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Abstract   This paper1 describes a multi-sensor fusion system dedicated to detect, 

recognize and track pedestrians. The fusion by tracking method is used to fuse 

asynchronous data provided by different sensors with complementary and sup-

plementary fields of view. Having the performance of the sensors, we propose to 

differentiate between the two problems: object detection and pedestrian recogni-

tion, and to quantify the confidence in the detection and recognition processes. 

This confidence is calculated based in geometric features and it is updated under 

the Transferable Belief Model framework. The vehicle proprioceptive data are fil-

tered by a separate Kalman filter and are used in the estimation of the relative and 

absolute state of detected pedestrians. Results are shown with simulated data and 

with real experimental data acquired in urban environment. 

Keywords   multi-sensor data fusion, pedestrians' detection and recognition, 

Transferable belief Model, confidence management. 

                                                           
1 This work is a part of the project LOVe (Logiciel d’Observation des Vulnérables 

http://love.univ-bpclermont.fr/) and supported by the French ANR PREDIT. 
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1. Introduction 
Recent projects on pedestrian detection [1] or obstacle detection [2] have high-

lighted the use of multi-sensor data fusion and more generally the multiplication 

of data sources in order to obtain more reliable, complete and precise data. The 

Vehicle to Vehicle communication is an example of enlarging the field of view of 

one vehicle by the information coming from other vehicles [3][4]. 

The work presented in this paper is a contribution to the development of an 

“Advances Driver Assistance Systems” (ADAS). A generic multi-sensor pedes-

trian detection, recognition and tracking system, is introduced. However, sensors 

are not synchronized and have not the same performance and field of view. Thus 

to explore the whole capability of sensors in order to benefit of all available data 

and to solve the problem of asynchronous sensors, we present a generic method to 

fuse data provided by different sensor, with complementary and/or supplementary 

fields of view, by tracking detected objects in a commune space and by combining 

the detection and/or the recognition information provided by each sensor taking 

into consideration its performance. 

This paper is organized as follows: section II presents the proposed multi-sensor 

fusion system architecture and describes the object level fusion by tracking 

method. Section III described the state models used to filter and estimate vehicle 

and pedestrians’ kinematical state. Section IV presents the detection and recogni-

tion confidences calculation and update. Experimental results are shown in section 

V illustrating the effect of sensors performance. Conclusion and perspectives will 

be proposed in the last section. 

2. Object-level fusion by tracking 

2.1. Overview of the system 

The described multi-sensor pedestrian tracking system is an in-vehicle embed-

ded real-time system. This generic fusion system (Fig.1) has as input the unsyn-

chronized data provided by independent unsynchronized sensors with complemen-

tary and supplementary fields of view (Fig.2). 

The system is composed of one “Object Level Fusion Module” and one “Sensor 

Module” per sensor. Each Sensor Module analyzes data provided by the corre-

sponding sensor to supply the Object Level Fusion Module by a list of objects 

supposed present in the scene of its field of view. A lot of works in ADAS and ro-

botics applications are dedicated to the object detection capabilities. For example 

for pedestrian detection, [5] proposes obstacle detection and identification with 

Lidar sensor; [6] proposes stereo-vision obstacle detection with disparity analysis 

and SVM based on pedestrian classification, [7] gives pedestrian classification re-

sulting from monocular vision with AdaBoost algorithm. The Object Level Fusion 

Module takes any ready object list and combine it with the existing track list, tack-

ing into consideration the vehicle proprioceptive data (filtered by a separate Kal-
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man filter) and the performance of each detection module (stored in a configura-

tion file with other tuning parameters). Latency problem can be solved by a time 

indexed buffer of observations and state vectors as in [8]. The buffer size depends 

on the maximum acceptable observation delay.  

 

 

2.2. Object level input/output 

The Sensor Module works at the frequency of the corresponding sensor, it pro-

vides at each detection cycle a list of objects supposed present in the scene of its 

field of view. Objects are described by their position (relative to the sensor), posi-

tion error, dimension (if detected), dimension error and two indicators quantifying 

the confidence in detection and the confidence in recognition if the sensor is capa-

 
Fig.2: Complementary and supplementary fields of view 

of the different sensors: Stereo-camera, Lidar and Radar 

 
 

Fig.1: System architecture 
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ble to recognize pedestrians or any type of obstacles. The performance of each 

sensor module is quantified by two probability values: 
FR

P  representing the prob-

ability of false pedestrian recognition and 
FA

P  the probability of false alarm or 

false detection. Sensor performance is propagated to the object’s detection and 

recognition confidences. 

