
HAL Id: hal-00445111
https://hal.science/hal-00445111

Submitted on 7 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Confidence Management in Vehicular Network
Véronique Cherfaoui, Thierry Denoeux, Zohra-Leïla Cherfi

To cite this version:
Véronique Cherfaoui, Thierry Denoeux, Zohra-Leïla Cherfi. Confidence Management in Vehicular
Network. H. Moustafa and Y. Zhang. Vehicular Networks: Techniques, Standards and Applica,
Taylor and Francis, pp.355-377, 2009, CRC Press. �hal-00445111�

https://hal.science/hal-00445111
https://hal.archives-ouvertes.fr


Book Title: Vehicular Networks: Techniques, Standards and

Applications

Editors : H. Moustafa and Y. Zhang

January 7, 2010



ii



Contents

1 Confidence Management in Vehicular Networks 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Principle of confidence for redundant and distributed data . . . . . . 2

1.1.2 Confidence management as a solution for information dissemination in

vehicular network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Knowledge representation and believe functions . . . . . . . . . . . . . . . . 3

1.2.1 Knowledge representation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Information fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Reliability and Discounting Factor . . . . . . . . . . . . . . . . . . . 5

1.3 Content of exchanged messages . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Level of information . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Spatial and temporal references . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Confidence attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Message information combination . . . . . . . . . . . . . . . . . . . . . . . . 9

i



ii CONTENTS

1.4.1 Temporal persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 Spatial propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3 Prior knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.4 Global Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Spatial Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.2 Source Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.3 Temporal Discounting . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



Chapter 1

Confidence Management in Vehicular

Networks

Véronique Cherfaoui, Thierry Denoeux, Zohra Cherfi

Due to the particularities of the vehicular network (ad hoc network, dynamical nodes,

broadcast messages), the data dissemination could be based on the confidence of redundant

and distributed information. A model of confidence management based on the belief function

framework is described considering spatial dispersion of data sources, delays due to the multi-

hop transmission and dependency between sources. Preliminary results are presented based

on simulated messages referenced on a real map data. This chapter is a revised version of

[2].
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1.1 Introduction

1.1.1 Principle of confidence for redundant and distributed data

In the last years, more and more communication devices have been embedded in vehicles.

Many applications based on wireless communication have been developed in which the vehi-

cles are the nodes of an ad hoc network called VANET. In the VANET, all vehicles broadcast

messages and each vehicle has knowledge about its neighborhood only through the messages

it receives. Most research papers deal with communication protocols, routing and conges-

tion problems. Due to the nature of applications (driving assistance systems or emergency

braking alert) recent works have been dedicated to the security mechanism in order to avoid

malicious node intercepting, modifying or sending erroneous data [7][8][9]. Supposing these

problems to be (partially) solved, we propose a method to manage and exploit message

information from the receiver node point of view.

In this chapter, we consider messages regarding safety such as accident, reduced visibility,

traffic jam, etc., and we consider car-to-car (C2C) communications. It is the context of

the Safespot project [19] [20] and the cognitive car [10]. Each car (node) is able to detect,

localize, date and characterize an event and, if necessary, broadcast it in a message. Due

to the multi-hop transmission protocol, the distance between sender and receiver nodes is

not limited by the transmission power of antennas. In order to localize and date the content

of a message, we assume that each node is equipped with a Global Positioning System

(GPS) receiver. When a node receives a message, it updates its database and, if necessary

it broadcasts its updated information.

1.1.2 Confidence management as a solution for information dissemination in

vehicular network

The problem of information dissemination, i.e., proposing a strategy to broadcast informa-

tion is one of key issue of the C2C communications. Indeed, the road traffic can be high,

the bandwidth is limited and the number of exchanging messages could have to be reduced.
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Different strategies have been proposed in the literature [6][1][17] concerning this problem.

It should also be remarked that algorithms for combining and fuse data are very differ-

ent from algorithms developed in infrastructure vehicle (V2I) communication applications.

In this latter case, a centralized module combines collected data and disseminates global

information.

