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HOMOGENEOUS KÄHLER AND HAMILTONIAN MANIFOLDS

BRUCE GILLIGAN, CHRISTIAN MIEBACH, AND KARL OELJEKLAUS

Abstract. We consider actions of reductive complex Lie groups G = KC on Kähler
manifolds X such that the K–action is Hamiltonian and prove then that all G–orbits
are locally closed in X . This is used to characterize reductive homogeneous Kähler
manifolds in terms of their isotropy subgroups. Moreover we show that such manifolds
admit K–moment maps if and only if their isotropy groups are algebraic.

1. Introduction

A reductive complex Lie group G is a complex Lie group admitting a compact real
form K, i. e. G = KC. Equivalently a finite covering of G is of the form S × Z =
S × (C∗)k, where S is a semisimple complex Lie group. It is well known that every
complex reductive Lie group admits a unique structure as a linear algebraic group.
Holomorphic or algebraic actions of reductive Lie groups appear frequently in complex
and algebraic geometry and interesting connections arise between the structure of the
orbits of such groups and the isotropy subgroups of the orbits.

A result of this type was proved independently by Matshushima [Mat60] and On-
ishchik [On60]. They consider G a complex reductive Lie group and H a closed complex
subgroup of G and show that G/H is Stein if and only if H is a reductive subgroup
of G. In [BaOt73] Barth and Otte prove that the holomorphic separability of the
homogeneous space G/H implies H is an algebraic subgroup of the reductive group G.

In the case of semisimple actions, it is known that Kähler is equivalent to algebraic
in the sense that S/H is Kähler if and only if H is an algebraic subgroup of the complex
semisimple Lie group S, see [Ber87] and [BO88]. The simple example of an elliptic curve
C

∗/Z shows that this result does not hold in the reductive case. Instead homogeneous
Kähler manifolds X = G/H with G = S×(C∗)k reductive are characterized by the two
conditions S∩H is algebraic and SH ⊂ G is closed, as we shall prove. If, in addition to
the existence of a Kähler form, there exists a K–moment map on X, then X is called a
Hamiltonian G–manifold. Huckleberry [Hu] has conjectured that the isotropy groups
in a Hamiltonian G–manifold are algebraic. In the present paper we prove that this is
indeed the case.

The moment map plays a decisive role in our proof which depends in an essential
way on the work of Heinzner-Migliorini-Polito [HMP98]. In the third section of their
paper they investigate the closure of certain orbits and prove the following: suppose
T is an algebraic torus acting holomorphically on a complex space X such that the
semistable quotient π : X → X//T exists. Let A be a subanalytic set in X such that
π|A : A → X//T is proper. Then T · A is subanalytic in X. We use the moment
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map in order to ensure the existence of the semistable T–quotient locally. This is
sufficient to show that the G–orbits are locally subanalytic and hence locally closed in
the Hamiltonian G–manifold X.

The paper is organized as follows. In section 2, the definitions of K–moment maps
and Hamiltonian actions are recalled. Furthermore two lemmata are proved for later
use. The main result of section 3 is that the orbits of a Hamiltonian G–action on a
Kähler manifold are always locally closed. Since for G = S semisimple there always
is a moment map, any semisimple Lie group action on a Kähler manifold has locally
closed orbits.

In section 4 we prove that the reductive homogeneous manifold X = G/H is Hamil-
tonian if and only if H is an algebraic subgroup of G and use this to give a new proof
of the main results in [BO88] and [Ber87]. Finally, in the last section this result is used
in order to prove our characterization of those closed complex subgroups H ⊂ G such
that X = G/H admits a Kähler form.

2. Hamiltonian G–manifolds

Let G = KC be a connected complex reductive Lie group with maximal compact
subgroup K. Let X be a connected complex manifold endowed with a holomorphic
G–action.

