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This paper 1 describes a multi-sensor fusion system dedicated to detect, recognize and track pedestrians. The fusion by tracking method is used to fuse asynchronous data provided by different sensors with complementary and supplementary fields of view. Having the performance of the sensors, we propose to differentiate between the two problems: object detection and pedestrian recognition, and to quantify the confidence in the detection and recognition processes. This confidence is calculated based in geometric features and it is updated under the Transferable Belief Model framework. The vehicle proprioceptive data are filtered by a separate Kalman filter and are used in the estimation of the relative and absolute state of detected pedestrians. Results are shown with simulated data and with real experimental data acquired in urban environment.

Introduction

Recent projects on pedestrian detection [START_REF]Sensors and system Architecture for VulnerablE road Users protection[END_REF] or obstacle detection [2] have highlighted the use of multi-sensor data fusion and more generally the multiplication of data sources in order to obtain more reliable, complete and precise data. The Vehicle to Vehicle communication is an example of enlarging the field of view of one vehicle by the information coming from other vehicles [START_REF]Cooperative vehicles and road infrastructure for road safety[END_REF] [START_REF] Cherfaoui | Distributed data fusion: application to the confidence management in vehicular networks[END_REF].

The work presented in this paper is a contribution to the development of an "Advances Driver Assistance Systems" (ADAS). A generic multi-sensor pedestrian detection, recognition and tracking system, is introduced. However, sensors are not synchronized and have not the same performance and field of view. Thus to explore the whole capability of sensors in order to benefit of all available data and to solve the problem of asynchronous sensors, we present a generic method to fuse data provided by different sensor, with complementary and/or supplementary fields of view, by tracking detected objects in a commune space and by combining the detection and/or the recognition information provided by each sensor taking into consideration its performance.

This paper is organized as follows: section II presents the proposed multi-sensor fusion system architecture and describes the object level fusion by tracking method. Section III described the state models used to filter and estimate vehicle and pedestrians' kinematical state. Section IV presents the detection and recognition confidences calculation and update. Experimental results are shown in section V illustrating the effect of sensors performance. Conclusion and perspectives will be proposed in the last section.

Object-level fusion by tracking

Overview of the system

The described multi-sensor pedestrian tracking system is an in-vehicle embedded real-time system. This generic fusion system (Fig. 1) has as input the unsynchronized data provided by independent unsynchronized sensors with complementary and supplementary fields of view (Fig. 2).

The system is composed of one "Object Level Fusion Module" and one "Sensor Module" per sensor. Each Sensor Module analyzes data provided by the corresponding sensor to supply the Object Level Fusion Module by a list of objects supposed present in the scene of its field of view. A lot of works in ADAS and robotics applications are dedicated to the object detection capabilities. For example for pedestrian detection, [START_REF] Fuerstenberg | Pedestrian Detection and Classification by Laser scanners, 9th EAEC International Congress[END_REF] proposes obstacle detection and identification with Lidar sensor; [START_REF] Suard | Pedestrian Detection using Stereo-vision and Graph Kernels[END_REF] proposes stereo-vision obstacle detection with disparity analysis and SVM based on pedestrian classification, [START_REF] Viola | Detecting pedestrians using patterns of motion and appearance[END_REF] gives pedestrian classification resulting from monocular vision with AdaBoost algorithm. The Object Level Fusion Module takes any ready object list and combine it with the existing track list, tacking into consideration the vehicle proprioceptive data (filtered by a separate Kal-man filter) and the performance of each detection module (stored in a configuration file with other tuning parameters). Latency problem can be solved by a time indexed buffer of observations and state vectors as in [START_REF] Tessier | A Real-Time, Multi-Sensor Architecture for fusion of delayed observations: Application to Vehicle Localization[END_REF]. The buffer size depends on the maximum acceptable observation delay.

Object level input/output

The Sensor Module works at the frequency of the corresponding sensor, it provides at each detection cycle a list of objects supposed present in the scene of its field of view. Objects are described by their position (relative to the sensor), position error, dimension (if detected), dimension error and two indicators quantifying the confidence in detection and the confidence in recognition if the sensor is capa- The Object Level Fusion Module has to run at the frequency of the incoming object lists. It has to combine any ready object list with the existing track list to provide a list of estimated tracks at the current time. Tracks are characterized by their relative position, position error, speed, speed error, dimension, dimension error and three indicators quantifying the confidences in detection, recognition and tracking.

