerical examples are given to illustrate the results.

INTRODUCTION

Stability of linear time-delay systems has been intensively studied since several decades (see [START_REF] Fridman | Input-output approach to stability and l 2 -gain analysis of systems with timevarying delays[END_REF], [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF], [START_REF] Gu | Stability of Time-Delay Systems[END_REF] and references therein). A such success can be explained by their applied aspect. Indeed, many processes include dead-time phenomena such as biology, chemistry, economics, as well as population dynamics [START_REF] Kolmanovskii | Introduction to the Theory and Applications of Functional Differential Equations[END_REF] [START_REF] Niculescu | Delay Effects on Stability. A Robust Control Approach[END_REF]. Processing time and propagation time in actuators and sensors generally induce also such delays, especially if some devices are physically distant. That is the challenge of networked controlled systems [START_REF] Bushnell | Networks and control[END_REF] as well as network control [START_REF] Tarbouriech | Advances in communication Control Networks[END_REF].

In the case of constant delay and unperturbed linear systems, efficient criteria based on roots location [START_REF] Olgac | An exact method for the stability analysis of time-delayed linear time-invariant (lti) systems[END_REF] allow to find the exact region of stability with respect to the value of the delay. Beside these direct methods, numerous works based either on Lyapunov functionals [START_REF] Gu | Stability of Time-Delay Systems[END_REF][21] [START_REF] Fridman | A descriptor system approach to H ∞ control of linear time-delay systems[END_REF] or robustness framework (small gain theory [START_REF] Gu | Stability of Time-Delay Systems[END_REF], IQC [START_REF] Kao | Robust stability analysis of linear systems with time-varying delays[END_REF] or quadratic separation [START_REF] Gouaisbaut | Robust stability of time-delay systems with interval delays[END_REF]) have established interesting results to tackle the robust stability of delay systems with practical tools (like LMI). All resulting stability conditions are based on convex optimization (linear matrix inequality framework) and allow to conclude on stability intervals with respect to the delay and/or the uncertainty.

Regarding the case of time-varying delay systems, some authors have extended the upper cited results to address the stability issue of such systems. Nevertheless, the time-varying nature of the delay should be carefully handled rather than roughly adapted from methods originally developed for the constant delay case. In the Lyapunov-Krasovskii approach few studies [START_REF] Wu | Delay-dependent criteria for robust stability of time-varying delay systems[END_REF][7] [START_REF] He | Further improvement of free-weighting matrices technique for systems with time-varying delay[END_REF] [START_REF] Ariba | Delay-dependent stability analysis of linear systems with time-varying delay[END_REF] have proposed customized functionals able to significantly improve classical results. In the input-output approach [START_REF] Gu | Stability of Time-Delay Systems[END_REF][8] [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF] [START_REF] Ariba | Stability analysis of time-varying delay systems in quadratic separation framework[END_REF], some terms (or operators) related to the delayed dynamics are embedded into an uncertain matrix and the method consists in ensuring the robust stability of the nominal system with respect to the uncertain domain. Hence, in one hand, the key issue relies on the choice of the interconnection modeling the delay systems (and thus the uncertain set), and in other hand, on the L 2 -norm bounds which fit the uncertain set. Although the Lyapunov and the input-ouput approaches are closely related [START_REF] Zhang | Stability of time-delay systems: Equivalence between Lyapunov and scaled small-gain conditions[END_REF][9], the second one states clearly the reasons of the conservatism and how it may be reduced.

In this paper, the quadratic separation principle, belonging to the input-output framework, is considered to deal with the stability analysis of linear time-varying delay systems. First, such systems are modeled as the interconnection of a linear matrix equation with an uncertain matrix of operators. Secondly, based on previous results [START_REF] Ariba | Stability analysis of time-varying delay systems in quadratic separation framework[END_REF] and [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF] which provide bounds on some operators, integral quadratic constraints are built. At last, a redundant equation is introduced to construct a new modeling of the delay systems. To this end, an augmented state is considered which is composed of the original state vector and its derivatives. Then defining relationship between augmented states ẋ, ẍ, the delay h and its derivative ḣ as a set of integral quadratic constraints allows to improve the stability criterion. Conditions are expressed in terms of linear matrix inequalities (LMI) which can be solved efficiently with semi-definite programming (SDP) solvers.