We denote the Lie algebra of K by k. The group K acts via the coadjoint represen-
tation on the dual k

∗. In the following equivariance of a map with values in k
∗ is always

meant with respect to the coadjoint action. If ξ ∈ k, we write ξX for the holomorphic
vector field on X whose flow is given by (t, x) 7→ exp(tξ) · x. If ω is a K–invariant
Kähler form on X, then the contracted form ιξX

ω is closed for every ξ ∈ k. By defini-
tion, a K–equivariant smooth map µ : X → k

∗ is a moment map for the K–action on X
if for each ξ ∈ k the smooth function µξ ∈ C∞(X), µξ(x) := µ(x)ξ, verifies dµξ = ιξX

ω.
The K–action on X is called Hamiltonian if an equivariant moment map µ : X → k

∗

exists. Note that, if µ is a moment map and if λ ∈ k
∗ is a K–fixed point, then µ + λ is

another moment map on X.

Definition 2.1. We say that X is a Hamiltonian G–manifold if X admits a K–
invariant Kähler form such that the K–action on X is Hamiltonian with equivariant
moment map µ : X → k

∗.

Remark. If G is semisimple, then every Kähler manifold X on which G acts holomor-
phically is a Hamiltonian G–manifold which can be seen as follows. Let dk be the
normalized Haar measure of K. If ω is any Kähler form on X, then ω̂ :=

∫
K

k∗ωdk
is a K–invariant Kähler form on X. Since K is semisimple, there exists a unique
equivariant moment map µ : X → k

∗ by Theorem 26.1 in [GS84].

In this paper we will often use the following.

Lemma 2.2. Let X be a Hamiltonian G–manifold and let G̃ be a complex reductive

subgroup of G. Then every G̃–stable complex submanifold X̃ of X is a Hamiltonian

G̃–manifold.

Proof. We may assume without loss of generality that G̃ = K̃C for some compact

subgroup K̃ ⊂ K. Composing the moment map µ : X → k
∗ with the orthogonal
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projection onto k̃
∗ we obtain a moment map for the K̃–action on X. Restricting this

map to the Kähler manifold X̃ we see that the K̃–action on X̃ is Hamiltonian. �

Example. Let G → GL(V ) be a holomorphic representation of the complex reductive
group G on a finite dimensional complex vector space V . Then each G–stable complex
submanifold of V or of P(V ) is a Hamiltonian G–manifold. In particular, if H is an
algebraic subgroup of G, then the homogeneous space G/H is a quasi-projective variety
(see e. g. Theorem 5.1 in [Bor91]) and hence a Hamiltonian G–manifold.

For later use we note the following

Lemma 2.3. Let (X, ω) be a Hamiltonian G–manifold with moment map µ : X → k
∗

and let p : X̃ → X be a topological covering. If the G–action lifts to X̃, then (X̃, p∗ω)
is a Hamiltonian G–manifold with moment map p∗µ.

Proof. We equip X̃ with the unique complex structure such that p is locally biholo-

morphic. If the G–action lifts to X̃, then G acts holomorphically on X̃ and p is
G–equivariant. Consequently, p∗ω is a K–invariant Kähler form on X̃.

For ξ ∈ k let ξ eX and ξX be the induced vector fields on X̃ and X, respectively. Since
p is equivariant, we have p∗ξ eX = ξX . Hence, we obtain

d(p∗µ)ξ = dp∗µξ = p∗dµξ = p∗ιξX
ω = ιξ eX

p∗ω,

which shows that p∗µ is an equivariant moment map for the K–action on X̃. �

3. Local closedness of G–orbits

Let X be a connected Hamiltonian G–manifold where G = KC is a connected com-
plex reductive group. We want to show that the G–orbits are locally closed in X.

We fix a maximal torus T0 in K. Then T := T C

0 is a maximal algebraic torus in G
and the moment map µ : X → k

∗ induces by restriction a moment map µT : X → t
∗
0 for

the T0–action on X. Since t0 is Abelian, for every λ ∈ t
∗
0 the shifted map µT +λ is again

a moment map for T0. Consequently, every x ∈ X lies in the zero fiber of some moment
map for the T0–action on X which has the following consequences (see [HL94]).

Theorem 3.1. Let G be a connected complex reductive group and X be a connected
Hamiltonian G–manifold.