The objective of the work reported in this chapter is to develop a methodology for com-

bining data included in messages arriving from other nodes. Since data are uncertain and

could be the result of processing disseminated data, we focus on confidence management

in a distributed and dynamical context. The confidence could be exploited to provide the

driver with relevant information and/or to decide about the transmission of the result in

the network. This contribution is intended to be a part of the information dissemination

strategy to be developed in a decision process.

This work is based on the use of belief functions to combine degrees of confidence about

events reported in exchanged messages. We first define the attributes of each message and

then describe the methodology to combine data coming from distributed, dynamical and

asynchronous sources.

1.2 Knowledge representation and believe functions

1.2.1 Knowledge representation

The transferable belief model TBM [15] is a model to represent quantified beliefs based on

belief functions [14]. It has the advantage of being able to explicitly represent uncertainty

about an event. It takes into account what remains unknown and represents what is already

known.

Let Ω be a finite set of all possible solutions of a problem. Ω is called the frame of

discernment (also called state space); it is composed of mutually exclusive elements. The

knowledge held by source can be quantified by a belief function defined from the power set
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2Ωto[0, 1]. Belief functions can be expressed in several forms: the basic belief assignment

(bba) denoted m, credibility function bel, the plausibility function pl, and the commonality

function q which are in one-to-one correspondence. We recall that m(A) quantifies the part

of belief that is restricted to the proposition ”the solution is in A ⊆ Ω ” and satisfies:∑
A⊆Ω m(A) = 1.

Thus, a bba can support a set A ⊆ Ω without supporting any sub-proposition of A,

which allows accounting for partial knowledge. The complete notation of a belief function

is: mΩ
S,t{X}[BCS,t](A) A ⊆ Ω where S is the information source, t the time of the event,

Ω the frame of discernment, X a parameter which takes value in Ω and BC the evidential

corpus or knowledge base. This formulation represents the degree of belief allocated by the

source S at time t to the hypothesis that X belong to A. The notation is simplified in

the following paragraph to clarify the combination formulae. In section 1.3, the complete

notation including the time, source and parameter will be used.

Smets [15] introduced the notion of open world where Ω is not exhaustive; this is quantified

by a non zero value of m(∅). The other functions can be calculated from the bba m using

the following formulas:

Credibility function: belΩ(A) =
∑
∅6=B⊆Am

Ω(B),

Plausibility function: plΩ(A) =
∑

A∩B 6=∅m
Ω(B),

Commonality function: qΩ(A) =
∑

B⊇Am
Ω(B).

Another function that can be computed from q is the conjunctive weight function [16]

defined by:

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1

The w function is well-defined if m is non dogmatic, i.e. if m(Ω) > 0. Functions bel, pl,

w and m are in one-to-one correspondence. In particular, formula to recover m from w are

given in [16] and [5].
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1.2.2 Information fusion

Let n distinct pieces of evidence be defined over a common frame of discernment and quanti-

fied by bbas mΩ
1 ...m

Ω
n . They may be combined using a suitable operator. The most common

ones are the conjunctive and disjunctive rules of combination defined, respectively, as:

mΩ
∩(A) =

∑
A1∩...∩An

mΩ
1 (A1)...mΩ

n (An)

mΩ
∪(A) =

∑
A1∪...∪An

mΩ
1 (A1)...mΩ

n (An)

The resulting bbas should be normalized under the closed world assumption. Dempster’s

rule [3] denoted by ⊕ normalises the result of the conjunctive rule with K = 1
1−mΩ

∩(∅) and sets

the mass on the empty set to 0. The conjunctive and disjunctive rules of combination assume

the independence of the data sources. In [4] and [5] Denoeux introduced the cautious rule

of combination (denoted by ?) to combine dependent data. This rule has the advantage

of avoiding double-counting of common evidence when combining non distinct bbas. In

particular, the combination of a bba with itself yields the same bba: m = m?m (idempotence

property). The cautious rule of combination can be easily computed by taking the minimum

of conjunctive weights : with obvious notations, w1?2 = w1 ∧ w2, where ∧ denotes the

minimum operator.