After the introduction, the paper carries on with the definition of some operators and preliminaries on quadratic separation useful to present the main result. In section 3, the prior result on robust stability is exploited to derive a stability condition for time-varying delay systems. The robust stability for the case of uncertain systems is also addressed. Numerical examples that show the effectiveness of the proposed critera is provided in section 4.

PRELIMINARIES

Notations and problem statement

Throughout the paper, the following notations are used. The set of L n 2 consists of all measurable functions f : R + → stands for the block diagonal matrix:

C n such that the following norm f L 2 = ∞ 0 ( f * (t) f (t))
diag(A, B,C) =       A 0 0 0 B 0 0 0 C       .
Let consider the following time-varying delay system:

     ẋ(t) = Ax(t) + A d x(t -h(t)) ∀t ≥ 0, x(t) = φ (t) ∀t ∈ [-h max , 0] (1) 
where x(t) ∈ R n is the state vector, φ is the initial condition and A, A d ∈ R n×n are constant matrices. The delay h is time-varying and the following constraints are assumed

h(t) ∈ [0, h max ] and | ḣ(t)| ≤ d, (2) 
where h max and d are given scalar constants and may be infinite if delay independent condition and fast-varying delay condition, respectively, are looked for.

Stability analysis via quadratic separation

Coming from robust control theory, the quadratic separation provides a fruitful framework to address the stability issue of non-linear and uncertain systems [START_REF] Iwasaki | Well-posedness of feedback systems: insights into exact robustnessanalysis and approximate computations[END_REF], [START_REF] Peaucelle | Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation[END_REF]. Recent studies [START_REF] Gouaisbaut | Robust stability of time-delay systems with interval delays[END_REF] have shown that a such framework allows to reduce significantly the conservatism of the stability analysis of time-delay systems with constant delay. Then, in order to deal with the time-varying delay case, the quadratic separation method has been extended in [START_REF] Ariba | Stability analysis of time-varying delay systems in quadratic separation framework[END_REF] to handle not only the case of uncertain matrices but more generally uncertain operators. Indeed, based on the inner product and the L 2e space a suitable theorem is then proposed. This latter will be later used to derive stability conditions for time-varying delay systems.

Let consider the interconnection defined by Figure 1 where E and A are two, real valued, possibly non-square matrices and ∇ is a linear operator from L 2e to L 2e . For simplicity of notations, we assume in the present paper that E is full column rank. Assuming the well-posedness, we are interested in looking for conditions that ensure the stability of the interconnection.

Theorem 1 The interconnected system of Figure 1 is stable if there exists a Hermitian matrix Θ = Θ * satisfying both conditions

E -A ⊥ * Θ E -A ⊥ > 0 (3) ∀u ∈ L 2e ,    1 ∇    u, Θ    1 ∇    u ≤ 0 (4)
Proof 1 Inspired from [START_REF] Peaucelle | Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation[END_REF], the proof is detailed in [START_REF] Ariba | Stability analysis of time-varying delay systems in quadratic separation framework[END_REF].

Basically, inequality (4) which forms an integral quadratic constraint, is built from definitions and informations on different operators which compose the matrix ∇. Then, the other one (3) provides the stability condition of the interconnection.

MAIN RESULTS

Defining operators

Toward modeling delay system as an interconnected system such as illustrated on Figure 1, it is required to define appropriate operators. Define the integral operator

I : L 2e → L 2e , x(t) → t 0 x(θ )dθ , (5) 
and the delay operator (or shift operator)

D : L 2e → L 2e , x(t) → x(t -h), (6) 
which constitute the fundamental elementary operators to describe a delay system. The related integral quadratic constraints are introduced in the following two lemmas. These latters will be helpful to construct inequality [START_REF] Bushnell | Networks and control[END_REF] and to derive then stability criteria for linear systems with time-varying delays in the next section.