(1) Every isotropy group Tx is complex reductive and hence a subtorus of T .
(2) For every x ∈ X there exists a complex submanifold S of X which contains x

such that the map T ×Tx
S → T ·S, [t, y] 7→ t · y, is biholomorphic onto its open

image.
(3) For λ ∈ t

∗
0 we define Sλ :=

{
x ∈ X; T · x ∩ µ−1

T (λ) 6= ∅
}
. Then Sλ is a T–

stable open subset of X such that the semistable quotient (see [HMP98]) Sλ →
Sλ//T exists. Moreover, the inclusion µ−1

T (λ) →֒ Sλ induces a homeomorphism
µ−1

T (λ)/T0
∼= Sλ//T .

Remark. Properties (1) and (2) imply that if the T–action on X is known to be almost
free, then it is locally proper.
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For the following we have to review the definition of subanalytic sets. For more
details we refer the reader to [BM88] and to [Hir73].

Let M be a real analytic manifold. A subset A ⊂ M is called semianalytic if every
point in M has an open neighborhood Ω such that A∩Ω =

⋃r
k=1

⋂s
l=1 Akl, where every

Akl is either of the form {fkl = 0} or {fkl > 0} for fkl ∈ Cω(Ω). A subset A ⊂ M
is called subanalytic if every element of M admits an open neighborhood Ω such that
A ∩ Ω is the image of a semianalytic set under a proper real analytic map. We note
that finite intersections and finite unions as well as topological closures of subanalytic
sets are subanalytic. Finally we call a set A ⊂ M locally subanalytic if there are open
sets U1, . . . , Uk ⊂ M such that A ⊂ U1 ∪ · · · ∪ Uk and such that A ∩ Uj is subanalytic
in Uj for every j. For later use we cite the following theorem of Hironaka ([Hir73]).

Theorem 3.2. Let Φ: M → N be a real analytic map between real analytic manifolds
and let A ⊂ M be subanalytic. If Φ|A : A → N is proper, then Φ(A) is subanalytic in
N .

It is shown in [HMP98] that, if the semistable quotient X → X//T exists globally,
then the semistable quotient X → X//G exists. The first step in the proof of this
theorem consists in showing that the existence of X//T implies that the G–orbits are
subanalytic and thus locally closed in X. In our situation the semistable quotient of X
with respect to T exists only locally (in the sense of Theorem 3.1(3)). As we will see
this implies that the G–orbits in X are locally subanalytic which is sufficient for them
to be locally closed.

The following lemma is the essential ingredient in the proof of this statement.

Lemma 3.3. Let A ⊂ X be a compact subanalytic set. Then T ·A is locally subanalytic
in X.

Proof. Since A is compact, we have A ⊂
⋃n

k=1 Sλk
. For every k = 1, . . . , n let Uk be

an open subanalytic subset of Sλk
such that Uk ⊂ Sλk

is compact and such that A ⊂⋃n
k=1 Uk. Consequently, for every k the intersection A ∩ Uk is a compact subanalytic

subset of Sλk
. Since for each k the semistable quotient Sλk

→ Sλk
//T exists, we conclude

from the proposition in Section 3 of [HMP98] that T · (A ∩ Uk) = (T · A) ∩ (T · Uk)
is subanalytic in Sλk

. It follows that for every k the intersection (T · A) ∩ (T · Uk) is
subanalytic in the open set T · Uk ⊂ X. Since we have T · A = T ·

(⋃n
k=1 A ∩ Uk

)
=⋃n

k=1

(
(T · A) ∩ (T · Uk)

)
, we conclude that T · A is locally subanalytic in X. �

Lemma 3.4. Let A ⊂ X be (locally) subanalytic. Then K · A is (locally) subanalytic
in X.

Proof. Since K is compact, the real analytic map Φ: K × X → X, (k, x) 7→ k · x,
is proper: For every compact subset C ⊂ X the inverse image Φ−1(C) is closed and
contained in K×(K ·C), hence compact. We conclude that the restriction of Φ to K×A
is proper. Therefore Hironaka’s theorem 3.2, [Hir73] implies that Φ(K ×A) = K ·A is
subanalytic.

