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This letter presents a phenomenological model predicting the celerity of long surface waves on a

non-Newtonian fluid flowing down an inclined plane. We show that, for a shear-thinning fluid, the

celerity is greater than the well-known value c=2U0. The developed model points at the significant

effect of the viscosity disturbance and also provides a likely explanation for the decrease in

threshold for the instability. © 2008 American Institute of Physics. fDOI: 10.1063/1.2889140g

The stability of a Newtonian viscous film flow down an

incline was addressed by many authors, among them Yih
1

and Benjamin.
2
The main features brought about by these

authors are that the instability occurs at very long waves

compared to the thickness of the film, and inertia plays a

major role in the destabilization of the flow. The long surface

waves travel with a celerity c of twice the free surface speed

U0 of the flow and the value of the threshold is given by

Rec= s5 /6d cot b, where b is the angle of inclination and Rec

is the Reynolds number based on the average velocity.

In particular, Smith
3
proposed a complete scenario based

on a long wave expansion of the linearized problem. His

approach not only shows very clearly the mechanisms of the

instability but it also gives a simple way to compute the

former values of Rec and celerity. He notably puts to light

that the main inertia term responsible for the destabilization

is that of advection by the base flow in a framework travel-

ling with waves. This term is thus proportional to sU−cd, U

being the base flow velocity, so that the instability mecha-

nism is directly linked to wave celerity.

However, in many cases, in industrial scoating pro-
cessesd or environmental configurations smuds, debris or
lava flowsd, the fluid is not Newtonian but more often shear-
thinning, i.e., its viscosity locally decreases with increasing

shear rates. The stability of a non-Newtonian film flowing

down an incline has thus been the object of several system-

atic studies for different chosen constitutive laws ssee
Rousset et al.

4
for a brief reviewd. In particular, Rousset

et al.,
4
have shown in the case of a shear-thinning Carreau

fluid that the waves travel faster than in that of a Newtonian

one and also that the instability is triggered at a lower Rey-

nolds number. These authors also pointed at the fact that the

decrease in Rec could be a consequence of the increased

difference sU−cd. Moreover, a recent study by Nouar et al.
5

has shown that the viscosity disturbance due to the perturba-

tion can affect the stability of shear-thinning Poiseuille flows.

To our knowledge, no general phenomenological ap-

proach has yet been conducted to explain these features. We

propose here to walk in Smith’s footprints towards a deeper

understanding of why shear-thinning means faster waves and

a lower instability threshold. Note that a similar conclusion

has recently been drawn by Nouar et al.
5
for a Poiseuille

flow. For doing so, we evaluate the relative contribution of

shear-thinning arising from the base flow on the one hand

and from the perturbation flow on the other hand.

Let us extend Smith’s approach to the case of a purely

viscous film flowing down an incline, as presented in Fig. 1.

Note that the equations of the problem are made dimension-

less with the same characteristic parameters as those adopted

in Rousset et al.
4
The established base flow U occurs under

the balance of shear force and the weight longitudinal com-

ponent which is written in dimensionless form as

h
]U

]y
= − y . s1d

The viscosity h is assumed here to be a function of the
shear rate ġ=−]U /]y only, with h=1 at zero shear. We as-
sume a small deformation of the free surface of amplitude j;

it is sinusoidal with a far greater wavelength than the thick-

ness of the film. This deformation results in a shear stress, ti,

at the free surface which can be evaluated through the fol-

lowing expansion:

ti = hU ]U

]y
U

j

= h0SU ]U

]y
U
0

+ Uj
]2U

]y2
U
0

D = Uj
]2U

]y2
U
0

. s2d

Note that we have neglected here the change in viscosity

at the deformed free surface under the effect of this small

shear stress, so that hsjd=h0=1. Combining Eq. s2d, the de-
rivative of Eq. s1d, and the no shear condition at the free
surface, one gets

ti = − j at y = 0. s3d

The perturbation flow offsets this shear stress such that

there is no shear at the deformed interface. The shear stress

perturbation ti8 at the free surface is thus

ti8 = j at y = 0. s4d

This perturbation shear stress is in phase with the free

surface deformation and generates a secondary flow which is

in the same direction as the main flow under the crests, in the
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opposite direction under the lows and zero under the nodes

ssee Fig. 1d. This perturbation flow is parallel under the long
wave assumption and at the leading order in wave number a.