Lemma 1 An integral quadratic constraint for the operator I is given by the following inequality ∀x ∈ L n 2e and for a positive definite matrix P,   

1 n I 1 n    x,    0 -P -P 0       1 n I 1 n    x < 0 Proof 2 Simple calculus shows that ∀T > 0, ∀x ∈ L n 2e , (x being truncated: x(t) = 0, ∀t > T )    1 n I 1 n    x,    0 -P -P 0       1 n I 1 n    x = -2 T 0 x(t) T P t 0 x(s)ds = -2 T 0 d dt (I x) T P(I x)dt = -( T 0 x(s)ds) T P( T 0 x(s)ds) < 0
The second step is to derive a parameterized IQC for the operator D :

Lemma 2 An integral quadratic constraint for the operator D is given by the following inequality ∀T > 0, ∀x ∈ L n 2e and for a positive matrix Q,

   1 n D1 n    x,    -Q 0 0 Q(1 -ḣ)       1 n D1 n    x < 0 (7) 
Proof 3 We get that ∀T > 0, ∀x ∈ L n 2e , (x being truncated:

x(t) = 0, ∀t > T )    1 n D1 n    x,    -Q 0 0 Q(1 -ḣ)       1 n D1 n    x = -+∞ 0 x T (u)Qx(u)du + ∞ 0 x T d (t)Qx d (t)(1 -ḣ(t))dt = -+T 0 x T (t)Qx(t)dt + T -h(T ) -h(0) x T (u)Qx(u)du = -T T -h(T ) x(u) T Qx(u)du < 0 where x d (t) = x(t -h(t)).
In the next paragraph, applying the prior result exposed in Section 2.2 a rate and delay dependent stability condition for time-varying delay systems is provided.

Stability condition for time-varying delay systems

First, let us reformulate the dynamic of linear systems with time-varying delay as suggested on Figure 1 in order to apply the quadratic separation principle. System (1) can be described as the feedback

   x(t) x(t -h(t))    w(t) =    I 1 n D1 n    ∇    ẋ(t) x(t)    z(t) , (8) 
over the feedforward equation

   1 0 0 1    E    ẋ(t) x(t)    z(t) =    A A d 1 0    A    x(t) x(t -h(t))    w(t)
.

This simplistic description of the system 1 gives rise, applying Theorem 1, to the well-known independent of delay (IOD) criterion [2][9]. Secondly, so as to develop delay dependent condition, an additional operator must be blended into ∇, enhancing then the time delay system description. Usually, the operator (1 -D) • I (or in Laplace domain for the constant delay case (1e -sh )s -1 ), bounded by h max , is added. This operator is applied to the signal ẋ(t) and the relationship

(1 -D) • I [ẋ i (t)] = (1 -D) • I [I -1 [x i (t)]] = x i (t) -x i (t -h(t)), i = {1, ..., n}
should be specified in the linear equation E z(t) = A w(t). In this paper, inspired from [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF], instead of the integrator I , a scaling filter of dimension n φ of the form

     ẋφ (t) = A φ x φ (t) + B φ u(t), y(t) = C φ x φ (t) + D φ u(t), (9) 
is considered. The key idea is now to apply the new operator (1 -D) • φ -1 to the filtered signal y(t, x i (t)) (each component of the state vector x(t) of system (1) is processed u(t) = x i (t), i = {1, ..., n}):

(1 -D) • φ -1 [y(t, x i (t))] = (1 -D) • φ -1 [φ [x i (t)]] = x i (t) -x i (t -h(t)), i = {1, ..., n}
The dynamical system (9) should be designed according to the following lemma.

Lemma 3 An integral quadratic constraint for the operator F = (1 -D)• φ -1 is given by the following inequality ∀x ∈ L n 2e and for a positive definite matrix R,

   1 n F 1 n    x,    -R 0 0 R       1 n F 1 n    x < 0,
where φ , defined in [START_REF] Gouaisbaut | Robust stability of time-delay systems with interval delays[END_REF], is a realization of any bounded rational transfert function Φ which satisfies

         |Φ( jω)| > 1 + 1 √ 1-d , if h max |ω| > 1 + 1 √ 1-d , |Φ( jω)| > h max |ω|, if h max |ω| ≤ 1 + 1 √ 1-d . (10) 
Proof 4 In [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF], it is shown that for all systems φ satisfying the above specifications

(1 -D) • φ -1 L 2 ≤ 1 holds.
It means that for any v, a L n 2 function,

F v L 2 ≤ v L 2 ∞ 0 (F v(t)) T F v(t) -v T (t)v(t)dt ≤ 0 is satisfied. Defining v(t) = R 1/2 x(t), R being a symmetric positive definite matrix, we have ∞ 0 (F x(t)) T RF x(t) -x T (t)Rx(t)dt ≤ 0.
Factorizing on both sides by [x T (t) (F x(t)) T ] and its transposed, the IQC of the lemma is recovered.

An example of Φ(s), proposed by [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF], satisfying (10) is

Φ(s) = k h 2 max s 2 + ch max s h 2 max s 2 + ah max s + b ( 11 
)
where

k = 8/(2 -d), a = √ 6.5 + 2b, b = √ 50 and c = √ 12.5.
The time-varying delay system (1) is now modeled as the interconnection of

         x(t) xφ (t) x(t -h(t)) v 1 (t)          w(t) = ∇          ẋ(t) ẋφ (t) x(t) φ [x]          z(t) (12) 
with

∇ = diag I 1 n , I 1 n φ n , D1 n , (1 -D) • φ -1 1 n and    1 n(3+n φ ) 0    E z(t) =             A 0 A d 0 Bφ Ãφ 0 0 1 n 0 0 0 Dφ Cφ 0 0 1 n 0 -1 -1             A w(t) ( 13 
)
where

v 1 (t) = x(t) -x(t -h(t)), Ãφ = 1 n ⊗ A φ , Bφ = 1 n ⊗ B φ , Cφ = 1 n ⊗ C φ , Dφ = 1 n ⊗ D φ , xφ =       x φ 1 . . . x φ n       , φ [x] =       φ [x 1 ] . . . φ [x n ]       , (14) 
x i are the components of the state vector x. Note that there is one filter of dimension n φ associated to each x i . At this point, refering to the quadratic separation approach, Theorem 1 may be applied.

Theorem 2 For given positive scalars h max and d, if there exists positive definite matrices P ∈ R n(1+n φ )×n(1+n φ )

and Q, R ∈ R n×n , then system (1) with a time varying delay constrained by ( 2) is asymptotically stable if the LMI condition (3) holds with Θ (setting ḣ = d), E and A defined as [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF] and [START_REF] Iwasaki | Well-posedness of feedback systems: insights into exact robustnessanalysis and approximate computations[END_REF].

Proof 5 First, condition (4) must be satisfied for ∇ defined as [START_REF] He | Further improvement of free-weighting matrices technique for systems with time-varying delay[END_REF]. Invoking all Lemmas previously defined and combining all inequalities related to each operator, it is readily seen that the separator [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF] fulfills the inequality [START_REF] Bushnell | Networks and control[END_REF], where

Θ =    Θ 11 Θ 12 Θ * 12 Θ 22    , Θ 11 = diag(0 n(1+n φ ) , -Q, -R), Θ 12 = diag(-P, 0 2n ), Θ 22 = diag(0 n(1+n φ ) , (1 -ḣ)Q, R), ( 15 
)
and P ∈ R n(1+n φ )×n(1+n φ ) and Q, R ∈ R n×n are positive definite matrices. It is readily seen that inequality [START_REF] Fridman | An improved stabilization method for linear time-delay systems[END_REF] still holds for ḣ = d. Hence, regarding the separator, Θ 22 can be chosen as diag(0, (1d)Q, R). Then, the filter φ may be chosen as a realization of (11) defined by

             ẋφi (t) =    0 1 -b h 2 max -a h max    x φ i (t) +    0 1    u(t) y i (t) = -kb h 2 max kc-ka h max x φ i (t) + ku(t)
, where x φ i , i = {1, ..., n}, represents the different states of the same filter according to the different inputs u(t) = {x 1 (t), ..., x n (t)}. Considering Theorem 1 where the interconnection is given by ( 13)- [START_REF] He | Further improvement of free-weighting matrices technique for systems with time-varying delay[END_REF], and ( 4) being proved, the LMI (3) forms the stability criterion.