If A is locally subanalytic, then A is covered by relatively compact subanalytic open
sets U such that A ∩ U is subanalytic. Then it follows as above that K · (A ∩ U) is
subanalytic, and consequently K · A is locally subanalytic. �
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Now we are in a position to prove the main result of this section.

Theorem 3.5. Suppose X is a connected Hamiltonian G–manifold, where G is a con-
nected complex reductive group. Every G–orbit is locally subanalytic and in particular
locally closed in X. Moreover, the boundary of every G–orbit contains only G–orbits
of strictly smaller dimension.

Proof. For every x ∈ X the orbit K · x is a compact real analytic submanifold of X.
By Lemma 3.3 the set T · (K · x) is locally subanalytic in X. Thus Lemma 3.4 implies
that K ·

(
T · (K · x)

)
is locally subanalytic as well. Because of G = KTK the first

claim follows.
In order to see that the G–orbits are locally closed, we take U1 ∪ · · · ∪ Uk to be an

open covering of G · x such that for every j the intersection (G · x) ∩ Uj is subanalytic
in Uj . Since the boundary of a subanalytic set is again subanalytic and of strictly
smaller dimension, we see that (G · x) ∩ Uj contains an interior point of its closure
in Uj . Moving this point with the G–action it follows that (G · x) ∩ Uj is open in its
closure in Uj . Consequently, G · x is locally closed.

For the third claim it is sufficient to note that the dimension of an orbit G · x can
be checked in the intersection with an open set U such that (G · x) ∩ U is subanalytic
in U . The argument given in the previous paragraph then proves the claim. �

From the remark after Definition 2.1 we obtain the following.

Corollary 3.6. Let G = S be a connected semisimple complex Lie group acting holo-
morphically on the connected Kähler manifold X. Then the S–orbits are locally closed
in X.

Remark. In [Mar83], G. Margulis constructed discrete subgroups Γ of SL(2, R) ⋉ R
3

which are free groups generated by two elements. These groups Γ can be divided into
two non-empty classes depending on whether the induced action of Γ on R3 is properly
discontinuous or not. The associated homogeneous complex manifolds (SL(2, C) ⋉

C3)/Γ are not Kähler in the “non properly discontinuous” case by Corollary 3.6. It
seems to be a difficult problem to decide the Kähler question for these quotients in the
“properly discontinuous” case.

4. Homogeneous Hamiltonian G–manifolds

Let G = KC be a connected complex reductive group and let H be a closed complex
subgroup of G. Suppose that the homogeneous space X = G/H admits a K–invariant
Kähler form ω. We want to show that the existence of a K–equivariant moment map
µ : X → k

∗ implies that H is an algebraic subgroup of G.

Example. If G is Abelian, i. e. if G = (C∗)k, then the fact that G/H is Kähler does not
imply that H is algebraic as the example of an elliptic curve C∗/Z shows. However, if
G/H is a Hamiltonian G–manifold, then by Theorem 3.1(1) the group H is complex
reductive and hence algebraic.

Example. Suppose that X = G/H is a Hamiltonian G–manifold with moment map
µ : X → k

∗. If µ−1(0) 6= ∅, then the semistable quotient X//G exists (and is a point)
and thus X = G/H is Stein by [HMP98]. In this case H is a reductive complex
subgroup of G and hence is algebraic, see [Mat60] and [On60].



6 BRUCE GILLIGAN, CHRISTIAN MIEBACH, AND KARL OELJEKLAUS

We will need the following technical result.

Lemma 4.1. Let Γ be a discrete subgroup of G normalizing H such that X = (G/H)/Γ
is a Hamiltonian G–manifold with moment map µ. Suppose that Γ acts by holomorphic
transformations on a complex manifold Y and that Y admits a Γ–invariant Kähler form
ωY . Then the twisted product (G/H)×Γ Y is a Hamiltonian G–manifold with moment
map µ̂ : (G/H) ×Γ Y → k

∗, µ̂[gH, y] := µ(gHΓ).

Proof. Let p : G/H → (G/H)/Γ be the quotient map and let ω be the Kähler form
on (G/H)/Γ. Then p∗ω is a Γ–invariant Kähler form on G/H and thus p∗ω + ωY is

a Γ–invariant Kähler form on (G/H) × Y . Hence, we see that Ŷ := (G/H) ×Γ Y is
Kähler.

The map µ̂ is well-defined and K–equivariant. Let ξbY be the vector field on Ŷ induced

by ξ ∈ k. Let U ⊂ (G/H)/Γ be an open set such that the bundle q : Ŷ = (G/H)×ΓY →
(G/H)/Γ is trivial over U , i. e. such that q−1(U) ∼= U × Y . For every [gH, y] ∈ U
the vector ξbY [gH, y] corresponds to

(
ξ(G/H)/Γ

(
p(gH)

)
, 0

)
∈ Tp(gH)(G/H)/Γ ⊕ TyY .

Moreover, we have dµ̂ξ = dµξ in this trivialization. By construction of the Kähler form

on Ŷ we conclude that µ̂ is a moment map for the K–action on Ŷ = (G/H)×Γ Y . �

We will first prove the algebraicity of H under the assumption that H is a discrete
subgroup of G. In this case we write Γ instead of H .

Proposition 4.2. Let G be a connected complex reductive group and let Γ be a discrete
subgroup of G such that X = G/Γ is a Hamiltonian G–manifold. Then Γ is finite.

Proof. Every element γ ∈ Γ has a Jordan decomposition γ = γsγu = γuγs in G, where
γs is semisimple and γu is unipotent.

Suppose there is an element γ ∈ Γ with γu 6= e. Then the cyclic group 〈γ〉 :=
{γm; m ∈ Z} ∼= Z is closed in G, and Lemma 2.3 implies that G/〈γ〉 is a Hamiltonian
G–manifold. The group 〈γ〉 acts on C∗ by γm · z := eimz. Applying Lemma 4.1 we
conclude that the twisted product G ×〈γ〉 C∗ is a Hamiltonian G–manifold. Since the
G–orbits in this twisted product intersect C∗ in 〈γ〉–orbits and since these orbits are
dense in the S1–orbits in C∗, we arrive at a contradiction to Theorem 3.5. Consequently,
every γ ∈ Γ must be semisimple.

If γ = γs, then the Zariski closure of the cyclic group generated by γ is either finite
or a complex torus T ∼= (C∗)l for some l ≥ 1. Assume that the latter holds. Then
T/(Γ∩T ) is a Hamiltonian T–manifold by Lemma 2.2, and consequently Γ∩T must be
finite. Since 〈γ〉 is contained in Γ∩ T , it follows that T is finite, a contradiction. Thus
every element of Γ is semisimple and generates a finite group. According to Lemma 2.1
in [BaOt73] the group Γ is finite. �

Remark. If the group G is semisimple, then every holomorphic G–manifold which ad-
mits a Kähler form is Hamiltonian. Hence, we have given a new proof for Theorem 3.1
in [BO88].

Now we return to the general case that H is any closed complex subgroup of G such
that X = G/H is a Hamiltonian G–manifold. The following theorem the proof of
which can be found in [BaOt73] gives a necessary and sufficient condition for H to be
algebraic.
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Theorem 4.3. For h ∈ H let A(h) denote the Zariski closure of the cyclic group
generated by h in G. The group H is algebraic if and only if A(h) is contained in H
for every h ∈ H.

Using this result we now prepare the proof of our main theorem in this section.
Let h ∈ H . In order to have better control over the group A(h) we follow closely an

idea which is described on page 107 in [BaOt73]. For this let h = hshu be the Jordan
decomposition of h in G. As we already noted above, if h is semisimple, then A(h)
is either finite or isomorphic to (C∗)l. In the first case we have A(h) ⊂ H . In the
second case, X = G/H is a Hamiltonian A(h)–manifold which implies that the orbit
A(h) · eH ∼= A(h)/

(
A(h) ∩ H

)
is Hamiltonian. Hence, A(h) ∩ H is algebraic which

yields A(h) ⊂ H .
If h is unipotent, then there exists a simple three dimensional closed complex sub-

group S of G containing h (see [Jac62]). Again X = G/H is a Hamiltonian S–manifold.
Hence the orbit S · eH ∼= S/(S ∩H) is Hamiltonian and in particular Kähler. We have
to show that S ∩ H is algebraic in S. Then we have A(h) ⊂ S ∩H ⊂ H , as was to be
shown. Algebraicity of S ∩ H will be a consequence of the following lemma for which
we give here a direct proof.