To fuse data, all information is represented in the same 3D coordinate system ( )

L L L
X Y Z showed in Fig. 3: the origin is the center of the Lidar reflection mirror and the plan ( )

L L
X Y is parallel to the ground. A special calibration procedure is developed to project vision data into 3D coordinate system and vice versa.

Fusion by tracking

The Track's state is divided into four parts updated by four different processes (Fig. 1) with the same update stages and models for all tracks: When the fusion and state updating module receive a list of object at its input, it predicts the last list of tracks' state to the current object list time, and then it runs an object to track association procedure based on a modified version of the nearest neighborhood association method. This modified method takes into consideration the occultation problem by geometrically detecting the occultation areas and allowing multi-object to track association to associate all parts of a partially hidden object to the corresponding track. O I J be two relative coordinate systems attached respectively to the center of the rear wheel axle and the center of Lidar rotating mirror (Fig. 4). The x-axis is aligned with the longitudinal axis of the car. Let M be a point of the space and let ( , ) x y , ( , ) X Y and ( , )
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L L X Y be its respective Cartesian coordinate in the three systems. ( , ) X Y and ( , )

L L X Y are related by the equations:

L L X X L Y Y = +   =  (1) 
The geometry of Fig. 4 shows that:
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Then:
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The absolute speed vector of the point M is the derivative of its position vector: The derivatives of the vectors I and J are:

d oM d oO d I d J dX dY v X Y I J dt dt dt dt dt dt = = + + + + (5) 
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be the absolute rotation speed of the vehicle around the point O, then (4) can be written as: sin cos
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Vehicle model

In modern cars, braking is assisted by ABS systems that use angular encoders attached to the wheels. In such a case, the sensors basically measure the wheel speeds. We propose in this paper to use this data to model vehicle movement and to estimate its kinematical state.

Fig. 5 shows the elementary displacement of the vehicle between two samples at k t and 1 k t + .The presented car-like vehicle model is a real odometric model [START_REF] Ph | Dynamic Localization of Car-Like Vehicle using Data Fusion of Redundant ABS Sensors[END_REF] and not the discretized kinematics model used in [START_REF] Julier | Process Models for the High-Speed Navigation of Road Vehicles[END_REF]. Assumptions are made on the elementary motions and geometric relationships are expressed to provide relations between the rotations of the wheels and the displacements. The rear wheels' speeds are read from the CAN bus of the experimental vehicle. They are supposed constants between two readings. On the assumption that the road is perfectly planar and the motion is locally circular, the vehicle's linear speed o v and angular speed Ω can be calculated from the rear wheels speed as follow: 

( ) / 2 ( ) / o RR RL RR RL v V V V V e = +   Ω = -  (8) 
Where RR V and RL V represent respectively the rear right and left wheel speeds, and e is the distance between their points of contact with the road plane.

With the assumption of constant wheels speed between two CAN readings (with sampling time of e T ), the equations [START_REF] Viola | Detecting pedestrians using patterns of motion and appearance[END_REF] prove that the linear and angular speeds are also constant; the vehicle state evaluation between the time k t and 1 k k e t t T + = + can be written as: ,1 ,

1 1 o k o k k k k e k k v v T θ θ + + + =   = + Ω   Ω = Ω  (9)
Where k θ represents the absolute heading angle of the vehicle.

The vehicle state is filtered and estimated with a traditional Kalman filter having the state vector: [ ]

T o v θ Ω and the measurement vector: [ ] T RR RL V V
The model error covariance matrix is experimentally approximated based on the maximum error provided by the assumption of constant angular and linear speed model. The measurement error covariance matrix is calculated based on the ABS angular encoders' error.