Model extension

Previous works [START_REF] Ebihara | Robust performance analysis of linear time-invariant uncertain systems by taking higher-order time-derivatives of the states[END_REF] and [START_REF] Bliman | Lyapunov equation for the stability of linear delay systems of retarded and neutral type[END_REF], [START_REF] Gouaisbaut | Robust stability of time-delay systems with interval delays[END_REF] have shown that redundant system modeling (for linear uncertain systems and constant delay systems, respectively) may increase the relevancy of the stability analysis. The rational behind this model extension is to provide some extra relations between the delay, its variations and the state. Using the derivative operator, an augmented state is constructed which is composed of the original state vector and its derivatives. Then defining relationship between augmented states ẋ, ẍ, the delay h and its derivative ḣ an enhanced stability condition is provided. Differentiating the system (1), we get:

ẍ(t) = A ẋ(t) + (1 -ḣ(t))A d ẋ(t -h(t)).
Consider the artificially augmented system

     ẋ(t) = Ax(t) + A d x(t -h(t)), ẍ(t) = A ẋ(t) + (1 -ḣ(t))A d ẋ(t -h(t)), (16) 
with accordingly defined initial conditions. Introducing the augmented state

ζ (t) =    ẋ(t) x(t)    ,
and specifying the relationship between the two components of ζ (t) with the equality

[0 1] ζ (t) = [1 0]ζ (t), we
have the new descriptor augmented system

E ζ (t) = Āζ (t) + Ād ζ (t -h(t)), ( 17 
)
where

E =       1 0 0 1 1 0       , Ā =       A 0 0 A 0 1       , Ād =       A d 0 0 (1 -ḣ)A d 0 0       .
Then, the new time-varying delay system (17) can be shaped as Figure 1 with

         ζ (t) xφ (t) ζ (t -h(t)) v 2 (t)          w(t) = ∇ ⊗ 1 2          ζ (t) ẋφ (t) ζ (t) φ [ζ ]          z(t) (18) 
and

   diag E, 1 2n(2+n φ ) 0    E z(t) =             Ā 0 Ād 0 Bφ Ãφ 0 0 1 n 0 0 0 Dφ Cφ 0 0 1 n 0 -1 -1             A w(t) (19) 
where

v 2 (t) = ζ (t) -ζ (t -h(t)
), ∇ defined as [START_REF] He | Further improvement of free-weighting matrices technique for systems with time-varying delay[END_REF] and redefining

Ãφ = 1 2n ⊗ A φ , Bφ = 1 2n ⊗ B φ , Cφ = 1 2n ⊗ C φ , Dφ = 1 2n ⊗ D φ , xφ =       x φ 1 . . . x φ 2n       , φ [ζ ] =              φ [ ẋ1 ] φ [x 1 ] . . . φ [ ẋn ] φ [x n ]              . (20) 
Following the same line than in the previous section, we propose:

Theorem 3 For given positive scalars h max and d, if there exists positive definite matrices P ∈ R 2n(1+n φ )×2n(1+n φ ) , Q, R ∈ R 2n×2n and a matrix X ∈ R 2n(6+2n φ )×n(7+2n φ ) , then system (1) with a time varying delay constrained by [START_REF] Ariba | Stability analysis of time-varying delay systems in quadratic separation framework[END_REF] is asymptotically stable if the LMI condition

Θ [ j] + X[E -A [ j] ] + (X[E -A [ j] ]) T > 0 holds for j = 1, 2
, with E and A defined as [START_REF] Olgac | An exact method for the stability analysis of time-delayed linear time-invariant (lti) systems[END_REF]. Θ is of the form of ( 15) with appropriate dimension. Θ [ j] and A [ j] are the vertices of, respectively, Θ and A setting ḣ(t) = d j . The constraint [START_REF] Ariba | Stability analysis of time-varying delay systems in quadratic separation framework[END_REF] gives d 1 = -d and d 2 = d.

Proof 6 First, It follows the same idea that the one of Theorem 2. Hence, the stability of ( 17) will be proved if

E -A ( ḣ(t)) ⊥ * Θ( ḣ(t)) E -A ( ḣ(t)) ⊥ > 0
with E , A defined as [START_REF] Olgac | An exact method for the stability analysis of time-delayed linear time-invariant (lti) systems[END_REF] and Θ is of the form of ( 15) with appropriate dimension. Applying the Finsler's lemma, the above inequality is equivalent to

Θ( ḣ(t)) + X[E -A ( ḣ(t))] + (X[E -A ( ḣ(t))]) T > 0 ( 21 
)
where X is a new decision variable of appropriate dimensions. Since, ḣ(t) appears linearly and is bounded, invoking argument of convexity, it is sufficient to test ( 21) on its vertices. The inequality proposed by Theorem 3 is thus recovered. System [START_REF] Kolmanovskii | Introduction to the Theory and Applications of Functional Differential Equations[END_REF] being stable, the whole state ζ (t) converges asymptotically to zero. Hence, its components x(t) converge as well. The original system ( 1) is thus also asymptotically stable.