Lemma 4.4. Let H be a closed complex subgroup of S = SL(2, C). If S/H is Kähler,
then H is algebraic.

Proof. Since every Lie subalgebra of s = sl(2, C) is conjugate to {0}, to C ( 0 1
0 0 ), to

C ( 1 0
0 −1 ), to a Borel subalgebra b, or to s, we conclude that the identity component H0

is automatically algebraic. Therefore it suffices to show that H has only finitely many
connected components.

For H0 = S this is trivial. Since the normalizer of a Borel subgroup B of S coincides
with B, we see that H0 = B implies H = B, hence that H is algebraic in this case.
If H0 is a maximal algebraic torus in S, then its normalizer in S has two connected
components, thus H has at most two connected components as well.

Suppose that H0 is unipotent. Then its normalizer is a Borel subgroup. If H has
infinitely many connected components, we find an element h ∈ H \H0 which generates
a closed infinite subgroup Γ of S. Then S/(ΓH0) is Kähler (for it covers S/H), and
we conclude from Lemma 4.1 that (S/H0) ×Γ C∗ is a Hamiltonian S–manifold where
Γ acts on C∗ by γm · z := eimz. As above this contradicts Theorem 3.5.

Since the case that H0 is trivial, i. e. that H is discrete, has already been treated,
the proof is finished. �

Now suppose that h = hshu with hs 6= e and hu 6= e. In this case there is a
simple three dimensional closed complex subgroup S of the centralizer of A(hs) which
contains A(hu). Then A(h) ⊂ SA(hs) and a finite covering of SA(hs) is isomorphic to
SL(2, C) × (C∗)l. (We may suppose that A(hs) has positive dimension, if not, we are

essentially in the previous case.) Moreover, there is a closed complex subgroup H̃ of

G̃ = SL(2, C)× (C∗)l containing the element h =
(
( 1 1

0 1 ) , (ea1 , . . . , eal)
)

such that G̃/H̃

is Hamiltonian. We must show that A(h) = ( 1 C
0 1 ) × (C∗)l is contained in H̃.

In order to simplify the notation we will continue to write G and H instead of G̃

and H̃ . The following observation is central to our argument.
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Lemma 4.5. We may assume without loss of generality that H ∩ (C∗)l = {e}.

Proof. For this note that the action of (C∗)l on G/H is Hamiltonian. This implies that
H ∩ (C∗)l is a central subtorus T of G. Consequently, G/H ∼= (G/T )/(H/T ). If H/T
is algebraic in G/T , then H is algebraic in G. �

Let p1 and p2 denote the projections of G = SL(2, C)×(C∗)l onto SL(2, C) and (C∗)l,
respectively.

Lemma 4.6. The map p1 : G → SL(2, C) maps the group H isomorphically onto a
closed complex subgroup of SL(2, C).

Proof. We show first that p1(H) is closed in SL(2, C). For this note that G/H is a
Hamiltonian (C∗)l–manifold. By Theorem 3.5 all (C∗)l–orbits are locally closed in
G/H . Since (C∗)l is the center of G, we have (C∗)l · (gH) = g ·

(
(C∗)l · eH

)
. Hence all

(C∗)l–orbits have the same dimension. This implies that all (C∗)l–orbits are closed in
G/H . Consequently, (C∗)lH is closed in G which shows that p1(H) = SL(2, C)∩(C∗)lH
is closed.

