
HAL Id: hal-00444895
https://hal.science/hal-00444895

Submitted on 31 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network-state modulation of power-law
frequency-scaling in visual cortical neurons.

Sami El Boustani, Olivier Marre, Sébastien Béhuret, Pierre Baudot, Pierre
Yger, Thierry Bal, Alain Destexhe, Yves Frégnac

To cite this version:
Sami El Boustani, Olivier Marre, Sébastien Béhuret, Pierre Baudot, Pierre Yger, et al.. Network-state
modulation of power-law frequency-scaling in visual cortical neurons.. PLoS Computational Biology,
2009, 5 (9), pp.e1000519. �10.1371/journal.pcbi.1000519�. �hal-00444895�

https://hal.science/hal-00444895
https://hal.archives-ouvertes.fr


Network-State Modulation of Power-Law Frequency-
Scaling in Visual Cortical Neurons
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Abstract

Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate
multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling
structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal
properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network
state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat
primary visual cortex in vivo, the power spectral density of Vm activity displays a power-law structure at high frequencies
with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to
drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of
cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show
that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also
replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of
the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation
control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a
modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the
frequency-scaling exponent of the Vm reflects stimulus-driven correlations in the cortical network activity. Therefore, we
propose that the scaling exponent could be used to read-out the ‘‘effective’’ connectivity responsible for the dynamical
signature of the population signals measured at different integration levels, from Vm to LFP, EEG and fMRI.
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Introduction

Assigning a functional role to the correlations in network

activity is still controversial. While many studies have proposed

that the mean firing rate of the neuron contains much of the

information about the sensorimotor interaction with the environ-

ment, or the behavioral task being performed [1,2], other studies

have suggested a specific role of higher-order interactions in

cortical processing [3–5].

Here, we explore another way to extract correlations, through

the scaling properties of the power spectrum (hereby called ‘‘power

spectral density’’ or PSD) of the membrane potential of single

neurons. A particularly common form of frequency scaling is the

power-law, according to which the PSD scales as 1/fa at high

frequencies, with some exponent a which may be integer or

fractional (fractal). Power-law frequency-scaling is ubiquitous in

electrophysiological measurements of neuronal population activity,

from spiking activity [6] to fMRI signals [7], but its function and

origin are still controversial. Some studies consider it as the

manifestation of neural ‘‘avalanches’’, a special form of cell

assembly dynamics which would appear when the cortical network

is in a critical state [8,9] and which would be optimal for

information processing. Power-law decay functions may also

provide the basis for long-lasting interactions in adaptation

[10,11] or memory storage [12].

Several explanations for the origin of power-law scaling have

been proposed. At the intracellular level the membrane potential

activity was shown to have power-law scaling at high frequencies,

with exponent values around a~2:5 for synaptic background

activity in vivo [13,14] and channel noise [15–17]. Cable equations

predict values of a between 3 and 4 for inputs distributed in soma

and dendrites, and the non-ideality of the membrane capacitance

was proposed to account quantitatively for these values [18].

However, it is unclear whether this exponent can also be

modulated by extrinsic factors in vivo, and in particular by the

synaptic bombardment evoked by sensory input.

As we report in this paper, we decided to approach this issue by

analyzing the Vm activity of neurons recorded intracellularly in cat

primary visual cortex in vivo, when the network is driven so as to be

in an irregular activity regime. We found that the power-law

scaling observed in the intracellular activity PSD at high

frequencies is modulated by the stimulus. We examined whether
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the scaling exponent variations observed in vivo can be accounted

for by theoretical models in computo, using paradigms where the

correlation among inputs can be modulated. First, we designed a

recurrent network model composed of a thalamic and a cortical

layer and showed that when varying the correlation of the

thalamic input to the cortical layer power-law exponent

modulations were consistent with the in vivo results. The scaling

exponent thus reflects in this model a specific correlational state of

the network imposed by the input. We then dissected out those

aspects in the activity impinging on the recorded neuron that can

modulate the scaling exponent, and also explored the alternative

hypothesis that intrinsic properties of the individual neuron are

sufficient to explain the observed modulation. For this purpose, we

applied different correlated synaptic inputs to neuron models. This

confirmed that a change in the correlation of the synaptic input

can modify the power-law exponent. Finally, we investigated this

paradigm in cortical neurons in vitro using the dynamic-clamp

technique and confirmed the results obtained with computational

models. We discuss how these results are consistent with the theory

that the power-law exponent modulation reflects changes in the

correlation state of the network activity.

Results

Stimulus Dependence of Frequency Scaling in V1
15 neurons were recorded intracellularly in the primary visual

cortex of the anesthetized and paralyzed cat (see Materials and

Methods). Each neuron was recorded while presenting four full-

field stimuli through the dominant eye (Fig. 1): a drifting grating at

the cell’s optimal orientation and spatial frequency (DG), a high

spatial definition dense noise (DN), a natural image animated with

a simulated eye movement sequence (NI), and a grating animated

with the same eye movement sequence (GEM). After removing the

spikes from the Vm signals by interpolation, we computed their

PSDs (see Materials and Methods). These PSDs systematically

exhibit a scaling behaviour in a broad, high-frequency band. To

extract the scaling exponent, we fitted a linear function to the log-

log representation of the PSD, for a range of frequencies from 75

to 200 Hz (Fig. 2B), where the quality of the linear fit is high

(mean correlation coefficient r~0:95). Note that this chosen band

is also above the frequencies at which synaptic and membrane

filtering cut-off appear [19].

Figure 2A shows the PSDs of the intracellular responses to the

four stimuli for the same cell. In the log-log scale representation we

observed a dependence of the slope, and hence the frequency-

scaling exponent, on the stimulus. To confirm these effects at the

population level, we compared for each cell the values of the

exponent between pairs of stimuli. Figure 2C shows the

comparison between stimuli DG and NI for each cell, and

averaged over trials. Although the absolute value of the exponent

was highly variable from cell to cell (ranging from 2.0 to 3.5), it

was systematically lower, for the same cell, for NI than for DG

(paired Wilcoxon test, pƒ0.003). The magnitude of this difference

was much larger than the standard error of the mean (SEM)

among the different trials for the same protocol.

We checked whether the value of the exponent could be

correlated with the recorded cell’s averaged Vm or firing rate. The

corresponding correlation coefficients were computed for each

stimulus and then averaged together. We found that neither the

firing rate (r~0:13) nor the averaged Vm (r~0:2) were correlated

enough to explain the variations of scaling exponent (although

these weak correlations were marginally significant (pƒ0.07),

except for the NI protocol where no correlation was found).

We also estimated whether these systematic modulations were

visible at the spiking level, or present only at the Vm level. We

computed the Fano factor exponent (see Materials and Methods)

for the in vivo spiking responses. In contrast to the frequency-

scaling of the Vm, we did not observe any consistent variation of

the spiking scaling-exponent with the visual stimulus. Moreover,

there was no significant correlation between the Vm and the

spiking scaling exponents (r = 0.2, p§0.1).

In some cells, the same protocol was repeated consecutively,

interleaved with 2–3 s of spontaneous activity. We could not see

any consistent difference between the power law exponents of the

first trial and the others. This means that the dynamics reflected by

the power law exponent appear in less than 10 seconds.

These results indicate that the changes of frequency-scaling for

the same cell as a function of the stimulus context are mainly

determined by the differences in the visual stimulus statistics.

Based on the comparison of the frequency-scaling exponents

between all possible pairs of stimuli, we divided the stimuli into 2

groups. The exponents obtained from the intracellular responses

to DG and GEM were not significantly different from each other

but differed significantly from those obtained with NI and DN. We

summarized these results by computing the relative changes from

DN to the other protocols (Fig. 2D).

For a subset of cells, we also presented three additional stimuli

designed as surrogates of the natural stimulus. The ‘‘Spatial

Random’’ stimulus is composed of the natural image ‘‘scrambled’’

by randomizing the phases of its Fourier coefficients and animated

with the same sequence of eye movements. The ‘‘Time Random’’

stimulus is composed of the natural image animated with a

similarly ‘‘phase-scrambled’’ version of the eye movement

trajectory. Finally, the ‘‘space and time random’’ stimulus is

composed of the scrambled image animated with the scrambled

eye movements (plotted as Natural Image Surrogate or NIS in

Fig. 2D). These three stimuli evoke power-law exponents similar to

the DN protocol (no significant difference, Wilcoxon paired test,

p§0.32, p§0.014, p§0.13 respectively, and see Fig. 2D for the

third surrogate). Even though we did not see a significant

difference between NI and DN or between DN and NIS, there

is a significant difference between NI and NIS, the latter being the

Author Summary

Intracellular recording of neocortical neurons provides an
opportunity of characterizing the statistical signature of
the synaptic bombardment to which it is submitted.
Indeed the membrane potential displays intense fluctua-
tions which reflect the cumulative activity of thousands of
input neurons. In sensory cortical areas, this measure could
be used to estimate the correlational structure of the
external drive. We show that changes in the statistical
properties of network activity, namely the local correlation
between neurons, can be detected by analyzing the power
spectrum density (PSD) of the subthreshold membrane
potential. These PSD can be fitted by a power-law function
1/fa in the upper temporal frequency range. In vivo
recordings in primary visual cortex show that the a
exponent varies with the statistics of the sensory input.
Most remarkably, the exponent observed in the ongoing
activity is indistinguishable from that evoked by natural
visual statistics. These results are emulated by models
which demonstrate that the exponent a is determined by
the local level of correlation imposed in the recurrent
network activity. Similar relationships are also reproduced
in cortical neurons recorded in vitro with artificial synaptic
inputs by controlling in computo the level of correlation in
real time.

Network-Driven Power-Laws
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same stimulus with reduced phase coherence (Wilcoxon paired

test, pƒ0.003, pƒ0.003, pƒ0.006 respectively for the three

surrogate stimuli).

From this study, we concluded that the value of the frequency-

scaling exponent of the intracellular signal is strongly dependent

on the visual input. It is interesting to note that the scaling

exponent always seems to be smaller when the stimulus is less

correlated (DN being the extreme case where there is no

correlation in the stimulus).

Spontaneous Activity
We applied the frequency-scaling analysis to periods of spontane-

ous activity recorded in the same cells. Comparison between the

frequency-scaling exponent of Spontaneous Activity (SA) and those in

response to the five different stimuli was also performed at the

population level. We observed a systematic increase from SA to the

DG and GEM stimuli (Fig. 2D and Fig. 2F; paired rank Wilcoxon

test, pƒ0.0003; the average difference between paired data SA-DG

or SA-GEM is significantly different from zero, t-test, pƒ0.0001). In

contrast, the SA frequency-scaling exponents are similar to those for

DN, NIS and NI (Fig. 2E; for NI r = 0.81, paired rank Wilcoxon test,

p§0.5; slope = 0.82; the average difference between paired data SA-

NI or SA-DN is not significantly different from zero, t-test, p§0.1).

Multifractal Analysis
To estimate how much the frequency-scaling exponent tells us

about the multiscale statistics of the intracellular signal, we

performed a multifractal analysis (see Materials and Methods). We

therefore computed the two first moments of the singularity

spectrum over the different cells and protocols.

The first moment is linearly related to the frequency-scaling

exponent measured on the PSD [20]. The respective values were

indeed correlated over the population. The second moment is

slightly above 0 for the four protocols (DG: 0:0757+0:1035, GEM:

0:0816+0:1062, NI: 0:1018+0:1244, NIS: 0:0680+0:0909 and

DN: 0:0755+0:1015), while no significant differences were found

between protocols. The intracellular signal is thus very close to a

monofractal process, exhibiting self-similar behaviour. Furthermore,

the first-order part of the singularity spectrum is the only one which

varies with the visual stimulation. The functional sensitivity of our

Figure 1. Protocols of visual context dependence. A: Stimuli used in the in vivo experiments. From left to right: Drifting Grating (DG): a
sinusoidal grating with optimal spatial frequency and orientation, drifting at optimal frequency; Grating & Eye Movements (GEM): the same grating
animated by a trajectory simulating the dynamics of eye movements; Natural Image & Eye Movements (NI): a natural image animated by the same
trajectory mimicking eye movements; Dense Noise (DN): a dense noise of high spatial and temporal definition. All these stimuli were full-field and
presented monocularly in the dominant eye. B: examples of intracellular responses of the same cell to the NI (top trace) and the DG (bottom trace)
stimuli (data from Baudot, Marre, Levy, Monier and Frégnac, submitted; Baudot et al., 2004; Frégnac et al., 2005).
doi:10.1371/journal.pcbi.1000519.g001

Network-Driven Power-Laws
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multiscale statistics can be reduced to the power-law behaviour of the

Vm trace.

Frequency Scaling in a Simple Retinotopic Cortical Model
To study the effect of correlated input, we considered a simple

model of a cortical network fed by an input with a controlled level

of synchrony. This model was shown to be sufficient to reproduce

the frequency-scaling exponent modulation measured above. In

order to mimic the cortical network and the retinotopy of the

input, we simulated topographically-connected networks of

excitatory and inhibitory neurons using integrate-and-fire models

and conductance-based synapses (see Materials and Methods). We

considered networks with topographically organized connectivity

where each neuron is connected to its neighbours according to a

Gaussian distribution (Fig. 3A).

The stimuli used during in vivo experiments have different levels of

correlation (Fig. 1A): the DG stimulus is highly correlated across

space and time (one Dirac impulse in the spatio-temporal spectral

plane), while the DN is, by definition, fully uncorrelated (flat spectrum

in space and time). We chose to stimulate the recurrent network

model with inputs having different levels of synchrony. The visually

driven thalamic inputs project in a local region of space (Fig. 3A), and

the cortical response is thus the product of both the thalamic input

and the recurrently mediated activity. The different levels of

Figure 2. Change of frequency-scaling according to visual context. A Power spectral density (PSD) for a given cell in response to the four
different stimuli presented in Fig. 1. The traces have been normalized so as to obtain the same value at 40 Hz, for the sake of clarity. B Illustration of
the linear fit between 75 and 200 Hz for the dense noise protocol. The power-law scaling region extends beyond those frequencies but is affected by
synaptic filtering at low frequencies and by noise artefacts at high frequencies. C Frequency scaling exponent comparison between DG and NI stimuli
for each cell. The error bars represent the standard error of the mean (SEM) on the estimation of the frequency-scaling exponent across the 10
repetitions for each stimulus. The black abscissa line indicates equality between the DG and NI condition. D Population analysis relative to the DN
case. Each bar indicates the percentage of variation from the DN frequency-scaling exponent. The asterisks (*) indicate a significant difference over
the population of cells between the frequency-scaling exponents in response to DN and a given stimulus (paired Wilcoxon test, pv0:005). The fourth
bar represents the relative change between the spontaneous activity (SA) and the DN condition. E Comparison between the frequency-scaling
exponent measured during NI stimulation and spontaneous activity (SA) for each cell. The black line indicates equality. F Same comparison than E
between DG and SA.
doi:10.1371/journal.pcbi.1000519.g002

Network-Driven Power-Laws
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synchrony give rise to responses in the cortical area with different

structures (Fig. 3B), although the mean firing rate and the coefficient

of variation of the cortical activity remain roughly constant over the

different levels of input synchrony (Fig. 3C). In particular, the cortical

layer displays spontaneous waves of activity with an irregular and low

frequency firing regime (rate^4 Hz and ISI CV^1) when there is

no synchrony within the thalamic discharge. The presence of

correlation in the external input disrupts these waves and creates

synchronous firing in the cortical layer (Fig. 3B).

The frequency-scaling exponent in the model was estimated

from the Vm traces of twenty cells (see Materials and Methods).

The values of the Vm and Gexc frequency-scaling exponents both

increased when the input synchrony increased (Fig. 3D). This also

held for the inhibitory conductance Ginh which behaved as its

excitatory counterpart (data not shown). This is consistent with the

in vivo results where stimuli with more correlation (DG, GEM)

evoke higher values of the scaling-exponent than the ‘‘decorre-

lated’’ stimuli (NI, NIS and DN).

Determinants of the Scaling Exponent
We next examined which features of the network activity

structure could be related to this modulation of the scaling

Figure 3. Modulation of the frequency-scaling in a recurrent network model with inputs of variable synchrony and spread. A
Schematic representation of the network structure and connectivity. The cortical (lower sheet, blue and red neurons) and thalamic input (upper
sheet, yellow neurons) layer-like networks (1 mm2) face each other. The cortical neurons are locally connected together, according to a Gaussian
distribution (sc~0:15 mm) and the retino-thalamic input projects its synaptic connections on the cortical layer through a narrower Gaussian
distribution (st~0:05 mm). B Example of raster plots in the cortical layer in response to two thalamic input synchrony levels (top: synchrony of 0%;
bottom: synchrony of 10%). C Mean firing rate (top) and coefficient of variation (bottom) of the cortical layer response to thalamic inputs of different
synchrony levels. For each simulation, twenty neurons were randomly chosen among the network population to estimate error bars. D Vm (top) and
Gexc (bottom) frequency-scaling exponents as functions of the input synchrony. Bars indicate standard deviations of the scaling exponent values. E
Averaged spatial cross-correlation between neuronal activities as a function of the distance between pairs of neurons, for different input synchrony
levels, normalized by the total area of the distant-dependent cross-correlation function. Inset: same graph without the normalisation. F values of the
Vm frequency-scaling exponent as a function of the coefficient of correlation integrated over distance. Inset: values of the frequency-scaling
exponent as a function of the correlation extent in the network activity (see text). The same results are shown in red for an infinite spread of the
thalamic input.
doi:10.1371/journal.pcbi.1000519.g003
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exponent. Fig. 3E shows the spatial pairwise cross-correlation

between pairs of neuron as a function of the interneuronal

distance, for different levels of the input synchrony. The increase

in input synchrony resulted in two simultaneous changes: a global

increase of the cross-correlation values (Fig. 3E, inset) as well as a

flatter spread profile over larger distances; when normalizing by

the integral of the correlation over distance, it appears that the fall-

off of the cross-correlation function (CC) is steeper for lower levels

of synchrony (Fig. 3E). In summary, the different levels of input

synchrony modulate not only the global level of the correlation in

the cortical network, but also its topographic extent and distance

dependence.

We next quantified the two features of the network activity that

are modulated by the input synchrony and compared their

modulation to that of the Vm exponent. We first compared the Vm

exponent values to the integrated correlation, defined as the

normalised cross-correlation integrated over distance. The fre-

quency-scaling exponent increased linearly with the integrated

correlation (from 0.0 to 0.05) and saturated around 5.25, for an

integrated correlation of approximately 0.1 (Fig. 3F).

We also observed that the pairwise correlation between neurons

scales with distance when expressed in logarithmic coordinates,

which could be related to the V-m frequency-scaling exponent.

The corresponding cross-correlation scaling exponent (CC SE),

which reflects the fall-off gradient of the spatial correlation,

decreases linearly when the Vm exponent increases (Fig. 3F, inset).

To disentangle the influence of these two factors, we tested the

effect of the spread of the thalamic projection to the cortical layer,

which parameterizes the extent of the spatial correlation of the inputs.

We ran the same simulations with an infinite spread (i.e., the thalamo-

cortical connections were random). This condition might be related

to the effect of a decorrelated background noise. While the relation

between the cross-correlation scaling exponent and the Vm exponent

was shifted, the relation between the integrated correlation and the

Vm exponent remained unchanged. We found similar results by

varying the spread between these two extreme values (data not

shown): the spread had no direct influence on the Vm exponent value

but shifted the baseline cross-correlation scaling exponent. Thus the

variation of the spread, which determines the spatial structure of the

input, did not alter the relation between the integrated cross-

correlation and the Vm exponent.

This important relationship shows that, in this model, the

integrated correlation is detected at the single-cell level through

the membrane potential power spectrum scaling property for any

stimulus. This measure thus provides a reliable hint about the

actual functional state of the network. It also appears that, even if

the spatial structure of the correlation is varied, the exponent value

remains unchanged. This latter observation could explain why

stimuli differing in their spatial structure can produce similar

exponents in vivo.

As in the previous in vivo study, we estimated the Fano Factor

scaling exponent. Even when averaging over a population of

randomly assigned neurons, the mean Fano Factor did not exhibit

any systematic variation with the input synchrony, the integrated

correlation or the cross-correlation scaling exponent. This is in

accordance with the in vivo results.

Finally, it is interesting to note that this network model can

reproduce the changes in the frequency-scaling of the Vm observed

in vivo, despite its simplicity and the absence of any form of power-

law in the spatial rules of connectivity: the thalamo-cortical and

the cortico-cortical connectivities are drawn in our simulations

from Gaussian distributions. Therefore it is not necessary to

implement a scale-free connectivity to observe a frequency-scaling

exponent emerging in the synaptic bombardment.

Frequency-Scaling in Single-Cell Models
We have shown that the Vm scaling exponent is related to the

integrated cross-correlation of the network activity. This integrated

correlation depends on at least two factors: the global correlation

level of the activity ( correlation strength) and the spatial extent of the

network correlation (correlation extent). In our recurrent network

model, both are modified simultaneously when varying the input,

which makes the isolation of the precise feature modulating the

scaling exponent difficult. We thus turned to the modeling of a

single neuron receiving parameterized correlated synaptic noise in

order to dissect out the influence of the different parameters of this

correlated noise on the postsynaptic Vm scaling exponent.

Furthermore, although the network model provides a possible

explanation for the Vm frequency-scaling exponent modulation,

this does not exclude a possible alternative hypothesis for our in

vivo observations : due to the non-linearity in the neuronal transfer

function, the Vm frequency-scaling exponent variation in vivo could

be due to the variation of the input firing rate or the different

depolarisation levels from one protocol to the other.

For these reasons we measured the Vm frequency-scaling

exponent in isolated neuronal models in response to several

correlated synaptic inputs, where all these parameters can be

varied independently. We also injected the same correlated

synaptic patterns into biological neurons in vitro through dynamic

clamp. This allowed us to test independently the effect of the

correlation strength and extent, and to test the simpler hypothesis

aforementioned.

To further understand the relationship between the presynaptic

activity and the Vm frequency-scaling, we designed a model

assuming that the irregular activity originates in the synaptic

activity impinging on the recorded cell. Indeed, since the

frequency-scaling exponent varies for the same cell and different

visual stimuli, it must be linked to the activity of the network

surrounding the observed neuron. Note that, being interested only

by these relative changes, we did not search for the mechanisms

shaping the absolute value of the Vm PSD scaling, which may

include intrinsic mechanisms [18,21,22]. For this reason we show

the relative modulation of the values of the frequency-scaling

exponent in different models and in vitro experiments, the baseline

being the exponent in response to Poisson stimulation, unless

otherwise noted.

In the retinotopic model discussed in the previous section,

synchronous input in the thalamic layer evoked synchronous firing

in the cortical layer at random positions. These firing assemblies

affect the recorded neuron through lateral connections with

different propagation delays, which depend on the distance from

the presynaptic neuron. The temporal correlations in the

presynaptic spike train impinging on the recorded cell thus reflect

both the direct thalamic input and the spatial correlations

observed in the intracortical distance-dependent cross-correlation.

Our aim was to determine how these temporal correlations present

in the afferent pattern are conveyed from the presynaptic

bombardment to the subthreshold activity through cell integration.

Note that the propagation delays play a crucial role in the

translation of spatial correlations into temporal correlations.

Indeed, if the presynaptic population could interact instanta-

neously with the postsynaptic cell (no propagation delay),

synchronous firing would only increase the membrane potential

variance.

The model is composed of N presynaptic neurons (Poisson

processes) that all fire at the same mean rate n, with a constant

synchrony fraction r. This means that each emission of a spike

occurs simultaneously in kz1~rN neurons (Fig. 4). These

presynaptic neurons then project with different conduction delays

Network-Driven Power-Laws
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to the same postsynaptic neuron, which represents the recorded

cell. This means that spikes emitted simultaneously by various

presynaptic sources will arrive with different delays at the

postsynaptic neuron, thus creating a high-order structured

temporal correlation pattern. The delays are chosen randomly

according to a distribution p(t) (Fig. 4).

We emphasize that this model is not biologically realistic: it is a

correlated spike train generator parameterized by the synchrony

level r and the delay distribution p(t). To give more intuition

about what these parameters represent, and to make a link with

the recurrent model, we can interpret r as the strength of the

correlations in presynaptic activity, and p(t) as the way these

correlations are temporally distributed. Note that both of these

parameters would influence the integrated correlation measured

previously in the recurrent model (the spatial correlation in the

recurrent model becomes a temporal correlation when considering

the delays between distant neurons).

In this model, it can be shown [23,24] that the analytical

expression for the conductance PSD resulting from the synaptic

integration of all these inputs is given by Eq. 5

c(v)~
Nn

2p
a(v)j j2(1zk p(v)j j2)

where a(v) is the Fourier transform of the synaptic time course

(when the synapse is exponential, this is a Lorentzian curve),

and p(v) is the Fourier transform of the delay probability

distribution.

From this expression, we find that a controlled way to impose an

activity-dependent frequency scaling behaviour in this model is to

impose a temporal delay distribution having itself a power-law

form. Furthermore, this form of correlation is what we found in

the recurrent model, although it was not implemented in the

connectivity. For this reason the delay distribution will have the

Figure 4. Conceptual scheme of the synchrony generator model and the corresponding conductance injection in model and in vitro
neurons. A Simple representation of the conductance generator. At each time step dt, with a probability proportional to the firing rate ndt, k+1
neurons emit a spike synchronously. These spikes are then conveyed to the postsynaptic neuron with different delays, distributed according to a
power-law probability density function (red curves). The arriving spikes then trigger post-synaptic conductances of exponential form (green curve,
synaptic time course). The resulting conductance trace Gexc (green trace) has a PSD (blue curve) with a frequency power-law scaling behaviour. The
analytical relation between the Fourier transform of the delay distribution and the PSD is given above the graphs. B The resulting synaptic
conductance is then injected either in a model of single neuron or in a biological neuron through dynamic-clamp (see Materials and Methods). In
both cases, the resulting membrane potential is measured and the corresponding PSD is estimated.
doi:10.1371/journal.pcbi.1000519.g004
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form

p(t)!
exp ( {t

tmax
)

tb
ð1Þ

The b parameter parameterizes the extent of the delay

distribution: the higher is b, the narrower will be the delay

distribution. An infinite value of b would correspond to all delays

equal to 0. We emphasize that this choice of delay distribution is

not ad hoc, but rather is imposed in order to control the Vm

frequency-scaling exponent. Other forms of delay distribution

might produce more realistic presynaptic patterns, but we focus

here on the part of the correlations that will exert a direct control

over the postsynaptic frequency scaling.

The power spectral density of this delay distribution is [6]:

jp(v)j2! 1

(1z(vtmax)2)(1{b)
ð2Þ

The synaptic conductance Gsyn frequency-scaling exponent is thus

equal to 2z2(1{b) for frequencies beyond the synaptic filtering

and the delay cut-offs. Note that, as already shown at the

population level in Fig. 3F, the synchrony level detected in the

presynaptic train has a ‘‘gating’’ role according to (Equ. 5): no

synchrony at all would give a Gsyn frequency-scaling exponent of 4

whatever the value of b. Moreover, the relationship between the

exponent and b is here uncovered as soon as a minimal level of

synchrony is present in the presynaptic population (theoretically,

any kw0).

Excitatory-Only Simulations
We numerically simulated this model to check the previous

analytical expression. We took a population of N~5000 neurons

and first fixed the presynaptic firing rate to n = 10 Hz. For

different values of the delay distribution parameter bexc, and

synchrony r, we simulated the model to produce Gexc and Vm

traces. Figure 5A shows the resulting Gexc and Vm PSDs, for a

fixed synchrony level r~6%, and bexc ranging from 0 to 1. The

PSD frequency scaling decreases when bexc increases for

frequencies above 20 Hz.

We then measured the frequency-scaling exponents in these

traces to quantify this result (see Materials and Methods) and

plotted them as a function of the synchrony level r and bexc

(relative to the Poisson exponent). As predicted, the exponent

decreases when the parameter bexc increases (Fig. 5B). This inverse

relation between the Gexc frequency-scaling exponent and bexc

appears more and more clearly as the synchrony r increases, and

saturates for rw4% (Fig. 5B). Nevertheless, even with an amount

of synchrony as small as r~0:5%, the dependence of the power-

law on b is already monotonic. We obtained a linear relation

between b and the output frequency-scaling exponent, although

the absolute values are not exactly those predicted by the

analytical relation, most probably due to a finite-size bias of the

estimation.

To illustrate this ‘‘gating’’ effect of the synchrony, we plotted the

frequency-scaling exponent against the synchrony level r, for fixed

bexc (Fig. 5C). When increasing r, the exponent first increases and

then saturates to a plateau which depends on bexc.

Identical results were obtained for Vm but with a systematic shift

of 2 corresponding to the membrane integration (absolute

exponent values were between 2 and 4 for the conductance, and

between 4 and 6 for Vm). This is what we would expect for a

current-based model for which the effect of membrane integration

results in a shift of 2 in the frequency-scaling exponent. This shows

numerically that the non-linearity induced by the use of

conductance-based synapses does not alter this relationship.

Therefore, as long as few neuron assemblies are firing simulta-

neously in the presynaptic population, their correlations are made

visible through the postsynaptic membrane potential PSD. Note

that the results displayed in panels B and C of Fig. 5 are

reminiscent of those obtained for the retinotopic cortical network

in Fig. 3F. Indeed, increasing the synchrony or decreasing the b
parameter would both increase the integrated cross-correlation,

which in turn increases the Vm scaling exponent.

Excitatory-Inhibitory Simulations
The synaptic bombardment received by a cortical neuron is

composed of both excitatory and inhibitory inputs. We extended

our model by adding a population of presynaptic inhibitory

neurons which has the same organization as the excitatory

population described earlier, parameterized by the synchrony r
and the delay distribution parameter binh. While independently

varying the inhibitory and excitatory exponents (bexc,binh, we

measured the corresponding Vm frequency-scaling exponent. We

first performed this analysis with the two presynaptic populations

having a fixed amount of synchrony (r~6%), to ensure the impact

on the Gexc and Ginh frequency-scaling exponents, and being

completely uncorrelated. Fig. 6A shows how the Vm frequency-

scaling exponent varies with bexc and binh. The Vm frequency-

scaling exponent seemed to be dominated by the bexc parameter,

while the influence of the inhibitory inputs remained marginal.

Since the firing rate is similar for excitatory and inhibitory

neurons, this dominance was due to the excitatory-inhibitory ratio

(
Nexc

Ninh

~4). We checked that it was not due to the closer inhibitory

reversal potential in additional simulations where we changed the

reversal potential (data not shown). Note that when bexc~binh, the

Vm frequency-scaling exponent behaves as in the excitatory-only

case (Fig. 6D).

We then examined the case where excitatory and inhibitory

inputs are correlated, which is more realistic in view of most of the

in vivo studies [25–27]. The functional relationship between

conductance correlations and the Vm frequency-scaling exponent

is conserved for stronger excitatory-inhibitory correlation, al-

though it is slightly affected, especially for small bexc values

(Fig. 6B–C). To illustrate this effect, we plotted the variation of the

Vm frequency-scaling exponent for binh~bexc and different levels

of correlation (Fig. 6D).

For a sufficient amount of synchrony, the final Vm frequency-

scaling exponent will thus be mainly influenced by the

frequency-scaling exponent of the delay distribution bexc, and,

to a lesser extent, influenced by the correlation between

excitatory and inhibitory conductances, and binh. We found that

adding a constant delay between the excitation and inhibition as

often observed experimentally does not change the Vm PSD

slope value.

To conclude, our model shows how changes in the parameters

which determine the correlation in the presynaptic bombardment

affect the frequency-scaling exponent of the Vm signal. These

changes are of the same order of magnitude as that which was

observed in vivo. Increasing synchrony increases the Vm frequency-

scaling exponent up to a limit which depends on the b parameters.

Increasing bexc or binh, or the correlation between excitation and

inhibition, decreases the Vm exponent. However, it is much more

affected by the correlations present in the excitatory neurons than

in the inhibitory ones, since there are many more excitatory

neurons.
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Spike and Vm Power Law Relationships
Previous work on power-law frequency-scaling has mainly been

based on extracellular recordings, either to characterize single-cell

spiking correlations [6] or self-organized avalanche dynamics in

networks [8]. Intracellular recordings, as used in the present study,

offer a larger sampling of the network dynamics. Indeed, we can

ask whether correlations in the synaptic input visible at the Vm

level are still present in the spiking output. We estimated the Fano

Factor (FF) for the numerical model to better understand the Vm-

spike frequency-scaling exponent relation.

We measured the frequency-scaling exponent in the spiking

activity in response to different correlated synaptic input patterns,

built by varying the parameters bexc and binh. Figure 7A illustrates

the Fano factor scaling behaviour for bexc~binh ranging from 0 to 1,

and shows a linear increase of the spiking frequency-scaling exponent

with bexc for time bins between 10 and 100 milliseconds. However,

we then tested whether the same relationship holds for different

resting potentials Vrest of the postsynaptic neuron (Fig. 7B). It appears

that the relation between the spiking and the Vm frequency-scaling

exponents is strongly dependent on the depolarization level.

This dependency is confirmed when varying bexc and binh

independently. Other parameters can drastically influence the

spiking frequency-scaling exponent. As an illustrative example,

figure 7C–D show the corresponding spiking frequency-scaling

exponents for two different depolarization levels and excitation-

inhibition correlation levels; in 7C the postsynaptic Vrest~{65mV
and there is no correlation, whereas in 7D Vrest~{62:5mV and

the correlation is set to 0.4%.

In light of these results, the lack of correlation between Vm and

spiking frequency-scaling exponents, and the absence of systematic

modulations for the spiking exponent in vivo and in the recurrent

model can be explained. This is likely due to the sensitivity of the

Figure 5. Variation of the value of the frequency-scaling exponent at the conductance and membrane potential levels for
excitatory input only as a function of the parameters bexc and r (synchrony percentage). Excitatory conductance Gexc and membrane
potential Vm are plotted in the left and right column respectively. A Illustration of the PSD modulation on a log-log scale for different values of the
parameter bexc ranging from 0 (light blue) to 1 (dark blue). B Variation of the output frequency-scaling exponent with the bexc parameter, for different
levels of synchrony. When 4% of the presynaptic neurons are synchronous, the relation is almost saturated. C The gating effect of synchrony. For
three fixed values of b = 0.1, 0.5 and 0.9, the curves represent the modulation of the output frequency-scaling exponent according to percent
synchrony.
doi:10.1371/journal.pcbi.1000519.g005
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latter to other parameters that also vary with the stimulus, such as

the depolarization level. The spiking frequency-scaling exponent

for single-cell study is thus hardly sufficient to characterize the self-

similar behaviour of the neural activity. In the in vivo data, the FF is

measured across a high heterogeneity of depolarization levels, and

is thus not reliably linked with the presynaptic correlation. In

contrast, the subthreshold activity has shown its robustness to

changes in depolarisation, and thus provides a much better insight

into the network correlation state, being averaged over a large

number of presynaptic spiking neural elements.

Controls for Different Firing Rates and Resting Potentials
So far our model has shown how the frequency-scaling

exponent can be modulated by the correlations present in the

presynaptic activity pattern. However, we had to control for a

simpler alternative hypothesis. In in vivo data the evoked neuronal

mean activity was modulated by the different stimuli (on average

160% decrease from DG to NI), implying that the presynaptic

firing rate of the recorded cell varies from one visual stimulus to

the other. It is possible that this increase of firing rate induces a

change in the frequency power-law scaling. In the following, we

call this hypothesis the ‘‘first-order hypothesis’’. The weak

correlation between the cell firing rate and the frequency-scaling

exponent observed in the in vivo section makes such an hypothesis

rather unlikely. However, to directly test this hypothesis on our

model, we changed the input mean firing rate from 2.5 Hz to

10 Hz for both excitatory and inhibitory synaptic inputs. For each

condition, we computed the Vm frequency-scaling exponent.

Figure 8B (left panel) shows that it is almost unaffected by the

input firing rate. Although we observed a small decrease in the

frequency-scaling exponent when increasing firing rate, this could

still not explain the in vivo results. Indeed, in the latter case, even

though the correlation is weak, the frequency-scaling exponent

increase is concurrent with an increase of the cell firing rate.

We also checked whether the membrane potential level Vrest

can influence the frequency-scaling exponent. To do so, we varied

the recorded cell membrane potential level by adjusting the

synaptic strengths (see Materials and Methods). As for the firing

rate, no significant influence in the frequency-scaling exponent can

be attributed to the depolarization level (Fig. 8C, left panel),

confirming the weak correlation observed in vivo.

Despite the lack of evidence for the ‘‘first-order hypothesis’’, our

model does not incorporate biologically realisitic integrative

features. It has been shown in previous studies [15,21,22] that

the cell’s intrinsic properties, shaped by its ionic channels, could

have an impact on the Vm PSD form when the cell is submitted to

noisy inputs. We performed the same analysis by replacing the

integrate-and-fire model with a Hodgkin-Huxley model. The Naz

and Kz ionic channels could have an influence on the variation of

the frequency-scaling exponent. However, adding these mecha-

nisms did not alter the Vm frequency-scaling exponent’s

dependence on the input firing rate, nor on the mean postsynaptic

membrane potential (Fig. 8B–C, middle panel). The results are

identical to those obtained with the integrate-and-fire model.

Controls were also performed with normally distributed synaptic

weights for various standard deviations and gave identical results

(Fig. S1A–B). On another set of controls, we changed the synaptic

waveform by using synapses with a rise time on the order of 1 ms

(b-synapse). The controls with this new type of synapse gave

identical results to previous cases (Fig. S1C–D).

Figure 6. Vm Relative values of the frequency-scaling exponent for different excitatory and inhibitory parameters bexc and binh. The
synchrony percentage r has been fixed to 6% in each simulation. A The relative Vm frequency-scaling exponent (color-coded) for bexc and binh

ranging from 0 to 1 without any correlation between excitatory and inhibitory inputs. B,C Same graph but with 40% (panel B) and 80% (panel C)
correlation between excitatory and inhibitory inputs. In each graph, the excitatory input has a stronger influence on the output frequency-scaling
exponent than the inhibitory input. D For binh~bexc , the output frequency-scaling exponent modulation is represented according to different
correlation levels.
doi:10.1371/journal.pcbi.1000519.g006
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Apart from the intrinsic mechanisms present in the somatic

membrane, a possible source of modulation of the absolute value

of the frequency-scaling exponent is the integrative property of the

dendritic tree. To test how the dendritic arborization might impact

the somatic subthreshold activity, we simulated synaptic input

distributed in the dendrites of reconstructed pyramidal neurons.

As shown in Table S1, the relative modulations of the exponent

are well captured by correlation changes in the model, while global

conductance changes had a negligible effect. However, it is

important to note that these simulations were done using standard

simulation tools (NEURON in this case), and thus used the

standard cable equations. It has previously been shown that the

standard cable equations cannot reproduce the correct frequency-

scaling of the Vm PSD, and that taking into account the non-ideal

character of the membrane capacitance could yield the correct

frequency-scaling [18]. This could explain why the in vivo absolute

values of the scaling exponent are not well reproduced here.

However, the relative modulations of the exponent are well

captured by correlation changes in the model, while global

conductance changes had a negligible effect.

Dynamic-clamp experiments in vitro
Numerical simulations gave important insights about the role of

intrinsic properties in the effects we see, but no computational

model can guarantee an exhaustive exploration of such mecha-

nisms. Indeed, even though the first-order hypothesis was

invalidated for Hodgkin-Huxley models, we cannot exclude the

influence of other ionic currents. Therefore, we performed the

same test on real biological neurons through dynamic-clamp

in vitro.

The correlated conductance traces generated by our model

were directly injected into rat visual cortex neurons recorded in

vitro (n = 9) using the dynamic-clamp technique (see Materials and

Methods and Fig. 4B). We performed the same control as above

changing the mean input firing rate. The frequency-scaling

exponent barely changed (Fig. 8B, right panel; r~{0:09,

p§0.3), confirming that the overall presynaptic activity level has

a negligible effect compared to the conductance correlations

(characterized by the b parameter). Even the weak correlation

observed between the mean input firing rate and the frequency-

scaling exponent has the opposite sign to what is observed in vivo.

The relative variation for different b has the same magnitude as

the numerical models (r~0:92).

The previous results were obtained for different resting membrane

potentials and did not show any noticeable effect regarding the mean

depolarization (Fig. 8B, right panel, r~{0:002, p§0.9).

In order to measure the influence of the depolarization level on

the frequency-scaling exponent, we systematically varied the

conductance strength to change the mean Vm of the recorded

cell. The frequency-scaling exponent did not exhibit significant

variation (Fig. 8C, right panel). In vitro experiments thus confirm

our previously observed results from numerical models.

In summary, the correlation in the activity impinging on the

recorded cell plays a major role in determining the frequency-

scaling exponent of the Vm. Other parameters, such as the total

conductance (see also Fig. S3) and the balance between excitatory

Figure 7. Relation between the Vm frequency-scaling exponent and that measured from the Fano Factor (FF) of the output spike
train. A Example of the FF changes as a function of time bin, for different input parameters bexc. The resting potential Vrest has been set to 260 mV
to ensure a large enough number of spikes. The synchrony parameter is fixed at 6%. B Relation between spiking and relative Vm frequency-scaling
exponents for different resting potentials (Vrest = 265 mV, 262.5 mV and 260 mV). C,D Fano Factor frequency-scaling exponents as a bivariate
function of excitatory and inhibitory bexc and binh parameters, in the absence of excitatory-inhibitory correlation and for and Vrest~ 265 mV (C), and
in the case of 40% of correlation and Vrest~ 262.5 mV (D). In this latter case, Vrest has been increased by a few mV to ensure a reasonable level of
spiking activity.
doi:10.1371/journal.pcbi.1000519.g007
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Figure 8. Vm frequency-scaling exponent changes for different input frequencies n and for different resting membrane potential
Vrest. These controls were performed with integrate-and-fire neurons (left column), Hodgkin-Huxley neurons (middle column) and with biological
neurons during in vitro experiments (right column). The synchrony percentage was kept at 6% and there was no correlation between excitatory and
inhibitory synaptic inputs. For the in vitro experiments, each light line represents a cell, for which ten trials have been repeated with the same
parameters. Error bars are the standard deviation over the trials. The bold line represents the average across cells and trials. Note that the reference
value subtracted to each measured exponent is the one obtained when the input parameter b~0:1 to allow a direct comparison between models
and in vitro data. A PSDs obtained for three values of b~bexc~binh[ 0:1, 0:5, 0:9f g. The modulation of the PSD slope is apparent. The absolute slope
values are respectively (see Materials and Methods): 23.35 23.82 and 24.4 (integrate and fire, left); 23.35 23.82 and 24.4 (Hodgkin-Huxley, middle);
23.28, 23.7 and 23.92 (in vitro, right). B For three values of b~bexc~binh[ 0:1, 0:5, 0:9f g, the modulation of the Vm output frequency-scaling
exponent according to the mean input firing rate per presynaptic neuron. C Same measures according to the postsynaptic resting membrane
potential Vrest.
doi:10.1371/journal.pcbi.1000519.g008
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and inhibitory conductances, have negligible effects. These results

support the idea that changes in the frequency-scaling exponent

observed in vivo reflect changes in correlations in the external

stimulus-driven activity.

Discussion

In this paper we have analyzed the factors affecting power-law

frequency-scaling in the membrane potential of cortical neurons.

Our main findings are that (1) intracellular recordings of cat

primary visual cortex neurons in vivo display power-law frequency-

scaling at high frequencies, with a fractional exponent which

depends on the spatio-temporal statistics of the visual stimuli; (2)

this effect was reproduced in computational models of a recurrent

network, and of single neurons of various degrees of complexity;

the main determinant of the exponent was the correlation

waveform in the presynaptic activity correlation; (3) other factors

such as the conductance state had no effect on this measure. These

findings were confirmed in cortical neurons in vitro using dynamic-

clamp injection of random synaptic conductances with controlled

degrees of correlation. We discuss below the implications of these

findings and how they relate to previous work.

Influence of Network Correlations and Intrinsic Properties
Our central finding in vivo is that the frequency-scaling exponent

in V1 is modulated by the visual stimulus statistics. Because such

changes are detected in the same cells, they must necessarily reflect

changes in the spatio-temporal structure of presynaptic activity.

Guided by the fact that intracellular activity in sensory and

prefontal cortex shows long lasting temporal correlations, we

hypothesized that the main factor affecting frequency-scaling

exponents is the correlation in presynaptic activity. This

hypothesis was supported by numerical simulations. A similar

modulation of the Vm frequency-scaling exponent was also found

in a recurrent network for which the input correlation was varied :

the scaling exponent increased when the input correlation

increased above a certain threshold (required to be detectable).

This threshold was not reached during decorrelated states, such as

those imposed by surrogate natural scenes.

In the recurrent model, the input correlation modulated both

the the absolute strength and temporal structure of correlations.

To investigate separate modulations of these two factors, we chose

a model of presynaptic inputs with a temporal power-law

structure. This choice was made for two reasons: first, because

this temporal structure was observed in our network model,

without implementing any scaling in the connectivity; second,

because it provided an operational way to control the form of the

correlations in the input, and isolate which factors influence the

output frequency-scaling exponent. The input is thus character-

ized by its frequency-scaling exponent, and we found that the Vm

frequency-scaling exponent of the subthreshold output is linearly

related to this input exponent. However, this relationship is

present only if the correlation strength is large enough. According

to these results, the Vm frequency-scaling exponent increase

observed in vivo could plausibly be due to a global correlation

strengthening in the surrounding network and/or by a narrowing

of the spatial spread of correlation.

The hypothesis for a determinant role of correlations is also

consistent with in vitro experiments, where we recreated artificial

and controllable synaptic activity by dynamic-clamp. The fact that

correlation changes are reflected by changes in the frequency-

scaling exponent of the Vm frequency-scaling means that intrinsic

cellular properties do not have major dynamical influences on this

scaling, and that it mostly reflects synaptic activity controlled by

the visual stimulation context. In particular, we showed that

neither the mean level of synaptic bombardement nor the

postsynaptic depolarization level could significantly modulate the

Vm frequency-scaling exponent, even though the cell integrative

properties shape its static absolute value [15–17,21].

A Signature of Avalanche Dynamics?
The finding that Vm activity presents power-law frequency-

scaling is reminiscent of the power-law relationships of self-

organized critical states, similar to those found from multi-site

local-field potential recordings in vitro [8,28]. In the latter case, self-

organized critical states are characterized by the production of

‘‘avalanches’’ of activity, whose size distribution follows a power-

law. However, the power-law relations were found there in the

frequency domain, which is very different from the distribution of

event sizes detected in our study, so our results should not be taken

as evidence for avalanche dynamics. We have performed an

avalanche analysis on the recurrent network model, and as was

reported in a previous study [29], we did not find evidence for

avalanche type dynamics in the network during AI states.

Moreover, it has to be noted that the power-law relations found

here depend on the stimulus, which means that the frequency-

scaling exponent does not represent a unique signature of cortical

network activity, but rather reflects a measure of the dynamic

interplay between the sensory evoked activity and the ongoing

recurrent network activity.

Relationship between the Subthreshold and Spiking
Frequency-Scaling Exponents

Power-law frequency-scaling was reported previously in extra-

cellularly-recorded spiking activity [6,30,31]. We observed that the

Vm and spiking frequency-scaling exponents are linearly related.

However, the exact value of the frequency-scaling of spiking

activity critically depends on the Vm depolarisation level, and thus

does not reliably reflect network correlation state. Our study shows

that the Vm frequency-scaling exponent, which reflects the

integration of thousands of input sources, can uncover features

of the population activity that were not visible at the single cell

spiking level or when assigning a limited number of cells at

random.

Correlation States in Evoked and Spontaneous Activities
Our results imply that tracking the relative changes of the Vm

frequency-scaling exponent could be a way to characterize

dynamic changes in the correlations hidden in the global

connectivity network, but read out at the subthreshold level by

each member cell of these overlaid functional assemblies. Having

interpreted the relative variations of the frequency-scaling

exponent, we can now link these variations with the type of visual

stimulus presented.

In order to emphasize the role of dynamic cortical non-

linearities in the stimulus-dependency of the power-scaling, we

checked whether or not these exponent changes were already

apparent in the linear prediction of the Vm responses. To do so, we

used the first-order kernel of the receptive field obtained by dense

noise mapping to reconstruct linear predictions of the subthreshold

dynamics for the different classes of stimuli and tested the

contextual dependency of the spectral scaling properties of the

linear predictor. The modulatory effects were not retrieved, which

was expected since the estimation of the frequency-scaling

exponent is performed on high frequencies (between 75 Hz and

200 Hz) that are not accounted for by the linear kernel (data not

shown). We conclude that the exponent variations are not a linear
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read-out of the scaling behaviour of the stimulus but rather the

product of the non-linearities in the input-output relationship

imposed by the cortical network.

According to our recurrent network study, the frequency-scaling

exponent decreases when switching from DG stimuli to NI or DN

stimuli should correspond to a decrease in the correlation strength.

Following this interpretation, it could appear surprising that

stimuli with very different structures, such as NI and DN stimuli,

evoke similar values of the Vm scaling exponent. However, our

study showed that the Vm scaling exponent is invariant to changes

in the spatial structure of the input. As a consequence, stimuli with

different spatial structures can evoke similar scaling exponents

provided their global correlation levels are all low.

On the one hand, although it has not been demonstrated

directly, natural movie stimuli probably induce decorrelation, for

several reasons. First, our natural image is animated most of the

time by fixational eye movements, which may already decorrelate

activity at the LGN [32]. Second, the decorrelation theory [33]

predicts that cortical responses to natural scenes should be

decorrelated in order to maximize the transmitted information,

and this prediction has been confirmed in V1 studies [34]. On the

other hand, dense noise, as a fully uncorrelated stimulus, also

evokes a very decorrelated response.

These low correlation levels for both stimuli are probably what

make them indistinguishable from the perspective of the scaling

exponent. In short, even if the structures of these inputs are very

different, thalamic and cortical processing may reduce the initial

correlations down to a similar level. Furthermore the scaling

exponent captures neither the difference in the spatial structure of

these resulting activities nor the difference in the low frequency

band dominated by the stimulus spectrum. Taken together these

arguments can explain why we observed similar scaling exponents.

The same remark holds for DG and GEM stimuli: despite their

difference in temporal structure, they might evoke similar levels of

correlation, and thus similar scaling exponents, despite the

difference in input spatial structure and low frequency content.

Finally, the same argument may explain why we found similar

exponents for the spontaneous activity and the natural stimulus:

for high frequencies, both exponents likely correspond to a very

decorrelated activity, even if there might be a residual synchrony.

Note however that this striking correlation between NI and AS is

not necessarly present at lower frequencies.

Several studies have compared the structure of the spontaneous

activity to that of the evoked activity. The spatial structure of the

spontaneous activity measured with voltage-sensitive dye (VSD)

imaging has been found to be similar to the DG-evoked activity

[35,36], although this result could not be replicated in awake

animals [37]. On the other hand, [38] found that the temporal

correlations measured in multi-unit recordings seems to be similar

for dense noise, natural scenes and spontaneous activity. Our

results and a recent theoretical study [39] seem to be compatible

with the latter observations. However, they are not necessarily in

total contradiction with the VSD results since our measures

concern different frequency bands: while we measured frequency-

scaling exponents between 75 and 200 Hz, the VSD measures

mostly concerned dye signal fluctuations at frequencies below

20 Hz. It thus appears most likely that V1 responses to natural

scenes and spontaneous activity share similar correlation features

in the high-frequency band.

We have shown that the frequency-scaling exponents measured in

the intracellular activity can vary under the influence of the visual

context for the same cell. Our model relates this modulation to a

dynamic change in the network correlation state and could be

associated to the underlying dynamic dimensionality [40]. Further

studies need to address at the population level (LFP or VSD) how the

frequency-scaling exponents of the network activity may vary with the

stimulus context [41], and if such changes could be indicative of the

detection of specific sensory statistics in the external drive or their

spontaneous recall by the recurrent structure of the network.

Materials and Methods

Animal Experimentation
All in vitro and in vivo research procedures concerning the

experimental animals and their care adhered to the American

Physiological Society’s Guiding Principles in the Care and Use of

Animals, to European Council Directive 86/609/EEC and to

European Treaties Series 123 and were also approved by the regional

ethics committee ‘‘Ile-de-France Sud’’ (Certificate 05-003).

In vivo Preparation
Cells in the primary visual cortex of anaesthetized (Althesin) and

paralyzed adult cats were recorded in vivo using sharp electrode

(potassium methylsulfate 3 M, 70–100 MV) recordings (average

Vrest = 267 mV, 0 nA) as described elsewhere [25,42]. Data

processing and visual stimulation protocols used in-house software

(G. Sadoc, Elphy, CNRS-UNIC).

Visual Stimulation
The analyzed data come from in vivo experiments to be

presented in full in a companion paper (Baudot, Marre, Levy,

Monier and Frégnac, submitted). Preliminary accounts have been

given elsewhere [43,44]. Stimuli were displayed on a 21’’ CRT

monitor with a 1024|768 pixel resolution and a 150 Hz refresh

rate, with a background luminance of 12 cd/m2. Receptive fields

were mapped using sparse noise and classical tunings were

determined by automated exploration. Intracellular responses

were compared for four full-field visual stimuli of 10 s duration

and increasing complexity (see Fig. 1): a) a drifting grating of

optimal orientation, direction, and spatial and temporal frequen-

cies (DG), b) the same optimal grating animated by a modeled eye-

movement sequence (GEM), c) a natural image animated by the

same virtual scanpath (NI), and d) dense binary white noise (DN).

The mean luminance and contrast of each movie were equalized.

Each movie was presented 10 times. For the NI condition, we used

a high definition natural image (2048|1536 pixels) animated with

a virtual eye movement sequence [43,44] (note that the size of

the image is larger than the size of the screen, so that no blank

region appears when the image is moved along the oculomotor

trajectory). White noise consisted of a dynamic sequence (13.3 ms

refresh period) of high spatial definition (50|50 pixels of side

length 0.39u) binary dense noise.

Numerical Models
All the simulations (including dynamic-clamp experiments) were

performed with the NEURON software [http://www.neuron.

yale.edu] except for the recurrent model which was been run

under NEST [45] using the PyNN interface [http://neuralen-

semble.org/PyNN]. A time step of dt~0.1 ms was used

systematically. We ran some simulations with dt~0.01 ms to

verify that our results were not dependent on the integration time

step (data not shown).

The postsynaptic neuron follows an integrate-and-fire equation

with conductance-based synapses whose time evolution is given by

tm
dV (t)

dt
~(Vleak{V (t))zgexc(t)(Eexc{V (t))zginh(t)(Einh{V (t)) ð3Þ
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with the resting membrane time constant tm~20 ms, the leak membrane

potential Vleak~{80 mV and the excitatory and inhibitory conductances

given in units of leak conductance Gleak~10 nS. When V (t) reaches the

spiking threshold Vthresh~{50 mV, a spike is generated and the

membrane potential is reset to Vreset~{60 mV for a refractory period

of duration tref~5 ms. Eexc~0 mV and Einh~{70 mV are the reversal

potentials for the excitatory and inhibitory exponential synapses

syn~ exc, inhf g whose dynamics follow

tsyn
dgsyn(t)

dt
~{gsyn(t)zDgsynSsyn(t) ð4Þ

where tsyn is the synaptic time constant with texc~3 ms and tinh~7 ms.

Dgexc and Dginh are the quantal synaptic strengths elicited by each

presynaptic spike and Ssyn(t) is the point process modelling the incoming

spike train. Dgexc and Dginh are chosen in order to satisfy the ratio

vgexcwzvginhw~3 where the brackets signify an average according

to Ssyn(t), and so that the effective resting potential is Vrest~{65 mV on

average. Identical results were been obtained for synapses with a finite rise

time (b-synapses). Parameters for the Hodgkin-Huxley model were

taken from [46].

The recurrent network is composed of 10000 excitatory and 2500

inhibitory neurons, sparsely connected, with a connection proba-

bility of 2% within each population and between the two

populations. The synaptic weights are Dgexc~4:0 nS and

Dginh~85:0 nS. Each neuron has a topographic position on a

cortical layer-like surface of 1 mm2, and connects to its neighbours

according to a Gaussian distribution of standard deviation

sc~0:15 mm. Periodic boundary conditions are used. Conduction

delays d are distant-dependent with d(x)~0:5z5x (ms) where x is

the distance between the two neurons expressed in millimetres. The

slope value of d(x) (giving a propagation speed of 0.2 mm/ms) is

taken from a previous in vivo study showing a lateral propagation

speed ranging dominantly between 0.1 and 0.3 mm/ms [42]. The

retinotopic drive was modelled as another thalamic layer-like

network facing the previous one where each neuron acts as a

Poisson process with a controlled amount of synchrony between the

firing. To mimic a retinotopic mapping, each cell in the thalamic

layer projects to the recurrent network in a topographically

organized manner following a Gaussian distribution of standard

deviation st~0:05 mm (Fig. 3). The connection probability from

the thalamic layer to the cortical layer is also 2%.

In some simulations, we used models based on morphologically-

reconstructed neurons from cat cortex, obtained from two

published reference studies (layer II–III of cat primary visual

cortex Douglas et al. [47]; layer VI of cat somatosensory cortex

Contreras et al. [48]), where biological details were given. The

three-dimensional morphology of the reconstructed neurons was

incorporated into the NEURON simulation environment, which

enables simulating cable equations in complex three-dimensional

structures [49]. In vivo-like activity was simulated in passive models

using a previously published model of synaptic bombardment at

excitatory and inhibitory synapses [50] (see this paper for details

about the parameters and numerical simulations). The density of

synapses was constant per unit membrane area according to

published morphological studies, and was (per 100 mm2): 60 for

dendritic AMPA synapses, 10 for dendritic GABAA and 20 for

somatic GABAA synapses. This gives 9947 AMPA and 2461

GABAA synapses for the layer II–III cell, and 16563 and 3376,

respectively, for the layer VI cell. The release rates, chosen to yield

synaptic bombardment consistent with in vivo measurements, were

nexc = 1 Hz and ninh = 5.5 Hz for AMPA and GABAergic

synapses, respectively (see details in [50]).

Correlation Generator
In order to produce spike trains with arbitrary temporal

correlations, we used the theory of cluster point processes

[23,51]. The presynaptic activity can be characterized by two

main features: on the one hand, the specific temporal structure

given by the spike train temporal auto-correlation form, and on

the other hand, the correlation strength which measures the

temporal coherence between individual presynaptic spike trains

(see [52] for a similar distinction). These two features can be

controlled separately in the spike train generator composed of a

population of presynaptic neurons following Poisson processes,

and firing together with a certain amount of synchrony. They

project to the postsynaptic neuron through different time delays,

randomly chosen from a specific distribution (Fig. 4). The

temporal structure is given by the delay distribution whereas the

global synchrony in the presynaptic neuronal discharge gives the

correlation strength. In our implementation, the presynaptic

population is assumed to contain N neurons (Nexc~4000 for the

excitatory population and Ninh~1000 for the inhibitory popula-

tion, except stated otherwise); at each time step it was decided

randomly whether or not some neurons will fire. The probability

was adjusted to give a mean firing rate n of the inputs. If so, kz1
neurons were chosen randomly to fire among the N constituting

the population. This method allows to have always kz1
synchronous neurons, and still an apparent Poisson discharge at

rate n for each presynaptic neuron taken individually. Note that

this gives back independent Poisson spike trains when k~0.

Correlation between excitatory and inhibitory neurons is imple-

mented in the same manner. The delays are then attributed to

each presynaptic spike train according to the chosen delay

distribution.

From point process theory, this can be seen as two nested point

processes. The first point process follows a Poisson process which

determines the cluster positions and the second one determines

randomly the position of kz1 points within each cluster according

to an arbitrary density probability function. The correspondance

between both representations is straightforward and the power

spectrum density can be computed analytically with the Neyman-

Scott equation [23,24,51]

c(v)~
Nn

2p
a(v)j j2(1zk p(v)j j2) ð5Þ

where p(v) is the Fourier transform of the delay distribution, kz1

is the number of synchronous neurons and a(v) is the Fourier

transform of the synaptic filtering. In Eq. 5, the factor k can also

be written k~rN{1 where r is the ratio of synchronous neurons

which does not depend anymore on N.

In this paper, we are interested in the power-law frequency-

scaling in the temporal power spectrum density (PSD). Eq. 5

relates the delay distribution to the PSD so that a power-law

behaviour at the conductance level needs a power-law scaling in

the delay distribution. Therefore, the delay associated with each

synapse was randomly chosen from a distribution proportional to
1

tb
exp ({

t

tmax
). The exponential term is added to avoid

oscillations in the PSD due to an abrupt cut-off [6] with

tmax~10 ms. The parameter b is varied over the simulations

and modulates the spread of temporal correlations. The

presynaptic neurons are synchronously active according to the

parameter k. The output frequency-scaling exponent (to be

defined below) measured in the PSD (Eq.5) is thus equal to

2(1{b).

Network-Driven Power-Laws

PLoS Computational Biology | www.ploscompbiol.org 15 September 2009 | Volume 5 | Issue 9 | e1000519



In vitro Preparation
In vitro experiments were performed on 350 mm-thick sagittal

slices from the lateral portions of rat occipital cortex. Wistar Rats,

4–6 weeks old (CNRS, Gif-sur-Yvette), were anesthetized with

sodium pentobarbital (30 mg/kg) before craniectomy and cortex

removal. The slices were maintained in an interface style recording

chamber at 34–35uC. Slices were prepared on a DSK microslicer

(Ted Pella, Redding, CA) in a slice solution in which the NaCl was

replaced with sucrose while maintaining an osmolarity of 314

mosM. During recording, the slices were incubated in slice

solution containing (in mM) 126 NaCl, 2.5 KCl, 1.2 MgSO4, 1.25

NaHPO4, 2 CaCl2, 26 NaHCO3, and 25 dextrose and aerated

with 95% O2-5% CO2 to a final pH of 7.4. After 30 minutes to

2 hours of recovery, intracellular recordings were performed in

deep layers (layer IV–VI) in electrophysiologically identified

regular spiking and intrinsically bursting cells. Micropipettes were

filled with 1.2–2 M potassium acetate and 4 mM KCl and had

resistances of 80–100 M after bevelling. The dynamic-clamp

technique [53,54] coupled with an Active Electrode Compensa-

tion (AEC) method that we developed and validated recently in vivo

and in vitro [24] was used to inject computer-generated

conductances in real neurons. The AEC method allows the

removal in real time of electrode noise from intracellular voltage

recordings. Dynamic-clamp experiments were run using the Real

Time-NEURON environment [55], which is a modified version of

NEURON 6.0 [49].

The dynamic-clamp protocol was used to insert the fluctuating

conductances underlying synaptic noise in cortical neurons using

the previous model, the post-synaptic neuron being now the

recorded neuron, similar to a previous study [56]. The injected

current is determined from the fluctuating excitatory and

inhibitory conductances as well as from the difference of the

membrane voltage from the respective reversal potentials.