Robustness issue

Coming from robust control, quadratic separation provides a suitable framework to address the stability analysis of uncertain delay systems:

ẋ(t) = A(∆)x(t) + A d (∆)x(t -h(t)) ( 22 
)
where

A(∆) A d (∆) = A A d + B∆ C C d .
The second term of the right hand side of the above equation describes the uncertainty characterizing system [START_REF] Tarbouriech | Advances in communication Control Networks[END_REF].

The uncertain time-varying matrix ∆, belonging to Ω, satisfies

∆ T (t)∆(t) ≤ 1, ∀t ≥ 0, ∀∆ ∈ Ω, (23) 
and models non-linear and neglected dynamics as well as parametric uncertainties. C, C d and B are constant matrices of appropriate dimensions which structure the uncertainty. Then, according to the set of admissible uncertainties and (23), we have to find a separator U such that

   1 ∆    x,    U 1 U 2 U * 2 U 3    U    1 ∆    x < 0, ∀∆ ∈ Ω. (24) 
For instance, assume Ω is a set of diagonal real valued matrices with bounded uncertainties:

Ω = ∆ = diag(δ 1 , ..., δ N ) | |δ i | ≤ δi ,
Then, inequality [START_REF] Zhang | Stability of time-delay systems: Equivalence between Lyapunov and scaled small-gain conditions[END_REF] holds with

U = diag -δ 2 1 u 1 , . . . , -δ 2 N u N , u 1 , . . . , u N
where u i , i = {1, ..., N} are scalar decision variables. Eventually, we propose to analyze the robust stability of system [START_REF] Tarbouriech | Advances in communication Control Networks[END_REF] with the following Theorem.

Theorem 4 For given positive scalars h max and d, if there exists positive definite matrices P ∈ R n(1+n φ )×n(1+n φ ) , Q, R ∈ R n×n and matrices U k (k = 1, 2, 3) designed according to the uncertain set Ω (i.e. such that (24) holds), then system [START_REF] Tarbouriech | Advances in communication Control Networks[END_REF] with a time varying delay constrained by ( 2) is robustly asymptotically stable for any uncertainty 3) holds with Θ, E and A defined as ( 26) and ( 25).

∆ ∈ Ω if the LMI condition (
Proof 7 First, introducing the exogenous signals

w ∆ = ∆z ∆ , with z ∆ = Cx(t) + C d x(t -h(t)),
we rewritte system [START_REF] Tarbouriech | Advances in communication Control Networks[END_REF] as the interconnection of [START_REF] Kao | Robust stability analysis of linear systems with time-varying delays[END_REF]. Combining every IQC related to each operators defined by lemmas and the struture of the uncertainty leading to [START_REF] Zhang | Stability of time-delay systems: Equivalence between Lyapunov and scaled small-gain conditions[END_REF], a separator of the form

            x(t) xφ (t) x(t -h(t)) v 1 (t) w ∆ (t)             w(t) = ∇             ẋ(t) ẋφ (t) x(t) φ [x] z ∆ (t)             z(t) with ∇ = I 1 n , I 1 n φ n , D1 n , F 1 n , ∆ and    1 n(3+n φ )+n ∆ 0    E z(t) =                 A 0 A d 0 B Bφ Ãφ 0 0 0 1 n 0 0 0 0 Dφ Cφ 0 0 0 C 0 C d 0 0 1 n 0 -1 -1 0                 A w(t) (25)
Θ =    Θ 11 Θ 12 Θ * 12 Θ 22    , Θ 11 = diag(0 n(1+n φ ) , -Q, -R, U 1 ), Θ 12 = diag(-P, 0 2n , U 2 ), Θ 22 = diag(0 n(1+n φ ) , (1 -d)Q, R, U 3 ), (26) 
fulfills the requirement [START_REF] Bushnell | Networks and control[END_REF]. Finally, condition (3) provides the robust (with respect to the uncertain set Ω) stability criterion.

NUMERICAL EXAMPLES

Example 1

Consider the following system,

ẋ(t) =    -2 0 0 -0.9    x(t) +    -1 0 -1 -1    x(t -h(t)). ( 27 
)
For various d, the maximal allowable delay, h max , is computed. To demonstrate the effectiveness of our criterion, results are compared against those obtained in the literature (see Table 1). On this example, compared to Lyapunov technics, robust approaches [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF], Theorem 2 and 3 reduce drastically the conservatism, especially when d is close to zero i.e. when the delay is slowly time varying. Using the same scaling filter for bounding operators Theorem 2 recovers the results of [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF], whereas Theorem 3, taking into account the derivative equation, reduces the conservatism. Indeed, the stability analysis is further improved thanks to an appropriate modeling of time-varying delay systems which brings additional informations on the system. 

Example 2

Consider now the following time-varying and uncertain system, extracted from [START_REF] Kim | Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty[END_REF],

ẋ(t) =    -2 + δ 1 cos(t) 0 0 -1 + δ 2 sin(t)    x(t) +    -1 + γ 1 cos(t) 0 -1 -1 + γ 2 sin(t)    x(t -h(t)). ( 28 
)
The δ i and γ i are uncertain but bounded parameters: Results are summarized in Table 2. It shows that Theorem 4 enables to find higher maximal bounds on the delay h(t) than others results from the literature. The quadratic separation offers thus a suitable framework to address uncertainties. In that case, the conservatism is also related to the manner to handle uncertainties (as the design of ( 24)).

|δ 1 | ≤ 1.

CONCLUSIONS

In this paper, the problem of the delay dependent stability analysis of a time-varying delay systems has been studied by means of quadratic separation. The delay part is embedded into an uncertain matrix of operators. Inspired from [START_REF] Ariba | Stability analysis of time-varying delay systems in quadratic separation framework[END_REF] and [START_REF] Kao | Stability analysis of systems with uncertain time-varying delays[END_REF], tight bounds of the L 2 induced norms of operators allow to reduce the conservatism of the approach.

Then using an augmented state, new modelling of time delay systems are introduced which emphasizes the relation

Figure 1 :

 1 Figure 1: Feedback system

6 ,B = 1 2 ,

 62 |δ 2 | ≤ 0.05, |γ 1 | ≤ 0.1, |γ 2 | ≤ 0.3.This example can be expressed as system[START_REF] Tarbouriech | Advances in communication Control Networks[END_REF] with C = diag(1.6, 0.05), C d = diag(0.1, 0.3).

Table 1 :

 1 The maximal allowable delays h m for system(27) 

	d	0	0.1	0.2	0.5	0.8	1
	Fridman et al (2002) [7] 4.472 3.604 3.033 2.008 1.364 0.999
	Fridman et al (2006) [8] 1.632 1.632 1.632 1.632 1.632 1.632
	Wu et al (2004) [23]	4.472 3.604 3.033 2.008 1.364	-
	He et al (2007) [11]	4.472 3.605 3.039 2.043 1.492 1.345
	He et al (2007) [12]	4.472 3.605 3.039 2.043 1.492 1.345
	Ariba et al (2007) [1]	5.120 4.081 3.448 2.528 2.152 1.991
	Kao et al (2007) [15]	6.117 4.714 3.807 2.280 1.608 1.360
	Theorem 2	6.117 4.714 3.807 2.280 1.608 1.360
	Theorem 3	6.117 4.794 3.995 2.682 1.957 1.602
	with notations of						

Table 2 :

 2 The maximal allowable delays h m for system (28)

	d	0	0.1	0.5	0.8
	[16]	0.241 0.234 0.188 0.110
	[23]	1.149 1.106 0.924 0.760
	[15]	1.416 1.302 0.974 0.829
	Theorem 4 1.515 1.422 1.105 0.910

between ḣ and signals ẋ and ẍ. The resulting criteria are then expressed in terms of a convex optimization problem with LMI constraints, allowing the use of efficient solvers. Finally, two numerical examples show that these methods reduced conservatism and improved the maximal allowable delay.