Since the restriction of p1 to the closed subgroup H of G is a surjective holomorphic
homomorphism onto p1(H) with kernel H ∩ (C∗)l = {e}, the claim follows. �

If p1(H) = SL(2, C), then p2 : H ∼= SL(2, C) → (C∗)l must be trivial. But this
contradicts the fact that (ea1 , . . . , eal) is contained in p2(H). Therefore p1(H) must be
a proper closed subgroup of SL(2, C) which contains the element ( 1 1

0 1 ). In particular,
we conclude that H0 is solvable.

There are essentially three possibilities. The image p1(H) is a Borel subgroup of
SL(2, C) (which implies that H is a connected two-dimensional non-Abelian subgroup
of G), or p1(H)0 = ( 1 C

0 1 ), or p1(H) is discrete containing ( 1 Z
0 1 ). If p1(H) is discrete,

then H is discrete. We have already shown that H is finite in this case, hence algebraic.

Remark. Suppose that p1(H) is the Borel subgroup of upper triangular matrices in
SL(2, C). The map p2|H : H → p2(H) is a surjective homomorphism with kernel H ′ =
H ∩ SL(2, C). Thus we have H ∩ SL(2, C) = ( 1 C

0 1 ).

Suppose that p1(H) is one-dimensional or a Borel subgroup. We know that p2(H)
is a closed complex subgroup of (C∗)l containing (ea1 , . . . , eal). Since dim p2(H) = 1,
we conclude that p2(H)0 =

{
(eta1 , . . . , etal); t ∈ C

}
. Lemma 2.3 implies that if G/H

is Hamiltonian, then the same holds for G/H0. The only possibilities for H0 are
either H0 =

{((
eta0 s
0 e−ta0

)
, (eta1 , . . . , etal)

)
; t, s ∈ C

}
(if p1(H) is a Borel subgroup) or

H0 = {(( 1 t
0 1 ) , (eta1 , . . . , etal)) ; t ∈ C}. We have to show that in both cases G/H0 is

not Hamiltonian.
Let us first consider the case that

H =

{((
1 t
0 1

)
, (eta1 , . . . , etal)

)
; t ∈ C

}
.

Let T = (C∗)l−1×{1} ⊂ (C∗)l and G̃ := SL(2, C)×T . Then we have T∩p2(H) =: Γ ∼= Z

and (C∗)l/p2(H) ∼= T/Γ. Moreover, G/H is a Hamiltonian G̃–manifold and we have

G/H ∼= G̃/H̃, where H̃ = G̃∩H ∼= Z. This contradicts our result in the discrete case.
Hence, G/H cannot be Hamiltonian.
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Finally, suppose that

H =

{((
eta0 s
0 e−ta0

)
, (eta1 , . . . , etal)

)
; t, s ∈ C

}
.

Again we consider T = (C∗)l−1 × {1} and G̃ = SL(2, C) × T . We have H̃ = G̃ ∩ H =
Γ⋉ ( 1 C

0 1 ) where Γ ∼= Z. As in the discrete case we let Γ act on C∗ by γm ·z := eimz and

consider the twisted product (G̃/H̃0) ×Γ C∗. If G/H is Hamiltonian, then the same

holds for G̃/H̃ and thus for G̃/H̃0. Then (G̃/H̃0)×Γ C∗ is Hamiltonian by Lemma 4.1.
Since the Γ–orbits in C∗ are not locally closed, this contradicts Theorem 3.5 and we
conclude that G/H is not Hamiltonian.

Summarizing our discussion in this section we proved the following.

Theorem 4.7. Let G be a connected complex reductive group and let H be a closed
complex subgroup. If X = G/H is a Hamiltonian G–manifold, then H is an algebraic
subgroup of G.

In particular we obtain the following result which was originally proved in [BO88]
and [Ber87].

Corollary 4.8. Let S be a connected semisimple complex Lie group and let H be a
closed complex subgroup of S. If S/H admits a Kähler form, then H is an algebraic
subgroup of S.

5. Homogeneous Kähler manifolds

Let G = KC be a connected complex reductive Lie group. In this section we char-
acterize those closed complex subgroups H of G for which X = G/H admits a Kähler
form.