1.2.3 Reliability and Discounting Factor

The belief function framework makes it possible to model the user’s opinion about the

reliability of a source [8]. The idea is to weight more heavily the opinions of the best source

and conversely for the less reliable ones. The result is a discounting of the bba mΩ produced

by the source, resulting in a new bba mΩ,α defined by:

mΩ,α(A) = α ·mΩ(A),∀A ⊆ Ω, A 6= Ω
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mΩ,α(Ω) = 1− α + α ·mΩ(Ω).

The discounting factor α can be regarded as the degree of trust assigned to the sensor.

1.3 Content of exchanged messages

1.3.1 Level of information

Safety applications in VANET are being investigated in order to increase the vehicle visi-

bility area and produce useful information in view of developing ADAS (Advanced Driver

Assistance System) functions. The level of exchanged data depends of the applications: the

concept of cognitive car [10] assumes that vehicles communicate in crossing roads to avoid

collision. Traffic information applications are based on the vehicle positions and speed ex-

change [12]. We propose to exchange data concerning a set of events in order to increase the

”visibility” of the driver and to allow the anticipation of dangerous situations. These events

are classified into three categories:

• Static (or slowly evolving) and localized events such as Accident (AC), working area

(WA), Dangerous Object (DO);

• Dynamical (quickly evolving) and localized events such as an animal on the road (AN),

a counter sense vehicle (CV) or a dangerous vehicle (DV);

• Slowly evolving and diffuse events such as low visibility (LV), traffic-jam or congestion

zone (CZ), low adherence area (LA). These events concern a whole geographical area.

In this work, it is assumed that vehicles are equipped with systems able to detect these

events.
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1.3.2 Spatial and temporal references

When a node receives a message, it has to decide whether it is relevant according to the

node location and the node itinerary. Knowing that an event is geo-localized with GPS,

and assuming the node has a numerical map, it is possible to associate an event with a

road segment. A road segment is an entity in a Geographical Information System (GIS)

database. Each road segment is determined by a unique Road-ID. Figure 1.1 describes the

geometrical definition of a road segment: it is connected with other segments at the origin

and end extremities.

This approach has three main advantages:

• The spatial data association between two events is made easier;

• The space representation by roads is discrete. Consequently, two messages geo-localized

on the same Road-ID concern the same event.

• It is possible to assign prior knowledge to each road segment. For example, frequent

fog reported in an area can be associated to segments in this area.

As mentioned in the introduction, the time between the creation and reception of a mes-

sage can be higher than transmission delay. This is due to the multi-hop and retransmission

capabilities of communicating cars. Consequently, two attributes should be defined for dat-

ing an event: one for time stamping the event when it was detected and one for specifying

the date of updating if the message was created from the combination of other messages.

1.3.3 Confidence attributes

In order to analyze a road situation according to set of events, we study the confidence of

these events according to the confidence assigned by the vehicle that has detected the event,

the redundancy of messages concerning this event and the date and location attributes.

We propose to model the confidence with belief functions in order to take into account

the uncertainty of initial data. The operators defined in the belief function framework can
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be applied to compute a unique belief function by combining belief masses coming from

many sources. A message describing the event ev is assumed to contain a mass function on

Ω = {0, 1}. The value 0 represents ¬ev and 1 represents ev. The mass function m can then

be represented as a quadruplet [m(∅),m(0),m(1),m(Ω)]. The value m(Ω) is interpreted as

the degree of doubt and the value m(∅) represent the degree of conflict between sources.

There are two ways to initialize the mass function. First, when a vehicle vehID detects

an event ev at time t on road roadID, it computes a degree of certainty d. This value is

used to define the bba mΩ
vehID,roadID,t{ev} as:

mΩ
vehID,roadID,t{ev}(∅) = 0

mΩ
vehID,roadID,t{ev}(0) = 0

mΩ
vehID,roadID,t{ev}(1) = d

mΩ
vehID,roadID,t{ev}(Ω) = 1− d

When a vehicle vehID predicts an event ev on a road segment roadID and it does not

detect it, it assigns a confidence value d′ to ev and builds the following mass function for ev:

mΩ
vehID,roadID,t{ev}(∅) = 0

mΩ
vehID,roadID,t{ev}(0) = d′

mΩ
vehID,roadID,t{ev}(1) = d

mΩ
vehID,roadID,t{ev}(Ω) = 1− d′

The confidence values d and d′ are set based on the reliability of the detection system (driver

observation, sensor processing).

Our aim is to improve the level of knowledge from exchanged messages. The belief of

the distributed sources is expressed by their mass functions. Distributed data fusion then

consists in combining these masses with the appropriate operator. The conjunctive rule

will be used when assuming the independence of messages, whereas the cautious rule will

be applied in case of dependent messages. To determine which operator should be applied
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when combining information contained in a message with other information, an attribute

src is set to 1 when the message is original and set to 0 when it results from the combination

of other messages.

The content of message is summarized in table 1.

Attribute Description

ev Type of event

roadID Road Id for localisation of event

subSeg # of subsegments (for fine localization)

coordgps GPS Coordinate

vehID Vehicle ID having detected the event

src Binary value indicating if the message content is the re-

sult of detection or the result of processing disseminated

data.

tAcquisition Time of event perception

tLastUpdate Last updating date

m Mass function (bba)

Table 1 : Message attributes.

Some specific attributes (subSeg) have been added for future developments.

1.4 Message information combination

1.4.1 Temporal persistence

The observed system is composed of events evolving in time and space. The delay between

emission and reception can be small or large according to the routing and propagation

algorithms. The confidence in a message also depends on of the age of the received event.

Belief masses should thus be modified according to the delay between the date of data
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processing and the date of data emission. The objective is to maintain data consistency

with or without new messages. Indeed, in order to maintain a high level of confidence about

an event, new messages confirming this event are needed. Without such confirmation, the

confidence should decrease. We propose to define a discounting factor γ according to the

time difference ∆t = tcurrent − tlastUpdate and a value ρ(ev) depending on the event ev :

γ = exp(−∆t/ρ(ev)).

The value ρ(ev) characterizes the persistence of event ev. For example, ρ(LV) is high while

ρ(AN) is shorter. Temporal extension is thus performed by a discounting operation:

mtcurrent(A) = γ ·mtlastUpdate
(A), A 6= Ω

mtcurrent(Ω) = 1− γ + γ ·mtlastUpdate
(Ω)

Notice that we have simplified the notation because the referential, event, road and source

are constant in this part of the algorithm.

1.4.2 Spatial propagation

Message combination in ad hoc networks should also take into account spatial properties of

the observed events. We can assume that some events observed on road segment Si hold

as well at positions close enough to Si. It is true, for example, for weather observations.

The size of the neighborhood depends of the type of the diffuse event. A previous approach

to plausible reasoning from spatial observations was proposed by Lang and Muller in [12].

These authors consider an observation point o (for example, the current position of the

vehicle) and try to infer beliefs about what holds in o from the properties of the other road

segments xi(i = 1, .., n). Their model of spatial persistence is based on an extrapolation of

observation mxi→o calculated by discounting the mass function mxi
with a factor β:

β = exp(−d(xi, o)

λ(ev)
).
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mxi→o(A) = β ·mxi
(A) A 6= Ω

mxi→o(Ω) = 1− β + β ·mxi
(Ω)

where d(xi, o) is the distance between the focus point o and the road segment xi and λ(ev)

represents the degree of spatial persistence. The belief at the focus point o is then the

Dempster combination of the mxi→o :

mo = ⊕i:1..nmxi→o.

However, the problem of the dispersion in space of points xi(i = 1, .., n) has to be considered.

Figure 1.2 shows two different situations. Since the points x1 and x2 are close in the second

configurations, their influence on point o should be reduced.

To remedy this problem, Lang and Muller propose to introduce a discounting factor when

combining mass assignments. The discount rate grows with the proximity and thus the de-

pendency between the points where observations have been made. The discounting factors

are calculated based on geometrical criteria. We propose to make use of the numerical map

to define the dependency between points xi (defined, for example, by GPS coordinates). As

previously mentioned, an event is localized on the numerical map and a road identifier is

associated to it. The roadID attribute can thus be used to define if events are located on

the same portion of road. In this case, the masses are considered as non independent and

combined using the cautious rule. If the messages containing the masses come from roads

with different roadIDs, they are combined with Dempster’s rule. The cautious and Dempster

rules are associative and commutative. The algorithm is then:

mo = mxi→o

tabRoadID← roadID(xi)

for i : 2..n

if roadID(xi) ∈ tabRoadID

mo = mo ?mxi→o

else

tabRoadID← roadID(xi)
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mo = mo ⊕mxi→o

Here again the notation has been simplified because the referential, parameter, time and

source are constant.

1.4.3 Prior knowledge

Using numerical map to support the database makes it easy to attach prior information to

road segments. For example, a congestion zone can be identified in some urban area, frequent

fog condition can be observed near the wet zone, etc. This information can be fused with

extrapolated and combined data before a decision is made.

1.4.4 Global Algorithm

As the vehicle is moving continuously, two approaches can be considered for processing a

received message. The first one is a message-triggered approach in which each message is

processed when it arrives at the node. Since the frequency and number of messages are

unknown, it is difficult to guarantee that all messages will be processed. We prefer the

second approach, referred to as the road segment triggered approach, in which each received

message is kept in memory. When the node moves on a road segment Sv, all messages in

a specified neighborhood are processed to compute the belief in the situation on Sv. The

neighborhood can be defined according to an area around the current position or according

to the itinerary of the vehicle.

In the context of VANET, it is unrealistic to assume that messages are independent.

Information could be relayed and completed by the nodes in the network. As mentioned

previously, some message attributes can determine if two messages are independent or not.

We can consider that independence can be assumed in the following cases:

1. Two messages sent by two different nodes with attribute src equal to 1. (src = 1 means
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that information is acquired by the node)

2. Two messages sent by the same node at two different dates are regarded as independent

if the node has made two distinct acquisitions: src equal to 1 and tAcquisition values are

different.

In the other cases, the messages are processed as coming from dependent sources. The global

algorithm is described in Figure 1.3. The grey box has not been implemented yet and is left

for future work.The strategy to elaborate a decision concerning the segment and send the

corresponding message is beyond the scope of this paper.

1.5 Preliminary results

In order to test this approach, the above algorithm has been implemented in Matlab. The

messages are simulated on the basis of a real numerical map (NavTeQ). A module extracts

roads from the map in a specified area [11]. It uses the Benomad kit. Examples in this

section are made with a map cache extracted from the GIS with a radius equal to 4 km.

1.5.1 Spatial Extension

To illustrate the spatial propagation we propose to simulate seven messages concerning the

event ”Low Visibility” (LV). Indeed, low visibility corresponds to weather conditions like fog

or hard rain. These phenomena are spatially diffuse and can be spatially propagated. The

first example shows the results of the combination of messages coming from seven distinct

road segments situated in two distinct areas. The Figure 1.4 shows the map for low visibility

messages. The vehicle is on segment V. The fog area is localized in the grey area. RoadId of

messages are shown. The figure 1.5 gives the bba contained in each message and the figure

1.6 shows the spatial discounting on segment V.

The resulting belief function for LV event on segment V are given in figure 1.7 and were

calculated with normalized operators (mass on empty set was used to normalize). The
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attenuation factor computed from the distance between the current position of the vehicle

and GPS data in messages discount efficiently the m(1) values.

The next scenario concerns the problem of spatial dependency. To illustrate it, the mixed

cautious/conjunctive rule was compared with conjunctive only combination in the case where

messages are localized on the same segments. Figure 1.8 shows the RoadId of segments with

messages. The vehicle is on segment V. Figure 1.9 gives the bba contained in each message

and the spatial discounting on segment V according to the RoadID localization is shown in

figure 1.10. The result of the mixed cautious/conjunctive rule approach is compared with

the use of conjunctive rule in figure 1.11.