Power Spectrum Analysis
Spikes were removed from the original traces and replaced by a

low-pass filtered version of the trace. To control the validity of this

procedure, we compared whenever possible the power spectrum

obtained from the interpolated trace with an identical trace

generated without threshold. In all cases we observed that injecting

a given conductance trace into a neuronal model and then

removing the spikes gave the same power spectrum as injecting the

same conductance in a neuronal model without spike threshold

(Fig. S2). The spectra were computed with the multi-taper method

[57], which allows a better estimation of the power-laws than the

standard periodogram methods. Results were similar when using

the Welch method and the Goertzel algorithm [58].

We then determined the frequency-scaling exponent by linear

regression on a log-log representation of the PSD, for the range

75–200 Hz. Similar results were obtained for lower bounds above

50 Hz, and higher bounds below 200 Hz. Estimation of the

scaling exponent from multifractal methods gave similar values.

For the in vitro data, we also estimated the frequency-scaling

exponent by fitting a generalized Lorentzian function [59], which

gave equivalent relative values.

We chose to use the linear fit for its simplicity, and because it is

easy to quantify the goodness of fit, and thus to assess the power-

law scaling over the frequency band chosen. In comparison, the

Lorentzian fit is very accurate when considering controlled models

where the cut-off frequencies can be easily found or computed, but

this model gave inaccurate results when applied to in vivo data

because it can not account for the low frequency regime, which is

strongly modulated by the stimulus. Finally, the multifractal

analysis gave us no control over the goodness of fit. In the case of

the recurrent network, the fit was performed between 75 and

200 Hz. Using narrower bands gives similar results. In the in vitro

measurements, the absolute values of the frequency-scaling

exponent displayed significant variations because of the available

scaling region. Our study focused on the modulation of the

frequency-scaling, rather than on absolute values, the relative

values of the frequency-scaling exponent are shown for in vitro

experiments and the corresponding models for each linear region

of the PSD. For the model studies, unless otherwise mentioned, we

systematically subtracted the value obtained for a classical Poisson

input. For the in vitro study, the reference was the frequency-scaling

exponent obtained with the input parameter b~0:1, averaged

over the different conditions tested. In this case, measuring the

relative values also removed the cell-to-cell variability of the

absolute values.

The total input conductance is reported to be about three times

the leak conductance Gleak in the anaesthetized cat [26]. This is

also what we used in our model and in the conductance injection

in vitro. As a consequence, the cut-off frequency of the synaptic and

membrane filtering are below the frequency band used for our

fitting (they did not exceed 75 Hz), and could not affect our

estimates (this point is futher discussed in the Results section).

Multifractal Analysis
The multifractal analysis characterizes the scaling behavior of a

signal x(t) [60]. For each point t0, the Hölder exponent H(t0) is

defined as the maximal value a such that there exists a polynomial

P(t), with Deg(P)ƒ a½ �, a positive constant C, and an interval

around t0 where for any t

x(t){P(t{t0)j jƒC t{t0j ja ð6Þ

This coefficient H(t0) reflects the scaling behaviour around the

point t0. The singularity spectrum D(h) is the Haussdorf

dimension of ft : H(t)~hg. It thus describes how the singularities

are distributed in the signal. A particular example is the self-similar

process (also called monofractal), where D(h)=0 only at one point

H , where D(H)~1. The practical estimation of the singularity

spectrum is made difficult by the finite size of the signal, and by its

discrete nature. However, the wavelet formalism allows a robust

estimation of t(q), which is the Legendre transform of the

singularity spectrum:

D(h)~ min
q
fqh{t(q)g ð7Þ

In the case of a monofractal/scale-invariant process, t(q)~qH{1,

H being its unique Hölder exponent. This corresponds to a

fractional Brownian process. Note that H is related to the PSD slope

which is equal to {2H{1. The curvature of t(q) quantifies the

deviation from monofractality. The slope and the curvature are

respectively the first and second moments of the singularity

spectrum. We used an algorithm based on wavelet leaders [20,61]

which directly estimates these two values.

Fano Factor and Power-Law in the Spiking Activity
Fano factors and power-laws on these Fano factors were

measured as in [6]. To compute the Fano Factor for a given time

bin, we counted the number of spikes in each time bin and took

the ratio of the spike-count variance to the mean spike-count. The

power-law was estimated by computing this Fano Factor over a

large range of time bins. This function was then represented in a

log-log scale, and the slope of the curve was estimated by linear

regression. This gives the frequency-scaling exponent of the

Network-Driven Power-Laws
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spiking activity through the Fano Factor F (T)!Ta where T is the

time bin and a the scaling exponent.

Supporting Information

Figure S1 Effect of heterogeneous synaptic weights and synaptic

waveform on the power law frequency scaling exponent. (A–B) Vm

frequency-scaling exponent changes for different input frequencies

n and for heterogeneous synaptic strengths. The synaptic strengths

are randomly distributed for each incoming synaptic spike train

according to a Gaussian distribution whose standard deviation is

half the mean value in this case. These controls were performed

with integrate-and-fire neurons (panel A) and Hodgkin-Huxley

neurons (panel B). The synchrony percentage was kept a 6% and

there was no correlation between excitatory and inhibitory

synaptic inputs. Error bars are the standard deviation over the

trials. The bold line represents the average across cells and trials.

(C–D) Variation of the value of the frequency-scaling exponent at

the membrane potential level for excitatory input only as a

function of the parameters bexc and for b-synapses (r = 3%). (C)

Illustration of the PSD modulation on a log-log scale for different

values of the parameter bexc ranging from 0 (light blue) to 1 (dark

blue). In the inset, a stereotypic synaptic time course is represented

(with a time rise of 1 ms). (D) Variation of the output frequency-

scaling exponent with the bexc parameter.

Found at: doi:10.1371/journal.pcbi.1000519.s001 (0.41 MB EPS)

Figure S2 Illustration of the spike filtering algorithm for neuron

models with and without spiking mechanism. (A) Injection of

correlated synaptic input to a HH model. Blue: raw trace; Red:

after spike filtering. (B) Power spectra density corresponding to

panel A. (C) injection of the same synaptic input in a COBA model

without threshold (green), superimposed to the HH-spike-filtered

trace plotted in panel A. (D) Power spectra density of the the two

traces displayed in panel C: COBA without threshold and HH

with spike filtered.

Found at: doi:10.1371/journal.pcbi.1000519.s002 (0.97 MB EPS)

Figure S3 Influence of the different integrative time constants on

the PSD frequency scaling. (A) Vm power spectra for different

levels of correlation in the input (blue: Poisson input; red:

correlated input with k = 6% and b= 0). The level of conductance

is low in this condition (Gtot = 0.23Gleak). The dotted coloured lines

indicate the linear fits over the high frequency region delimited by

the vertical dashed gray line. (B) same PSD, but for a very high

conductance state (Gtot = 12Gleak). The four fits correspond to fit in

different frequency bands, for the two PSDs. To illustrate more

precisely the differential effect of the conductance state and of the

input correlations on the frequency-scaling exponent, we show

several examples of Vm power spectra for two different levels of

global conductance regime, and two different binh = bexc param-

eters. In the low conductance state (panel A), the power spectrum

is composed of two linear regions separated by a unique cut-off,

which is determined by the time constants of the synaptic and

membrane filtering. In the very high conductance state (panel B),

these two time constants are clearly different, so the power

spectrum shows three linear regions separated by two cut-offs.

Very large (and surely not plausible in biological conditions)

changes of the conductance state thus displaced the second

frequency cut-off, but still did not affect the relative slope in the

linear regions. Decreasing the b parameter increases the slope over

both frequency bands and relative changes of the frequency-

scaling exponent have the same magnitude in these different

regions. This shows that the relative modulation observed is not

dependent on the specific frequency band chosen to estimate the

PSD slope, since it can be observed over a large range of

frequencies. Furthermore, this figure illustrates the differential

effect of the conductance state, and of the correlation state, on the

power spectrum. Opposite to the latter, the former does no affect

the scaling exponent.

Found at: doi:10.1371/journal.pcbi.1000519.s003 (0.52 MB EPS)

Table S1 Frequency-scaling exponents for detailed neuron

models. Neuron models were obtained from neuronal morphol-

ogies reconstructed from a layer III cell (upper table) and a layer

VI cell (lower table) of the cat cerebral cortex (see methods). The

frequency-scaling exponent is computed for different synaptic

input firing rates and different levels of synchrony. Three levels of

incoming synaptic activity have been considered, following

(Destexhe & Paré, 1999) : a high-conductance state (HC) with

nexc = 1 Hz, ninh = 5.5 Hz; a low-conductance state (LC) with

nexc = ninh = 0.5 Hz and a very low-conductance state (VLC) with

nexc = ninh = 0.1 Hz. Each condition was performed with two levels

of synchrony between synaptic spike trains, r = 0% and r = 1.5%

respectively. Frequency-scaling exponents barely changed with

increasing firing rate for both uncorrelated and correlated inputs,

for both cells. However, the frequency-scaling exponent was

affected by the level of synchrony, as expected from our previous

results. These simulations show that the relative modulations of the

scaling exponent are mostly due to correlation changes, while

conductance changes have a negligible effect.

Found at: doi:10.1371/journal.pcbi.1000519.s004 (0.01 MB PDF)
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direction selectivity of synaptic inputs in visual cortical neurons: a diversity of

combinations produces spike tuning. Neuron 37: 663–680.
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