In the Newtonian case, the amplitude of the velocity pertur-

bation u8, thus has a linear Couette-type profile. In the shear-

thinning case, as the shear rate increases with the depth y, the

viscosity decreases. The profile then has a curvature which

increases with y. This is illustrated in Fig. 2 showing pertur-

bation profiles for Newtonian and shear-thinning fluids ssee
Rousset et al.

4
for details on the numerical computationd.

At first order in a, Smith
3
has shown that, for Newtonian

fluids, the flow is neutrally stable since inertia is necessary to

trigger the instability and is not accounted for at this order.

This still holds for the case of shear-thinning fluids. How-

ever, the leading order approach allows us to evaluate the

celerity of the surface waves in the neutral case. One relies

on this for a mass budget in the framework of the wave. Let

us consider the control volume in dashed lines in Fig. 1; in

this frame, the base flow profile is written as fUsyd−cg. The
mass budget thus gives

E
−j

d

fUsyd − cgdy + E
−j

d

u8dy = E
0

d

fUsyd − cgdy . s5d

The LHS represents the inflow at the left side of the

control volume. These terms represent the base flow and the

leading order perturbation flow contributions. The term in

the RHS is denoted as the outflow through the right side of

control volume, where the longitudinal perturbation velocity

is zero. Linearizing Eq. s5d yields

jfU0 − cg = q8 with q8 = E
0

d

u8dy , s6d

so that the celerity is directly bonded to the perturbation flow

rate q8. The question is thus: “How does the rheology affect

the perturbation flow-rate q8 sfor a given base flow rated?”,
or with respect to Fig. 2, “Is the surface delimited by the

curved profile always greater than that delimited by the lin-

ear dashed profile?”

The integral in Eq. s6d is evaluated by parts so that the

celerity is written as a function of the perturbation shear-rate,

c = U0 +
1

j
E
0

d

y
]u8

]y
dy . s7d

Isolating the contribution of shear-thinning arising from

the base flow from that due to the perturbation flow, one can

write

hsyd
]u8

]y
+ h8syd

]U

]y
= ti8, s8d

where terms proportional to ]v8 /]x have been neglected in

front of ]u8 /]y. Here, the viscosity profile hsyd is solely

prescribed by the base flow through the constitutive law of

the fluid. The second term is due to the viscosity perturbation

h8syd under the influence of additional stresses, themselves
yielded by the perturbation flow. This viscosity perturbation

can be negative or positive whether the additional shear has

the same sign as the base flow shear-stress or the opposite

sign. Here, for a shear-thinning fluid, it is negative under the

crests, and positive under the lows. This viscosity perturba-

tion can be evaluated by considering small variations, dġ, of

the shear-rate around its base value, ġ; one then writes

h8= s]h /]ġddġ. Expanding and linearizing the strain rates

tensor then yields dġ= ġs]u8 /]yd / s]U /]yd. In the present no-
tations, ġ=−]U /]y, thus, h8=−s]h /]ġds]u8 /]yd and relation
s8d becomes

hsydS1 + ġ

h

]h

]ġ
D ]u8

]y
= ti8. s9d

One can first check that, in relation s9d, the LHS corre-

sponds to the expression of the shear stress given by Rousset

et al..
4
Eventually, the perturbation flow rate is written as

q8 = − E
0

d ti8y

h
S1 + ġ

h

]h

]ġ
D−1dy

= − E
0

d ti8y

h
dy − E

0

d ti8y

h
S1 + ġ

h

]h

]ġ
D−1 . S− ġ

h

]h

]ġ
Ddy .

s10d

FIG. 2. Longitudinal perturbation profiles u8 under a crest for a Newtonian

fluid sL=0d and a shear-thinning fluid sL=1d in the neutral case with

b=0.2 rad, I=10−3, and n=0.5.

FIG. 1. Flow configuration, control volume, and perturbation profiles in the

framework of the wave for a Newtonian fluid.
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Combining Eqs. s1d, s4d, s7d, and s10d provides us with
an evaluation of the celerity as a function of the base flow

and the constitutive law of the fluid,

c = 2U0 − E
0

d

ġ3
ġ

h

]h

]ġ

1 +
ġ

h

]h

]ġ
4dy . s11d

A first estimate of the celerity can be found by neglect-

ing the viscosity perturbation in Eq. s8d. This leads back to

Yih’s famous statement, c=2U0. Let us recall
4
here that, for

a given flow rate, shear-thinning results in an increase in

free-surface velocity U0 so that the celerity can be expected

to be greater in this case. A step further is made by account-

ing for the viscosity perturbation through the integral in Eq.

s11d. For any shear-thinning fluid, the integral is negative, so
that the waves travel faster than twice the free surface veloc-

ity.