Pedestrian model

Pedestrians are supposed moving linearly at constant speed. The evaluation of the absolute position ( , )

x y and speed ( , )

x y v v of a pedestrian, with respect to the coordinate system ( , , ) o i j , between the time t k and t k+1 is:

k k x k e k k y k e x k x k y k y k x x v T y y v T v v v v + + + + = +   = +   =   =  (10) 1 , 1 , , 1 , , 1 , 
From the equation (2), ( 4), ( 5), ( 7) and [START_REF] Fayad | Tracking objects using a laser scanner in driving situation based on modeling target shape[END_REF] we calculated the relative position and velocity of a pedestrian with respect to the coordinate system ( , , ) 
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Pedestrians state is filtered and estimated with a traditional Kalman filter (one filter per pedestrian) having the state vector:

T x y x y v v X Y V V    
and the measurement vector:

L X L X Y Y +     =         (12) 
The model error covariance matrix is experimentally approximated based on the maximum error provided by the assumption of pedestrian constant speed model. The measurement error covariance matrix is calculated based on the sensor's resolution saved in a configuration file with other tuning parameters.

After updating the kinematical state by the Kalman filter, the next section will describe the update method used for the detection and the recognition confidences by a credibilistic model based on the belief functions.

Confidence indicators

Definition of pedestrian's confidence indicators

The objective of the system is the detection and the recognition of pedestrians. To quantify this goal, we defined two numerical indicators representing respectively the confidence in detection and in recognition. These indicators can be calculated, for example, based on statistical approaches or on geometrical features analysis. As an example, a calculation method of theses indicators is described in [START_REF] Fayad | Updating confidence indicators in a multi-sensor pedestrian tracking system[END_REF] for the case of 4-planes Lidar.

Confidence indicators updating

TBM principle and notation

The transferable belief model TBM is a model to represent quantified beliefs based on belief functions [START_REF] Ph | The transferable belief model[END_REF]. It has the advantage of being able to explicitly represent uncertainty on an event. It takes into account what remains unknown and represents perfectly what is already known.

a) Knowledge representation

Let Ω be a finite set of all possible solution of a problem. Ω is called the frame of discernment (also called state space); it's composed of mutually exclusive elements. The knowledge held by a rational agent can be quantified by a belief function defined from the power set 2 Ω to [0,1]. Belief functions can be expressed in several forms: the basic belief assignment (BBA) m , the credibility function bel, the plausibility function pl , and the commonality function q which are in oneto-one correspondence. We recall that ( ) m A quantifies the part of belief that is re-stricted to the proposition "the solution is in A ⊆ Ω " and satisfies:

( ) 1 A m A ⊆Ω = ∑ (13) 
Thus, a BBA can support a set A ⊆ Ω without supporting any sub-proposition of A , which allows to account for partial knowledge. Smets introduced the notion of open world where Ω is not exhaustive; this is quantified by a non zero value of ( ) m ∅ . b) Information fusion n distinct pieces of evidence defined over a common frame of discernment and quantified by BBAs 1 n m m

Ω Ω , may be combined, using a suitable operator. The most common are the conjunctive and the disjunctive rules of combination denoted respectively and , and defined by the equations ( 14) and ( 15).
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n m A m A m A Ω Ω Ω = 1 1 1 ( ) ( ) n n n A A A m A m A A Ω Ω ∪ ∪ = = × × ∀ ⊂ Ω ∑ (15) 
Obtained BBAs should be normalized in a closed world assumption. The conjunctive and disjunctive rules of combination assume the independence of the data sources. In [START_REF] Denoeux | The cautious rule of combination for belief functions and some extensions[END_REF] and [START_REF] Denoeux | Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence[END_REF] Denoeux introduced the cautious rule of combination (denoted by ) to combine dependent data. This rule has the advantage of combining dependent BBAs without increasing total belief: the combination of a BBA with itself will give the same BBA: m m = m (idempotence property). The cautious rule of combination is based on combining conjunctively the minimum of the weighted function representing dependent BBAs.

c) Reliability and discounting factor

The reliability is the user opinion about the source [START_REF] Elouedi | Assessing sensor reliability for multisensor data fusion within the transferable belief model[END_REF]. The idea is to weight most heavily the opinions of the best source and conversely for the less reliable ones. The result is a discounting of the BBA m Ω produced by the source into the new BBA , m α Ω where: , , ( ) ( 1) ( ), ,