The Object Level Fusion Module has to run at the frequency of the incoming 

object lists. It has to combine any ready object list with the existing track list to 

provide a list of estimated tracks at the current time. Tracks are characterized by 

their relative position, position error, speed, speed error, dimension, dimension er-

ror and three indicators quantifying the confidences in detection, recognition and 

tracking. 

To fuse data, all information is represented in the same 3D coordinate system 

( )
L L L

X Y Z showed in Fig.3: the origin is the center of the Lidar reflection mirror 

and the plan ( )
L L

X Y  is parallel to the ground. A special calibration procedure is 

developed to project vision data into 3D coordinate system and vice versa. 

 

2.3. Fusion by tracking 

The Track’s state is divided into four parts updated by four different processes 

(Fig.1) with the same update stages and models for all tracks: 

1. Kinematical state (track’s position and velocity) loosely-coupled with the vehi-

cle state and updated by a classical Kalman filter detailed in section 3.  

2. Tracking confidence: calculated and updated based on the score of Sittler using 

likelihood ratio [9] 

3. Dimension: updated by a fixed gain filter taking into consideration the objects 

partial occultation problem [10] 

4. Detection and recognition confidences: updated by a credibilistic model based 

on the belief functions and presented in section 4. 

When the fusion and state updating module receive a list of object at its input, it 

predicts the last list of tracks’ state to the current object list time, and then it runs 

 
Fig.3. Commune relative Lidar coordinate system. 
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an object to track association procedure based on a modified version of the nearest 

neighborhood association method. This modified method takes into consideration 

the occultation problem by geometrically detecting the occultation areas and al-

lowing multi-object to track association to associate all parts of a partially hidden 

object to the corresponding track. 

3. Pedestrian model for in-vehicle tracking 

3.1. Coordinate systems transformation 

Let ( , , )o i j
� �

be an absolute fixed coordinate system and ( , , )O I J
� �

 and 

( , , )
L L L

O I J
��� ���

 be two relative coordinate systems attached respectively to the center 

of the rear wheel axle and the center of Lidar rotating mirror (Fig.4). The x-axis is 

aligned with the longitudinal axis of the car. Let M be a point of the space and let 

( , )x y , ( , )X Y  and ( , )
L L

X Y be its respective Cartesian coordinate in the three sys-

tems. ( , )X Y  and ( , )
L L

X Y  are related by the equations: 

L

L

X X L

Y Y

= +


=
        (1) 

The geometry of Fig.4 shows that: 

cos sin

sin cos

o o

oM oO OM

oO x i y j

OM XI YJ

I i j

J i j

θ θ

θ θ

 = +


= +


= +


= +
 = − +


���� ���� �����

���� � �

����� � �

� � �

�� � �

       (2) 

Therefore: 

cos sin

sin cos

o

o

x x X Y

y y X Y

θ θ

θ θ

= + −


= + +
      (3) 

Then: 

( ) cos ( )sin

( ) sin ( ) cos

o o

o o

X x x y y

Y x x y y

θ θ

θ θ

= − + −


= − − + −
     (4) 

 

The absolute speed vector of the point M is the derivative of its position vector: 

doM doO d I d J dX dY
v X Y I J

dt dt dt dt dt dt
= = + + + +

���� ���� � ��

� � ��

    (5) 

Let  ( / ) ( / )V dX dt I dY dt J= +
�� � ��

 be the relative speed of M with respect to the 

vehicle coordinate system ( , , )O I J
� �

 and /
o

v doO dt=
��� ����

 be the absolute speed of O. 
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The derivatives of the vectors I
�

 and J
�

are: 

( ) ( )

( ) ( )

/ sin cos /

/ cos sin /

d I dt i j d dt

d J dt i j d dt

θ θ θ

θ θ θ

  = − +  


 = − + −  

� � �

�� � �     (6) 

Let /d dtθΩ =  be the absolute rotation speed of the vehicle around the point 

O, then (4) can be written as: 

sin cos

cos sin
o

X
v V v

Y

θ θ

θ θ

− −   
= + + Ω    −   

�� ���
�

     (7) 

 

3.2. Vehicle model 

In modern cars, braking is assisted by ABS systems that use angular encoders 

attached to the wheels. In such a case, the sensors basically measure the wheel 

speeds. We propose in this paper to use this data to model vehicle movement and 

to estimate its kinematical state. 

Fig.5 shows the elementary displacement of the vehicle between two samples at 

k
t and 

1k
t + .The presented car-like vehicle model is a real odometric model [11] 

and not the discretized kinematics model used in [12]. Assumptions are made on 

the elementary motions and geometric relationships are expressed to provide rela-

tions between the rotations of the wheels and the displacements. The rear wheels’ 

speeds are read from the CAN bus of the experimental vehicle. They are supposed 

constants between two readings. On the assumption that the road is perfectly pla-

nar and the motion is locally circular, the vehicle’s linear speed 
o

v and angular 

speed Ω  can be calculated from the rear wheels speed as follow: 

θI
�J

�

x

y

X

Y

M

o

O

i
�

j
�

e

ov
Ω

WRL

LX

LY

LO

LJ
LI

ox

oy

LWRR

 
Fig.4. absolute and relative coordinate systems 
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( ) / 2

( ) /

o RR RL

RR RL

v V V

V V e

= +


Ω = −
       (8) 

Where 
RR

V  and 
RL

V  represent respectively the rear right and left wheel speeds, 

and e is the distance between their points of contact with the road plane. 

With the assumption of constant wheels speed between two CAN readings 

(with sampling time of 
e

T ), the equations (7) prove that the linear and angular 

speeds are also constant; the vehicle state evaluation between the time 
k

t  and 

1k k e
t t T+ = +  can be written as: 

, 1 ,

1

1

o k o k

k k k e

k k

v v

Tθ θ
+

+

+

=


= + Ω
Ω = Ω

       (9) 

Where 
k

θ  represents the absolute heading angle of the vehicle. 

The vehicle state is filtered and estimated with a traditional Kalman filter hav-

ing the state vector: [ ]T

o
v θ Ω  and the measurement vector: [ ]T

RR RL
V V  

The model error covariance matrix is experimentally approximated based on the 

maximum error provided by the assumption of constant angular and linear speed 

model. The measurement error covariance matrix is calculated based on the ABS 

angular encoders’ error. 

3.3. Pedestrian model 

Pedestrians are supposed moving linearly at constant speed. The evaluation of 

the absolute position ( , )x y  and speed ( , )
x y

v v of a pedestrian, with respect to the 

coordinate system ( , , )o i j
� �

, between the time tk and tk+1 is: 

1 ,

1 ,

, 1 ,

, 1 ,

k k x k e

k k y k e

x k x k

y k y k

x x v T

y y v T

v v

v v

+

+

+

+

= +


= +


=
 =

      (10) 

From the equation (2), (4), (5), (7) and (10) we calculated the relative position 

and velocity of a pedestrian with respect to the coordinate system ( , , )O I J
� �

: 

1 ,

, ,

1 ,

, ,

cos( ) sin( ) cos( / 2)

cos( ) sin( )

cos( ) sin( ) sin( / 2)

sin( ) cos( )

k k k e k k e o k e k e

x k e k k e y k e k k e

k k k e k k e o k e k e

x k e k k e y k e k k e

X X T Y T v T T

v T T v T T

Y Y T X T v T T

v T T v T T

θ θ

θ θ

+

+

= Ω + Ω − Ω

+ + Ω + + Ω

= Ω − Ω + Ω

− + Ω + + Ω

  (11) 

( ))2/sin(,,,1, ekkkokyekkxkx TvvTVV Ω+−Ω+=+ θ     
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( ), 1 , , , cos( / 2)y k y k k e x k o k k k eV V T v v Tθ+ = + Ω − + + Ω  

Pedestrians state is filtered and estimated with a traditional Kalman filter (one fil-

ter per pedestrian) having the state vector: 
T

x y x yv v X Y V V    

and the measurement vector: 
L

X LX

Y Y

+  
=   

   
   (12) 

The model error covariance matrix is experimentally approximated based on the 

maximum error provided by the assumption of pedestrian constant speed model. 

The measurement error covariance matrix is calculated based on the sensor’s reso-

lution saved in a configuration file with other tuning parameters.  

After updating the kinematical state by the Kalman filter, the next section will 

describe the update method used for the detection and the recognition confidences 

by a credibilistic model based on the belief functions. 

4. Confidence indicators   

4.1. Definition of pedestrian’s confidence indicators 

The objective of the system is the detection and the recognition of pedestrians. 

To quantify this goal, we defined two numerical indicators representing respec-

tively the confidence in detection and in recognition. These indicators can be cal-

culated, for example, based on statistical approaches or on geometrical features 

analysis. As an example, a calculation method of theses indicators is described in 

[13] for the case of 4-planes Lidar.  

4.2. Confidence indicators updating 

4.2.1.  TBM principle and notation 

The transferable belief model TBM is a model to represent quantified beliefs 

based on belief functions [14]. It has the advantage of being able to explicitly rep-

resent uncertainty on an event. It takes into account what remains unknown and 

represents perfectly what is already known.  

a) Knowledge representation 
Let Ω be a finite set of all possible solution of a problem. Ω  is called the frame 

of discernment (also called state space); it’s composed of mutually exclusive ele-

ments. The knowledge held by a rational agent can be quantified by a belief func-

tion defined from the power set 2Ω  to [0,1]. Belief functions can be expressed in 

several forms: the basic belief assignment (BBA) m , the credibility function bel, 

the plausibility function pl , and the commonality function q  which are in one-

to-one correspondence. We recall that ( )m A  quantifies the part of belief that is re-
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stricted to the proposition “the solution is in A ⊆ Ω ” and satisfies: 

( ) 1
A

m A
⊆Ω

=∑        (13) 

Thus, a BBA can support a set A ⊆ Ω  without supporting any sub-proposition 

of A , which allows to account for partial knowledge. Smets introduced the notion 

of open world where Ω  is not exhaustive; this is quantified by a non zero value of 

( )m ∅ . 

b) Information fusion 
n  distinct pieces of evidence defined over a common frame of discernment and 

quantified by BBAs 
1 n

m mΩ Ω
� , may be combined, using a suitable operator. The 

most common are the conjunctive and the disjunctive rules of combination de-

noted respectively  and , and defined by the equations (14) and (15). 

1
( ) ( ) ( )

n
m A m A m A

Ω Ω Ω= �

 

1

1 1( ) ( )
n

n n

A A A

m A m A A
Ω Ω

∩ ∩ =

= × × ∀ ⊂ Ω∑
�

�   (14) 

1
( ) ( ) ( )

n
m A m A m A

Ω Ω Ω= �

 

1

1 1( ) ( )
n

n n

A A A

m A m A A
Ω Ω

∪ ∪ =

= × × ∀ ⊂ Ω∑
�

�   (15) 

Obtained BBAs should be normalized in a closed world assumption.  

The conjunctive and disjunctive rules of combination assume the independence 

of the data sources. In [15] and [16] Denoeux introduced the cautious rule of com-

bination (denoted by ) to combine dependent data. This rule has the advantage of 

combining dependent BBAs without increasing total belief: the combination of a 

BBA with itself will give the same BBA: m m= m  (idempotence property). The 

cautious rule of combination is based on combining conjunctively the minimum of 

the weighted function representing dependent BBAs. 

c) Reliability and discounting factor 
The reliability is the user opinion about the source [17]. The idea is to weight 

most heavily the opinions of the best source and conversely for the less reliable 

ones. The result is a discounting of the BBA m
Ω  produced by the source into the 

new BBA ,
m

αΩ  where: 
,

,

( ) (1 ) ( ), ,

( ) (1 ) ( )

m A m A A A

m m

α

α

α

α α

Ω Ω

Ω Ω

 = − ∀ ⊂ Ω ≠ Ω


Ω = + − Ω
   (16) 

The discounting factor (1 )α−  can be regarded as the degree of trust assigned 

to the sensor. 

d) Decision making 
The couple (credibility, plausibility) is approximated by a measurement of 

probability by redistribute the mass assigned to each element of 2Ω , different 
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from singleton, to the elements which compose it. The probability resulting from 

this approximation is called pignistic probability BetP ; it’s used for decision 

making: 

( )
( )

(1 ( ))
i

i i

A

m A
BetP

A mω

ω ω
Ω

Ω
Ω

∈ ⊆Ω

∀ ∈Ω ⇒ =
− ∅

∑    (17) 

4.2.2.  Confidence calculation 

a) Defining the frames of discernment 
Before defining any quantified description of belief with respect to the objects’ 

detection and/or pedestrians’ recognition, we must define a frame of discernment 

Ω  on which beliefs will be allocated and updated.  

For the objects detection problem, we can associate two general cases: object 

O  and non object NO . The object can be a pedestrian or a non pedestrian object, 

but with no object identification, the frame of discernment of the object detection 

process is limited to: { },
d

O NOΩ = . As an example, a disparity image analyzer of 

a stereo-vision system can have 
d

Ω  as its frame of discernment. 

 
A mono-vision pedestrian recognition process based on an AdaBoost algorithm 

for example, gives the probability of detecting a pedestrian P  or non pedestrian 

NP . The non pedestrian can be a non pedestrian object or a false alarm. Let 

{ },
r

P NPΩ =  be the frame of discernment of this type of recognition processes.  

The update stage requires a commune frame of discernment, let 

{ }, ,PO NPO FAΩ =  be the frame containing all possible solutions of the detec-

tion and the recognition problem. The relation between the three frames Ω , 
d

Ω  

and 
r

Ω  is represented in Fig.4. 

Transforming BBAs from 
d

Ω  and 
r

Ω to a more detailed frame, such as Ω , is 

called the refinement process and it's denoted ↑ . The inverse transformation is 

called coarsening and it's denoted ↓ [14]. 

 
 

Fig.4. Relation between the state spaces of the detection 

and the recognition processes 
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b) Basic belief assignment calculation 
The outputs of the detection and the recognition processes are Bayesian prob-

ability functions. With no additional information, we have to build, based on these 

probabilities, the basic belief assignments { }, ,
d

s kd S t im O
Ω

 (BBA of the detection 

module of the object 
i

O  detected by the source 
s

S  and defined over the frame of 

discernment 
d

Ω  at time 
k

t ) and/or { }, ,
r

s kr S t im O
Ω

 (BBA of the recognition module 

of 
i

O  detected by 
s

S  and defined over 
r

Ω  at time 
k

t ). 

We are using the inverse pignistic probability transform proposed by Sudano 

[18] to calculate belief functions from Bayesian probability functions. So, to build 

the BBAs, we calculate from the probability functions the less informative BBAs 

who regenerate the same probability as its pignistic probability [19]. 

4.2.3.  Confidence updating algorithm 

The fusion and tracking module updates all tracks information such as track’s 

state and track’s detection and recognition confidences. The algorithm of track de-

tection and recognition confidence update with object detection and recognition 

confidence consists in: (Fig.5) 

• Transform the probabilities { }, ,s kd S t iP O  and { }, ,s kr S t iP O  into basic belief as-

signment BBAs: { }, ,
d

s kd S t im O
Ω

 and { }, ,
r

s kr S t im O
Ω

 (see section 4.2.2 b) 

• Transform the performance of the sensor module into discounting values: the 

probability of false alarm 
FA

P  and the probability of false recognition 
FR

P  of 

the sensor module transform the last BBAs into { },

, ,
d d

s kd S t im O
αΩ

 and { },

, ,
r r

s kr S t im O
αΩ

 

where 1
d FA

Pα = −  and 1
r FR

Pα = −  are respectively the discounting factors of 

the detection and the recognition processes (see equation 16). 

• Transform beliefs from 
d

Ω  and 
r

Ω  to the commune frame of discernment Ω  

by doing the refinement process, i.e. moving the belief on a subset of 
d

Ω  (re-

spectively 
r

Ω ) to the corresponding subset of Ω . We get: { },

, ,
d d

s kd S t im O
αΩ ↑Ω

 and 

{ },

, ,
r r

s kr S t im O
αΩ ↑Ω

(see section 4.2.2 a). 

• The two obtained BBAs are not really independent because they are calculated 

in a sensor module based on the same data set. We decided to combine them 

using the cautious rule of combination, which take into consideration the de-

pendency in data (See section 4.2.1 b): 

 
{ } { } { }, ,

, , , , , ,
d d r r

s k s k s kdr S t i d S t i r S t im O m O m O
α αΩ ↑Ω Ω ↑ΩΩ =

 

• We suppose the temporal independency of data provided by a sensor, thus the 

obtained BBA is combined conjunctively (using equation 14) with the associ-
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ated track belief function { }
1kt jm T

−

Ω
 to get { }

kt jm T
Ω

 as result of the combination 

and update process: 

{ } { } { }
1, ,k s k kt j dr S t i t jm T m O m T

−

Ω Ω Ω=
 

• Finally, the track’s detection and recognition confidence { }, kd t iP T  and { }, kr t iP T  

are the pignistic probability BetP calculated from { }
kt jm T
Ω

(see section 4.2.1 d). 