The use of cautious rule when messages are co-localized limits the reinforcement of con-

fidence values as compared to well distributed sources. The well distributed sources are

represented by the belief function resulting from the conjunctive rule only. This approach

has a lower computational complexity than the spatial dispersion method proposed in [12].

The main difficulty for the implementation of this method is the definition of parameter

λ. The spatial diffusion of real events is never constant and depends on a lot of context-

dependent conditions.

1.5.2 Source Dependency

The next scenario illustrates the global algorithm (Figure 1.12). It simulates messages con-

cerning an event LV coming from a group of vehicles exchanging data in an area. Messages

are relayed by other vehicles (thanks to multi-hop protocol). A subset of messages (localized

at 11, 120 and 30 RoadID) are labelled with src = 0 (not original perception of event).

Figure 1.13 gives the initial bbas. The figure 1.14 given the bbas after spatial discounting

on segment V according the RoadID localization and m.

Figure 1.15 shows the belief functions on segment V. The result of our approach is com-

pared with the use of the conjunctive rule only without tacking into consideration the de-

pendence between messages. Thanks to the cautious rule, all messages can be processed
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according to their distinctness. The unnormalized result (openworld) gives the degree of

conflict (between LV and not LV) with m(∅). This value could be used in the decision

process. The behavior of the cautious rule is highlighted in this example.

1.5.3 Temporal Discounting

Figure 1.16 shows an example of global combination with a message localized on segment

V (current road segment). The message were dated with tAcquisition = tCurrent− 3600s.

The RoadID is the current segment V and src = 1. Temporal discounting was performed

on the bba of this message, before combining it with the result reported in figure 1.15.

The implementation of this algorithm in real conditions can be envisaged provided GPS

data (position and global clock) are available. The discounting factor based on the decay

function can be roughly estimated for different kinds of dynamical events. However, like the

spatial parameter λ, we can already assume that an implementation in real conditions will

require fine tuning of the γ parameter, as the life duration of an event is context-dependent.

1.6 Conclusion

A distributed data fusion method for combining the confidence in ad hoc and dynamical

networks has been presented. The method is based on belief functions and implements a

strategy to combine confidence in messages. The preliminary results are promising and this

approach is still in the process of being developed in order to validate the principle. A

decision rule and a sending message strategy have to be defined before considering more

complex simulations. Coupling this program with an ad hoc network simulator will be a

real added value for validation. The method described in this paper is able to process only

one type of event. Next works will consider the relation between events in order to take into

consideration the link between some of them (for example, a congestion event is often the

consequence of an accident event). Finally, future work will focus on coupling information

reliability with node reliability, i.e., confidence in the sending vehicle in order to be more
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robust to Sybil node attacks.
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Figure 1.1: definition on a road segment in GIS
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Figure 1.2: dispersion configurations
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Figure 1.3: Algorithm for belief function processing
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Figure 1.4: Example of Low Visibility (LV) messages distributed on real map
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Figure 1.5: Initial bbas of message localized on RoadId segment
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Figure 1.6: Dscounted bbas by spatial propagation
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Figure 1.7: Resulting combination of bbas concerning LV messages
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Figure 1.8: Example of spatial dispersion for seven messages localized on only three road
segments
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Figure 1.9: Initial bbas of message localized on RoadId segment



1.6. CONCLUSION 27

Figure 1.10: Discounted bbas by spatial propagation



28 CHAPTER 1. CONFIDENCE MANAGEMENT IN VEHICULAR NETWORKS

empty 

{0}   

{1}   

 {0,1}
cautious/conj.

conj. only

0

0.2

0.4

0.6

0.8

1

subset

LV

mode

co
m

bi
ne

d 
m

as
se

s

Figure 1.11: Resulting combination on segment V : comparison between two different strate-
gies
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Figure 1.12: Example of scenario of redundant and dependent messages
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Figure 1.13: Initial bbas of message localized on RoadId segment
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Figure 1.14: bbas on segment V after discounting according to the RoadId localization.
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Figure 1.15: Resulting combination on segment V : comparison between three different
strategies
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Figure 1.16: Resulting combination on segment V with temporal extension