( ) (1 ) ( ) m A m A A A m m α α α α α Ω Ω Ω Ω  = - ∀ ⊂ Ω ≠ Ω   Ω = + - Ω   (16) 
The discounting factor [START_REF]Sensors and system Architecture for VulnerablE road Users protection[END_REF] α can be regarded as the degree of trust assigned to the sensor.

d) Decision making

The couple (credibility, plausibility) is approximated by a measurement of probability by redistribute the mass assigned to each element of 2 Ω , different from singleton, to the elements which compose it. The probability resulting from this approximation is called pignistic probability BetP ; it's used for decision making:

( ) ( ) (1 ( ))

i i i A m A BetP A m ω ω ω Ω Ω Ω ∈ ⊆Ω ∀ ∈Ω ⇒ = - ∅ ∑ (17)

Confidence calculation

a) Defining the frames of discernment Before defining any quantified description of belief with respect to the objects' detection and/or pedestrians' recognition, we must define a frame of discernment Ω on which beliefs will be allocated and updated.

For the objects detection problem, we can associate two general cases: object O and non object NO . The object can be a pedestrian or a non pedestrian object, but with no object identification, the frame of discernment of the object detection process is limited to:

{ } , d O NO Ω =
. As an example, a disparity image analyzer of a stereo-vision system can have d Ω as its frame of discernment.

A mono-vision pedestrian recognition process based on an AdaBoost algorithm for example, gives the probability of detecting a pedestrian P or non pedestrian NP . The non pedestrian can be a non pedestrian object or a false alarm. Let ). We are using the inverse pignistic probability transform proposed by Sudano [START_REF] Sudano | Inverse pignistic probability transforms[END_REF] to calculate belief functions from Bayesian probability functions. So, to build the BBAs, we calculate from the probability functions the less informative BBAs who regenerate the same probability as its pignistic probability [START_REF] Fayad | Detection and Recognition confidences update in a multi-sensor pedestrian tracking system[END_REF].

Confidence updating algorithm

The fusion and tracking module updates all tracks information such as track's state and track's detection and recognition confidences. The algorithm of track detection and recognition confidence update with object detection and recognition confidence consists in: (Fig. 5) (see section 4.2.2 a). • The two obtained BBAs are not really independent because they are calculated in a sensor module based on the same data set. We decided to combine them using the cautious rule of combination, which take into consideration the dependency in data (See section 4.2.1 b): 

• Transform the probabilities { } , ,
{ } { } { } , , , , , , , , d d r 
d d s k d S t i m O α Ω ↑Ω { } , , , r r s k r S t i m O α Ω ↑Ω { } , , , r r s k r S t i m O α Ω { } 1 k t j m T - Ω { } k t j m T Ω { } , k d t i P T { } , k r t i P T { } , ,

Results

Simulation results

To show the effect of the proposed confidence updating method with two sensors with different reliabilities, we simulated the data coming from two unsynchronized sensors. Results shows that with constant object detection and recognition confidences, the more reliable sensor dominates.

in Figure (Fig. 6), the sensor 1 is reliable in detection with a probability of false detection of 20%, but not in recognition (80% false recognition) and the sensor 2 is reliable in recognition (20% false recognition) but not in detection (80% false detection): fusion results shows that the corresponding track is well detected and recognized. Figure (Fig. 7) shows the inverse case: the track detection and recognition confidences go down to zero with the low confidences in detection and recognition given by the reliable sensors. 

Experimentations

The algorithms are tested as a real time embedded system implemented in the experimental vehicle CARMEN (Fig. 3) of the laboratory Heudiasyc. CARMEN is equipped with different sensors such as 4-plans Lidar, stereo and mono cameras and radar. Proprioceptive data, such as wheels speed, is read from the vehicle CAN bus. Only Lidar and proprioceptive data are used in this experiment while image data provided by cameras is used to validate results by projecting laser data, tracks and confidences on the corresponding image (Fig. 8). Experimentations are done in an urban environment.

To simulate two unsynchronized sensors with different performance, Lidar data are assigned at each scanning period to one of two virtual Lidars having different detection and recognition confidences but the same measurement precision as the real Lidar.

Experimental Results

Results show the efficiency of the described method in unsynchronized data fusion especially when the frequency of the incoming data is unknown or variable. As an example, we will show the detection and recognition confidence result of tracking one pedestrian detected by the laser scanner.

The probability of false alarm FA P and false recognition FR P of the first virtual Lidar are fixed respectively to 10% and 40%, while the second virtual Lidar has more false alarms with 40% FA P = and less false recognition with 10% FR P = . Fig. 9 and Fig. 10 show the results of tracking the same pedestrian during 90 Lidar scans. The 90 scans are distributed between the two virtual Lidar sensors. Fig. 9 shows that the track detection confidence follows the confidence variation of the object detected by the first sensor having less false alarm probability then the second sensor. While Fig. 10 shows the of the tracked pedestrian's recognition confidence with the variation of the objects confidence detected by the two sensors. 

Conclusion and future works

In paper we presented a multi-sensor fusion system dedicated to detect, recognize and track pedestrians. We differentiated between the two problems: object detection and pedestrian recognition, and quantified the confidence in the detection and recognition processes. The fusion by tracking method is used to solve the problem of asynchronous data provided by different sensors. The tracks state is divided into four parts and updated with different filters. Two of them are presented in this article: Kalman filter used for the kinematical state, and the detection and recognition confidences updated under the transferable belief framework. Results are shown with simulated and experimental data acquired in urban environment. Future works will concentrate on the validation of the method with multi-sensor data such as image and radar that have different performance in the detection and the recognition processes.
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 2 Fig.2: Complementary and supplementary fields of view of the different sensors: Stereo-camera, Lidar and Radar
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 1 Kinematical state (track's position and velocity) loosely-coupled with the vehicle state and updated by a classical Kalman filter detailed in section 3. 2. Tracking confidence: calculated and updated based on the score of Sittler using likelihood ratio [9] 3. Dimension: updated by a fixed gain filter taking into consideration the objects partial occultation problem [10] 4. Detection and recognition confidences: updated by a credibilistic model based on the belief functions and presented in section 4.
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 3 Fig.3. Commune relative Lidar coordinate system.

  V dX dt I dY dt J = + be the relative speed of M with respect to the vehicle coordinate system ( , , ) O I J and / o v d oO dt = be the absolute speed of O.
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 4 Fig.4. absolute and relative coordinate systems

  the frame of discernment of this type of recognition processes.The update stage requires a commune frame of discernment, let containing all possible solutions of the detection and the recognition problem. The relation between the three frames Ω , d Ω and r Ω is represented in Fig.4.Transforming BBAs from d Ω and r Ω to a more detailed frame, such as Ω , is called the refinement process and it's denoted ↑ . The inverse transformation is called coarsening and it's denoted ↓[START_REF] Ph | The transferable belief model[END_REF].
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 4 Fig.4. Relation between the state spaces of the detection and the recognition processes

  4.2.2 b) • Transform the performance of the sensor module into discounting values: the probability of false alarm FA P and the probability of false recognition FR P of the sensor module transform the last BBAs into discounting factors of the detection and the recognition processes (see equation 16). • Transform beliefs from d Ω and r Ω to the commune frame of discernment Ωby doing the refinement process, i.e. moving the belief on a subset of d Ω (respectively r Ω ) to the corresponding subset of Ω . We get:
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 5 Fig.5. Confidence updating algorithm.
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 76 Fig.7. Track detection and recognition with two sensors: confidences follow the powerful sensor down to 0%
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 8 Fig.8. Projection on the image of the 4 scanning layers and the pedestrians with their corresponding detection and recognition confidences.
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 10 Fig.10. Track recognition confidence variation of one pedestrian recognized by two sensors having different recognition performance.

Fig. 9 .

 9 Fig.9. Track detection confidence variation of one pedestrian detected by two sensors having different detection performance.

3.1. Coordinate systems transformation

  

	Let ( , , ) o i j be an absolute fixed coordinate system and ( , , ) O I J and
	( , , ) L L L
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