According to [Bor91], Corollary I.2.3, the commutator group S := G′ is a connected
algebraic subgroup of G and, since G is reductive, S is semisimple. Let Z := Z(G)0 ∼=
(C∗)k. Then G = SZ and S ∩ Z is finite. After replacing G by a finite cover we may
assume that G = S × Z.

Theorem 5.1. Let G ∼= S × (C∗)k = S × Z be a reductive complex Lie group and
H ⊂ G a closed complex subgroup. Then the manifold X = G/H admits a Kähler
form if and only if S ∩ H ⊂ S is algebraic and SH is closed in G.

Proof. Suppose first that G/H is Kähler. Then S/(S ∩ H) is also Kähler and hence
S∩H ⊂ S is algebraic by Corollary 4.8. By Theorem 3.5 all S–orbits in G/H are open
in their closures and their boundaries only contain orbits of strictly smaller dimension.
In view of the reductive group structure of G the S–orbits in X all have the same
dimension. This implies that every S–orbit in G/H is closed. Consequently, SH is
closed in G.

Now suppose that S ∩H ⊂ S is algebraic and that SH is closed in G. Although it is
not used in the proof we remark that we may assume that H is solvable, since otherwise
one can divide by the (ineffective) semisimple factor of H . Consider the fibration

X = G/H → G/SH.

The base G/SH is an Abelian complex Lie group and the fiber is SH/H = S/(S ∩H).
There is a subgroup (C∗)l ∼= Z1 ⊂ Z ∼= (C∗)k such that G1 := S × Z1 ⊂ G acts
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transitively on X and Z1∩SH is discrete. With H1 := H∩G1 we have that X = G1/H1,
that SH1 is closed in G1 and that the base of the fibration

X = G1/H1 → G1/SH1 = Z1/(Z1 ∩ SH1)

is a discrete quotient of Z1. Furthermore S ∩ H = S ∩ H1 is an algebraic subgroup of
S.

Let Γ1 := Z1∩SH1 and Γ2 ⊂ Z1 be a discrete subgroup such that Γ1 ∩Γ2 = {e} and
such that Γ := Γ1+Γ2 is a discrete cocompact subgroup of Z1. Since H ′

1 is contained in
S∩H1, we can define the closed complex subgroup H2 ⊂ G1 to be the group generated
by H1 and Γ2(S ∩ H1). One still has that H2 ∩ S = H1 ∩ S = H ∩ S is algebraic in
S and that SH2 is closed in G1. Hence X = G1/H1 → G1/H2 is a covering map and
one sees that in order to finish the proof it is sufficient to show that the base G1/H2

admits a Kähler form.
So we may drop the indices and have to prove that a reductive quotient X = G/H

of G = S × (C∗)k = S × Z by a closed complex solvable subgroup H with S ∩ H ⊂ S
algebraic, SH ⊂ G closed and G/SH a compact torus, is Kähler.

Let p1 : G → S be the projection onto S. Note that the algebraic Zariski closure H

of H in G is the product Ĥ × (C∗)k, where Ĥ is the Zariski closure of the projection
p1(H) of H in S. The commutator group H ′ of H is also the commutator group of

H and of Ĥ and is contained in H ∩ S. Therefore one gets a natural algebraic right
action of H on the homogeneous manifold Y := S/(S ∩ H) given by

(⋆) h
(
s(S ∩ H)

)
:= s

(
p1(h)

)−1
(S ∩ H).

As a consequence we can equivariantly compactify the SH–manifold Y to an almost
homogeneous projective SH–manifold Y , see [Mass92], Proposition 3.1, and [Koll07],
Proposition 3.9.1. Since X = G/H is realizable as a quotient of the manifold S/(S ∩
H) × (C∗)k by the natural action of H/(S ∩ H), where the S–factor of the action is
given by (⋆), we see that X is an open set in a holomorphic fiber bundle X with a
compact torus as base and the simply connected projective manifold Y as fiber. Finally
we apply Blanchard’s theorem, see [Bla56], p. 192, to get a Kähler form on X and then,
by restriction, on X also. The theorem is proved. �
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