 

{ },

, ,
d d

s kd S t i
m O

αΩ

{ }, ,s kd S t i
P O { }, ,s kr S t i

P O

{ }, ,
d

s kd S t i
m O

Ω { }, ,
r

s kr S t i
m O

Ω

s
S

FA
P

FR
P

{ },

, ,
d d

s kd S t i
m O

αΩ ↑Ω { },

, ,
r r

s kr S t im O
αΩ ↑Ω

{ },

, ,
r r

s kr S t i
m O

αΩ

{ }
1kt j

m T
−

Ω

{ }
kt j

m T
Ω

{ }, kd t i
P T { }, kr t i

P T

{ }, ,s kdr S t i
m O

Ω

 
 

Fig.5. Confidence updating algorithm. 
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5. Results 

5.1. Simulation results 

To show the effect of the proposed confidence updating method with two sen-

sors with different reliabilities, we simulated the data coming from two unsyn-

chronized sensors. Results shows that with constant object detection and recogni-

tion confidences, the more reliable sensor dominates. 

in Figure (Fig.6), the sensor 1 is reliable in detection with a probability of false 

detection of 20%, but not in recognition (80% false recognition) and the sensor 2 

is reliable in recognition (20% false recognition) but not in detection (80% false 

detection): fusion results shows that the corresponding track is well detected and 

recognized. Figure (Fig.7) shows the inverse case: the track detection and recogni-

tion confidences go down to zero with the low confidences in detection and rec-

ognition given by the reliable sensors. 
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Fig.7. Track detection and recognition with two sensors: 

confidences follow the powerful sensor down to 0% 
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Fig.6. Track detection and recognition with two sensors: 

confidences follow the powerful sensor up to 100% 
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5.2. Experimentations 

The algorithms are tested as a real time embedded system implemented in the 

experimental vehicle CARMEN (Fig.3) of the laboratory Heudiasyc. CARMEN is 

equipped with different sensors such as 4-plans Lidar, stereo and mono cameras 

and radar. Proprioceptive data, such as wheels speed, is read from the vehicle 

CAN bus. Only Lidar and proprioceptive data are used in this experiment while 

image data provided by cameras is used to validate results by projecting laser data, 

tracks and confidences on the corresponding image (Fig.8).  Experimentations are 

done in an urban environment. 

To simulate two unsynchronized sensors with different performance, Lidar data 

are assigned at each scanning period to one of two virtual Lidars having different 

detection and recognition confidences but the same measurement precision as the 

real Lidar. 

 

 

5.3. Experimental Results 

Results show the efficiency of the described method in unsynchronized data fu-

sion especially when the frequency of the incoming data is unknown or variable. 

As an example, we will show the detection and recognition confidence result of 

tracking one pedestrian detected by the laser scanner. 

The probability of false alarm 
FA

P  and false recognition 
FR

P  of the first virtual 

Lidar are fixed respectively to 10% and 40%, while the second virtual Lidar has 

more false alarms with 40%
FA

P =  and less false recognition with 10%
FR

P = .  

Fig.9 and Fig.10 show the results of tracking the same pedestrian during 90 Li-

dar scans. The 90 scans are distributed between the two virtual Lidar sensors. 

Fig.9 shows that the track detection confidence follows the confidence variation of 

the object detected by the first sensor having less false alarm probability then the 

 
Fig.8. Projection on the image of the 4 scanning layers and the pedestrians 

with their corresponding detection and recognition confidences. 
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second sensor. While Fig.10 shows the variation of the tracked pedestrian’s rec-

ognition confidence with the variation of the objects confidence detected by the 

two sensors. 

 

 
 

 

 
Fig.10. Track recognition confidence variation of one pedestrian recognized by two 

sensors having different recognition performance. 

 
Fig.9. Track detection confidence variation of one pedestrian detected by two sensors 

having different detection performance. 
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6. Conclusion and future works 
 

In this paper we presented a multi-sensor fusion system dedicated to detect, 

recognize and track pedestrians. We differentiated between the two problems: ob-

ject detection and pedestrian recognition, and quantified the confidence in the de-

tection and recognition processes. The fusion by tracking method is used to solve 

the problem of asynchronous data provided by different sensors. The tracks state 

is divided into four parts and updated with different filters. Two of them are pre-

sented in this article: Kalman filter used for the kinematical state, and the detec-

tion and recognition confidences updated under the transferable belief framework. 

Results are shown with simulated and experimental data acquired in urban envi-

ronment. Future works will concentrate on the validation of the method with 

multi-sensor data such as image and radar that have different performance in the 

detection and the recognition processes.  
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