Considering the case of a shear-thinning fluid, modelled

by the Carreau rheological law, the viscosity is written as

h = I + s1 − Idf1 + sLġd2gsn−1d/2, s12d

with L a dimensionless constant of the material, I the ratio of

high shear rate over low shear rate Newtonian viscosities,

and n the power law exponent s0,n,1 for a shear-thinning

fluidd. The additional term within the brackets in Eq. s11d,
sġ /hds]h /]ġd, correspond to the slope of the constitutive

law of the fluid in a log-log plot. In the case of a shear-

thinning Carreau fluid, the slope decreases from 0 at the free

surface to a negative value greater than the slope of the

power-law region, as sn-1d. The results of Eq. s11d with a

Carreau constitutive law s12d are plotted as a full line in Fig.
3. As shown in the figure, in the whole range of the investi-

gated L values, these results are in good agreement with the

numerical solutions scrossesd obtained by Rousset et al.
4

from the resolution of the complete Orr–Sommerfeld equa-

tion. For L→0, they also agree well with the asymptotic

analysis results sdotsd of these authors under the assumptions
of long waves and weakly non-Newtonian behavior. The

base flow is computed numerically to evaluate the thickness

d and the shear-rate profile ġsyd that appears in the integrand,
whereas sġ /hds]h /]ġd is expressed analytically as a func-

tion of ġ.

For high shear rates and small values of parameter I, the

Carreau model tends towards a power law model. The vis-

cosity is expressed as

h = Ln−1ġn−1, s13d

and from Eq. s11d, the celerity reduces to

c = U0S1 + 1

n
D . s14d

This case is represented in Fig. 3 through a dashed line.

One has to notice that, though the celerity is in order of

magnitude twice the free surface velocity, the influence of

the viscosity perturbation is not fully negligible.

Figure 4 represents the celerity over the free surface ve-

locity as a function of n obtained with the present approach

for three constitutive laws: Newtonian, Carreau, and power

laws. For the Carreau model, different values of L are pre-

sented showing the separated influence of L and n. From

these results, it is clear that the viscosity perturbation is able

to play a significant part in the instability mechanisms. In

particular, the main destabilizing inertia effects appearing at

higher order in a are proportional to sU0−cd. They increase
thus as the shear-thinning gets stronger and the flow is ex-

pected to be more unstable in the shear-thinning case than in

the Newtonian case.

In this work, we present a phenomenological model pre-

dicting the long wave celerity in the neutral case of a non-

Newtonian fluid flowing down an inclined plane. We ex-

tended Smith’s model for Newtonian fluids to any purely

viscous fluid. We show that, for a shear-thinning fluid, the

celerity is still greater than the well known value c=2U0.

The developed model points at the significant effect of the

viscosity disturbance. The obtained results show a good

agreement with those from Rousset et al.
4
in the case of a

Carreau model. The model also provides a likely explanation
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for the decrease in threshold for the instability: the advection

by the base flow in the framework of the wave, proportional

to sc−U0d is stronger for a shear-thinning fluid.

1
C.-S. Yih, “Stability of liquid flow down an inclined plane,” Phys. Fluids

6, 321 s1963d.
2
T. B. Benjamin, “Wave formation in laminar flow down an inclined

plane,” J. Fluid Mech. 2, 554 s1957d.

3
M. K. Smith, “The mechanism for the long-wave instability in thin liquid

films,” J. Fluid Mech. 217, 469 s1990d.
4
F. Rousset, S. Millet, V. Botton, and H. BenHadid, “Temporal stability

of Carreau fluid flow down an incline,” J. Fluids Eng. 129, 913

s2007d.
5
C. Nouar, A. Bottaro, and J. P. Brancher, “Delaying transition to turbu-

lence in channel flow: Revisiting the stability of shear thinning fluids,” J.

Fluid Mech. 592, 177 s2007d.

031701-4 Millet et al. Phys. Fluids 20, 031701 ~2008!

Downloaded 14 Jun 2012 to 156.18.40.173. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions


