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The effect of nonperiodic boundary conditions on decaying two-dimensional magnetohydrodynamic

turbulence is investigated. A circular domain with no-slip boundary conditions for the velocity is

considered and where the normal component of the magnetic field vanishes at the wall. Different

flow regimes are obtained by starting from random initial velocity and magnetic fields with varying

integral quantities. These regimes, equivalent to the ones observed by Ting, Matthaeus, and

Montgomery fPhys. Fluids 29, 3261 s1986dg in periodic domains, are found to subsist in confined
domains. The effect of solid boundaries on the energy decay and alignment properties is examined.

The final states are characterized by functional relationships between velocity and magnetic field.

© 2008 American Institute of Physics. fDOI: 10.1063/1.2975347g

I. INTRODUCTION

The influence of initial conditions on decaying magneto-

hydrodynamic sMHDd turbulence received considerable in-
terest in the 1980s, because of its relevance to explain solar-

wind data.
1–3
Indeed, in magnetohydrodynamics the behavior

of decaying turbulent flow depends strongly on the initial

conditions, and different initial values and ratios of integral

quantities can lead to a wide variety of distinct behaviors.

The first systematic study of the different possible types of

decay was performed by Ting, Matthaeus, and Montgomery,
4

who identified four classes of possible decay behavior, cor-

responding roughly to a magnetically dominated, a hydrody-

namically dominated, a magnetically hydrodynamically

equipartitioned and an erratic transition regime. Their study

considered the two-dimensional case, which is not only rel-

evant in applications in which an externally imposed field

renders the flows quasi two-dimensional, but also from a

general physical understanding of MHD turbulence, which

behaves quite similar in two and three dimensions, due to the

equivalent role of the ideal invariants.
5

Whereas the influence of the initial conditions on decay-

ing MHD turbulence has been studied and understood to

some extend, studies on the effect of boundary conditions

have been limited to low resolutions,
6–8
imposed by the nu-

merical methods used to account for boundaries. Even

though these investigations highlighted interesting physics,

higher resolution simulations are needed to obtain a better

understanding of wall-bounded MHD, which plays a domi-

nant role in geophysical flows in the core of planets such as

the Earth and industrial processes involving liquid metals.

For the hydrodynamic case it was found that boundary con-

ditions have a significant influence on two-dimensional

turbulence.
9
In contrast to the periodic domain, where gen-

erally a long lasting state is found with a functional sinh-

relationship between the vorticity and the stream function,
10

corresponding to two counter-rotating vortices, in bounded

domains with no-slip wall conditions different final states are

observed depending on the geometry.
11,12

In the present work we propose an extension of the vol-

ume penalization method
13
to two-dimensional MHD to

compute decaying flows in bounded domains using an effi-

cient Fourier pseudospectral method. We address the follow-

ing questions: What is the influence of confinement by fixed

solid boundaries on decaying two-dimensional MHD turbu-

lence? Do the four regimes found by Ting et al.
4
continue to

exist in the presence of boundaries? What are the final svis-
cously decayingd states?

II. GOVERNING EQUATIONS AND NUMERICAL
METHOD

We consider resistive MHD, formulated in usual dimen-

sionless variables u= su ,vd and B= sBx ,Byd which are, re-
spectively, the velocity and the magnetic field. The flow is

considered to be two-dimensional, incompressible, and we

assume the mass density to be constant. The governing equa-

tions are the following:

]u

]t
+ u · ¹u = − ¹p + j 3 B + n¹2u −

1

e
xsu − u0d , s1d

]B

]t
= ¹ 3 su 3 Bd + h¹2B −

1

e
xsB − B0d , s2d

¹ · u = 0, ¹ · B = 0. s3d

Here n and h are, respectively, the kinematic viscosity

and the magnetic diffusivity. vez=¹3u is the vorticity,

j= jez=¹3B is the current density. Furthermore we define

the vector potential a=aez as B=¹3a and the stream func-

tion c as u=¹'c= s−]c /]y ,]c /]xd. An originality in our
approach is the way in which the boundary conditions are

imposed: we use volume sor surface in 2Dd penalization13,14

to include the boundary conditions. This method has the ad-

vantage that arbitrary basis functions can be used. In our case
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a Fourier pseudospectral code is employed. The advantage

with respect to a method based on a decomposition in terms

of Chandrasekhar–Kendall eigenfunctions
6–8

is, that fast

Fourier transforms can be used, allowing for high resolution

computations of low computational cost. Also, its application

to three-dimensional flows is conceptually straightforward

and will be addressed in a future work. The additional terms

on the right-hand side of Eqs. s1d and s2d correspond to this
penalization method. The quantities u0 and B0 correspond to

the values imposed in the solid part of the numerical domain

Vs, illustrated in Fig. 1. Here we choose u0=0 and B0=Bi

swhere Bi is the tangential component of B at the walld,
corresponding to vanishing velocity and no penetration of

magnetic field into the solid domain which is hence consid-

ered as a perfect conductor, coated inside with a thin layer of

insulant, which guarantees that the current density cannot

penetrate into the solid.
6
The mask function x is equal to 0

inside V f swhere the penalization terms thereby disappeard
and equal to 1 inside Vs. The physical idea is to model the

solid part as a porous medium whose permeability e tends to

zero.
13,14

For e→0, where the obstacle is present, the veloc-

ity u tends to u0 and the magnetic field B tends to B0. The

nature of the boundary condition for the velocity is thus no-

slip at the wall.

In the two-dimensional case it is convenient to take the

curl of Eqs. s1d and s2d to obtain after simplification equa-
tions for the vorticity and current density. These are scalar

valued equations which automatically satisfy the incom-

pressibility conditions s3d. The equations are then

]v

]t
= − u · ¹v + B · ¹j + n¹2v −

1

e
¹ 3 fxsu − u0dg ,

s4d

]j

]t
= − ¹2su 3 Bd + h¹2j −

1

e
¹ 3 fxsB − B0dg . s5d

The equations are discretized with a classical Fourier

pseudospectral method imposing periodic boundary condi-

tions on the square domain of size 2p, using 5122 grid

points. At each iteration the fields are dealiased by spherical

truncation following the 2 /3 rule. The penalization param-

eter e, corresponding to the permeability of the solid domain,

is taken equal to 10−3, a value validated by a systematic

study of the sensitivity of the results to this parameter.
14
The

fluid viscosity n and magnetic diffusivity h were taken equal

to 10−3, and the time step is equal to 5.10−4. As the numerical

scheme uses an explicit discretization of the penalization

term, the time step is limited by the permeability e due to

stability reasons. Typically, using a Pentium 4 processor with

2 GHz clock frequency, one time step integration requires

2.5 s. The initial kinetic and magnetic Reynolds numbers are

defined as Re=2rÎ2Eust=0d /n and Rem=2rÎ2Eust=0d /h,
where r is the radius of the domain, and Eu is the kinetic

energy.

III. INITIAL CONDITIONS

Both vorticity and current density fields are initialized

with Gaussian random initial conditions. Their Fourier trans-

forms v̂ and ĵ, where v̂skd=1 /4p2evsxde−ık·xd2x, are ini-

tialized with random phases and their amplitudes yield the

energy spectra,

Euskd,EBskd ~
k

fg + sk/k0dg
4
, s6d

with k= uku and, where g=0.98 and k0=
3

4
Î2p. This energy

spectrum follows a power law proportional to k−3 at large

wavenumbers and was chosen to compare with simulations

performed in the periodic case. Both fields are statistically

identical. The corresponding fields u and B are calculated

from v and j using the Biot–Savart law.

For vanishing viscosity and resistivity, two-dimensional

MHD has three conserved invariants. The total energy is E,

defined as the sum of the kinetic energy Eu and the magnetic

energy EB,

E = Eu + EB =
1

2
E

Vf

suuu2 + uBu2d d2x , s7d

Hc is the cross helicity,

Hc =
1

2
E

Vf

u · B d2x , s8d

which measures the global correlations between u and B, and

A is the integral of the squared vector potential,

A =
1

2
E

Vf

a2d2x . s9d

As was shown by Ting et al.
4
for periodic boundary condi-

tions, the dynamics of decaying MHD turbulence depend

strongly on the initial values of these invariants. Because of

its interest for the present study we recall briefly the four

distinct decay regimes discerned by Ting et al.
4
depending

on the initial values and ratios of the invariants. First, in the

case of small initial Hc and EB.Eu, a magnetically domi-

nated regime is obtained. Selective decay is observed in this

regime which corresponds to a slower decay of A relative to

E. Second, in the case of vanishingly small initial magnetic

energy, the Lorentz force acting in the vorticity equation can

not become strong enough, so that the vector potential is

advected like a passive scalar. Following Biskamp and

FIG. 1. The computational domain is a square box of size 2p. The fluid

domain V f is a circular container with radius r=
19

20
p, surrounded by the

solid domain Vs.
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Welter,
15
the magnetic field may however be amplified even

if the initial ratio EB /Eu is very small, given that h is suffi-

ciently small. They found that Eu /EB,Rem is necessary such

that the magnetic field can be intensified. This is a regime

which essentially corresponds to the Navier–Stokes limit.

Third, in the case of substantial initial cross-helicity, the tur-

bulence tends towards an Alfvénic state in which u and B are

aligned or antialigned and approximately equipartitioned.

This process is called dynamic alignment and the ratio

E / uHcu tends to 2. This is a state free from nonlinear interac-

tions, inhibiting cascade processes seven though this deple-

tion of nonlinearity is rather slow with increasing

cross-helicity
3d. The fourth and final regime is an erratic re-

gime which might tend to different final states and which

could be related to various competing subregions with un-

equal sign of cross-helicity. This regime can be found if the

flow is initialized with small cross-helicity and comparable

kinetic and magnetic energies.

Whether these regimes persist in the presence of solid

boundaries is one of the main questions we want to answer in

the present work. To obtain the desired initial conditions cor-

responding to the four regimes we proceed as follows:

Starting from random initial conditions in Fourier space,

we renormalize u and B in physical space by varying the

coefficient a,

u* =
a

Î2Eu

u, B* =
1

Î2EB

B . s10d

This generally yields initial conditions with vanishingly

small cross-helicity, and initial conditions for regimes I, II,

and IV can hereby be created. In the case of regime III, a

nonzero cross-helicity needs to be imposed. We achieve this

by creating a random initial condition for u and a perpen-

dicular field u' by rotating u by p /2. The magnetic field is

then obtained by a linear combination of the two fields,

B* = bu + s1 − bdu'. s11d

Hereby any given cross helicity can be imposed. Table I

summarizes the initial values of E /A, Eu /EB, and Hc for the

four different regimes, together with the Reynolds number.

IV. RESULTS AND DISCUSSION

A. Characterization of the different decay regimes

In Fig. 2 we show the time evolution of several integral

quantities for the four different sets of initial conditions. The

main observation is that the four different regimes, discerned

by Ting et al.
4
are robust enough to survive within a bounded

domain. We now discuss the results in more detail.

Regarding the ratio of kinetic and magnetic energy sFig.
2, topd, it is observed that in the absence of initial cross-

helicity scases I, II, and IVd the magnetic energy finally

dominates, unless it is very small initially sNavier–Stokes

limitd. However, if the initial cross-helicity is initially large

and Eu /EB is of order unity, the flow energy will remain

approximately equipartitioned between the velocity and

magnetic field.

TABLE I. Initial values of the four different regimes.

E /A Eu /EB Hc Re

Regime I 16 0.3 0.012 3868

Regime II 3.43105 1.93104 3.5310−5 7920

Regime III 31 1.3 0.27 5176

Regime IV 16 1.0 0.045 5725

FIG. 2. sColor onlined Time evolution of integral quantities in the bounded

domain. Top: Ratio of kinetic and magnetic energy, Eu /EB. Center: Ratio of

total energy and integral of the squared vector potential, E /A. Bottom: Ratio

of total energy and magnetic helicity, E / uHcu.
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This picture is confirmed by the time evolution of the

ratio E /A sFig. 2, centerd. In this representation it is however
emphasized that in the Navier–Stokes limit scase IId, the
character of the magnetic field has changed; in the ideal sys-

tem svanishing viscosity and magnetic diffusivityd, A is a

quantity that cascades towards the small wavenumbers. In a

nonideal system an inverse cascade generally slows down

the dissipation rate of the quantity. However, in the limit of

small Lorentz force, the equations of the vorticity and vector

potential become equivalent to the equations that describe a

passive scalar advected by a two-dimensional velocity field.

The passive scalar is a quantity which cascades towards

higher wavenumbers, and the vector potential gets dissipated

faster in this case than in the case where the Lorentz force is

significant. This results in a rapid increase of the quantity

E /A in case II.

The ratio E / uHcu sFig. 2, bottomd attains its minimum

absolute value 2 for case III. This corresponds to dynamic

alignment; the velocity field is equal in magnitude and per-

fectly aligned, or antialigned with the magnetic field. The

erratic regime is clearly represented by case IV, in which the

cross-helicity approaches a value close to zero. As we will

see in the following, this is caused by different subregions

with oppositely valued Hc.

For comparison we show in Fig. 3 the same quantities as

in Fig. 2 for a periodic domain, starting from similar initial

conditions and using the same numerical parameters as in the

bounded case. It is observed that the trends are similar. In

Fig. 3 stopd we see that in the periodic domain a more oscil-
latory behavior is observed for Eu /EB in regime I. This os-

cillatory behavior is related to energy exchange between the

magnetic field and the velocity field by means of Alfvén

waves.
16

Whereas in a periodic domain these waves can

freely propagate, in a bounded domain they might be more

rapidly suppressed, explaining the less oscillatory behavior

of Eu /EB in a bounded domain. Further research is needed to

clarify this.

The quantity E /Hc gives a measure for the dynamic

alignment, which corresponds to measuring both the equipar-

titioning of energy and the alignment properties. If we are

exclusively interested in the alignment properties, the rela-

tive cross helicity, which corresponds to the cosine of the

angle u between the velocity and magnetic field vector,

cos u =
Hc

sEuEBd1/2
, s12d

should be considered.

In Fig. 4, cos u is plotted as a function of time. It can be

observed that in cases I and III, the velocity field tends to a

nearly aligned state. In cases II and IV, this quantity remains

close to zero, however for a different reason. In case II, the

alignment is small, because the vector potential is advected

as a nearly passive scalar. In case IV the local alignment is

large but different aligned or antialigned regions cancel out

the contributions, yielding a net-global alignment close to 0.

A similar process was found for periodic boundary

conditions.
17,18

This can be observed in the corresponding

probability distribution function of cos u at t=40 and

t=450, shown in Fig. 5. Nevertheless, for a long time

st=1250d we observe an antialignment.

B. Energy decay and visualizations

The decay of total energy is shown in Fig. 6. At inter-

mediate times, the energy in cases I and IV decays following

a power law with exponents varying for the different sets of

FIG. 3. sColor onlined Time evolution of Eu /EB stopd, E /A scenterd, and

E / uHcu sbottomd in a periodic domain, starting from similar initial conditions

as in Fig. 2.
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initial conditions sFig. 6, topd. The exponents of these power
laws are approximately −0.6 sdotted lined for regime I and
−0.4 ssolid lined for regime IV. It is seen that these power

laws are observed only after an initial period of rapid decay.

In the other cases no clear power law behavior can be iden-

tified. This can be compared to previous studies
5,20

in which

values around −0.75 and −1 were found for the decaying

periodic case. In case III, in which dynamic alignment is

observed, no clear power-law behavior is observed. In this

case the nonlinear interactions are progressively damped by

the alignment process, so that no self-similar period is ob-

served in the energy decay. At late times sFig. 6, bottomd all
cases show an exponential viscous decay of the form

E,e−2ant with a=1.5 in case I and a=2 in cases II, III, and
IV, a value related to the largest Stokes eigenmode of the

circle sa=1.64d, which contains most of the energy, as found
in Ref. 11 for the hydrodynamical case.

Figures 7 and 8 show the vorticity and the current den-

sity field, respectively. For each of the cases I–IV, three typi-

cal time instants are visualized. These instants are t=5,

showing the self-organization of the flow at early times,

t=40, when nonlinear processes are dominating and t=450

sregime Id and t=1250 sregimes II, III, and IVd, correspond-
ing to the final, viscously decaying state.

One flagrant feature of the visualizations is the local

alignment of the magnetic and velocity field. Indeed in most

regimes the vorticity and current density fields are rather

similar. We also observe the coincidence of the maxima of v

and of j which may have some effect on the stabilization of

vorticity and current filaments. In case I an almost perfect

axisymmetrical state is achieved at t=450. Case II is the only

case in which the formation of circular vortices is well pro-

nounced, leading to a roll up of the current sheets. Appar-

ently in the other regimes the Lorentz force suppresses the

generation of circular vortices. Case III shows almost iden-

tical magnetic and velocity fields, as expected in this case of

dynamic alignment, in which u and B are aligned sor anti-
alignedd and in which kinetic and magnetic energies are in

equipartition. Case IV is a typical example of the erratic

regime; at the intermediate time, four dominant flow struc-

tures are observed, with both positive and negative cross-

helicity. Locally the flow is close to an aligned or antialigned

state, but globally the cross-helicity is weak because the dif-

ferent regions with opposite contributions cancel each other

out.
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FIG. 5. sColor onlined Probability density of cos u at t=40, t=450, and

t=1250 in regime IV.
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FIG. 4. sColor onlined Time evolution of the average alignment cos u, be-
tween the magnetic field and the velocity field.

FIG. 6. sColor onlined Time evolution of the total energy in log-log scale

stopd and in log-lin scale sbottomd. The solid line stopd corresponds to t−0.4

and the dotted line stopd corresponds to t−0.6.
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C. Final states

Supplementary information on the final states is given by

scatter-plots. It was shown by Joyce and Montgomery
10
that

in hydrodynamic unbounded two-dimensional flows a long

lasting final state is reached, depleted from nonlinearity. This

state is characterized by a functional relation between the

vorticity and the stream function of the form v,sinhscd.
That a functional relation leads to a state, depleted from non-

linearity is easily shown from the equation for the vorticity,

s]t − nDdv = fv,cg , s13d

with the Poisson bracket defined as fa ,bg= s]a /]xds]b /]yd
− s]a /]yds]b /]xd. A functional relation v=Fscd leads to a

vanishing Poisson bracket. If we consider now the equations

for incompressible MHD,

s]t − nDdv = fv,cg − fa, jg , s14d

s]t − hDda = fa,cg , s15d

we see that two nonlinearities play a role: fv ,cg and fa , jg.
The term fa ,cg can be considered as a pseudononlinearity if
c is regarded as given. Although important theoretical

progress has been made in the comprehension of final

states
19
no analytical nontrivial solution is presently known

for the case of decaying MHD turbulence. It was however

shown in Kinney et al.
20
that close to functional relations do

exist in homogeneous two-dimensional MHD turbulence. In

Fig. 9 we show for the cases I–IV these scatter plots corre-

sponding to the three nonlinearities.

In case I we see a well defined nonlinear functional re-

lation vscd. Clearly, we have a nontrivial final state. The

evolution of v−c as a function of time in this case is shown

in Fig. 10. It can be noted here that a similarly shaped scatter

plot was found in close to two-dimensional hydrodynamic

experiments in a circular tank.
21
The plot a versus j shows a

straight line sFig. 9d, which corresponds to a vanishing

Lorentz-force; the magnetic field does not interact with the

velocity field at this final period of decay. The plot a versus

c also shows a clear functional relation. In case II, the scatter

plots do not show such clear functional relations which is

due to the fact that the flow is not yet sufficiently relaxed.

The plot v versus c is perhaps closest to a functional rela-

tion. In case III we see, as expected, a vanishing nonlinear-

ity; for dynamic alignment it can be shown that nonlineari-

ties vanish in the perfectly aligned case, when the equations

are stated in Elsässer variables ssee, for example, Ref. 3d. In
case IV it is expected that eventually the same behavior is

observed as in case I. If the initial Reynolds number is ini-

tially too low this behavior will however not be observed.

FIG. 7. sColor onlined Vorticity at different instants in the circular domain.
From top to bottom: Regime I, regime II, regime III, and regime IV. From

left to right: t=5, t=40 and in the last column the time corresponds to t

=450 for regime I and t=1250 for regimes II, III, and IV.

FIG. 8. sColor onlined Current density at different instants in the circular

domain. From top to bottom: Regime I, regime II, regime III, and regime IV.

From left to right: t=5, t=40 and in the last column the time corresponds to

t=450 for regime I and t=1250 for regimes II, III, and IV.

092304-6 Neffaa, Bos, and Schneider Phys. Plasmas 15, 092304 ~2008!

Downloaded 20 Jun 2012 to 156.18.40.173. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



Preliminary computations were performed at lower reso-

lution, which showed that nontrivial final states are only ob-

served if the initial Reynolds number is sufficiently high.

Otherwise linear relations are obtained for all different scat-

ter plots.

V. CONCLUSION

We have investigated the influence of nonperiodic

boundary conditions on decaying two-dimensional magneto-

hydrodynamic turbulence. The use of a penalization method

in combination with a classical Fourier pseudospectral

method allows for efficient resolution of MHD flows in

bounded domains. A main result is the observation of the

robustness of the four different regimes discerned by Ting

et al.
4
The same trends are found as in their pioneering work,

FIG. 10. sColor onlined Scatter plot of v vs c at three different instants in

regime I.

FIG. 9. sColor onlined Scatter plots of sfrom left to rightd v vs c, a vs c, and a vs j for regimes sfrom top to bottomd I, II, III, and IV at the latest time instant

t=450 for regime I and t=1250 for regimes II, III, and IV.
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depending on the initial values of the kinetic energy, mag-

netic energy, vector potential, and cross-helicity.

A detailed description was given of the relaxation pro-

cess which leads to the final states. In the case of a magneti-

cally dominant, cross-helicity free case, a clear nontrivial

functional relation vscd was observed. Functional relation-
ships were also observed in regimes III and IV, while in

regime II this functional relation was less clear.

Future work will address the influence of other types of

boundary conditions for the magnetic field and also other

geometries will be studied.

Note added in proof. The numerical method used in the

present work does not impose a zero value of a and c at the

wall of the fluid domain. If one wants to impose this, a

constant value has to be substracted from a and c at every

point in the fluid domain. Note that this will also change the

integral value A.
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