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Lp-NORMS, LOG-BARRIERS AND CRAMER TRANSFORM

IN OPTIMIZATION

J.B. LASSERRE AND E.S. ZERON

Abstract. We show that the Laplace approximation of a supremum
by Lp-norms has interesting consequences in optimization. For instance,
the logarithmic barrier functions (LBF) of a primal convex problem P

and its dual P
∗ appear naturally when using this simple approximation

technique for the value function g of P or its Legendre-Fenchel conjugate
g∗. In addition, minimizing the LBF of the dual P

∗ is just evaluating
the Cramer transform of the Laplace approximation of g. Finally, this
technique permits to sometimes define an explicit dual problem P

∗ in
cases when the Legendre-Fenchel conjugate g∗ cannot be derived explic-
itly from its definition.

1. Introduction

Let f : X → R and ω : X → R
m be a pair of continuous mappings defined

on the convex cone X ⊆ R
n. Consider the function g : R

m → R ∪ {−∞}
given by the formula:

(1.1) y 7→ g(y) := sup
x

{f(x) : ω(x) ≤ y, x ∈ X}.

For each fixed y ∈ R
m, computing g(y) is solving the optimization problem

(1.2) P : sup
x

{f(x) : ω(x) ≤ y, x ∈ X},

and g is called the value function associated with P. The value function g
provides a systematic way to generate a dual problem P∗ via its Legendre-
Fenchel conjugate denoted g∗ : R

m → R∪{−∞}. The concave version of g∗

is defined by

(1.3) λ 7→ g∗(λ) := inf
y∈Rm

{λ′y − g(y) },

and is finite on some domain D ⊂ R
m. Then the dual problem reduces to

P∗ : g̃(y) = inf
λ

{λ′y − g∗(λ)}(1.4)

= inf
λ

{λ′y − g∗(λ) : λ ∈ D }

= inf
λ∈Rm

+

sup
x∈X

{f(x) + λ(y − ω(x) }.(1.5)
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Weak duality implies g(y) ≤ g̃(y), that is,

g(y) = sup
x∈X

inf
λ∈Rm

+

{f(x) + λ′(y − ω(x) }(1.6)

≤ inf
λ∈Rm

+

sup
x∈X

{f(x) + λ′(y − ω(x) } = g̃(y),(1.7)

and the equality g(y) = g̃(y) holds true under some convexity assumption.
However, in general g∗ cannot be obtained explicitly from its definition

(1.3), and for dual methods to solve P, the inner maximization in (1.7)
must be done numerically for each fixed λ. A notable exception is the conic
optimization problem where f and ω are both linear mappings, for which
one may obtain an explicit dual (1.4). Of course, alternative explicit duals
have been proposed but they involve both primal (x) and dual (λ) variables.
In particular, the Wolfe [14] and Mond-Weir [11] duals even allow to consider
weakened notions of convexity like e.g. pseudo- or quasi-convexity. For a
nice exposition and related references on this topic, the interested reader is
referred to Mond [12] and the references therein.

Contribution. Our contribution is to show that the simple and well-
known Laplace approximation of a supremum via a converging sequence of
Lp-norms has interesting consequences in optimization, for both primal and
dual problems P and P∗.

Recall that the celebrated logarithmic barrier function (LBF in short)
associated with a convex optimization problem P as in (1.2), or with its
dual P∗, is well-known for its good technical properties like e.g. the self-
concordance (which holds in some cases) which explains its good numerical
efficiency; see e.g. [5, 6]. But the LBF is only one particular choice among
many other interior penalty functions!

We first show that the LBF of the primal problem P (with parameter p)
appears naturally by using the simple and well-known Laplace approxima-
tion of a supremum via Lp-norms, applied to the inner infimum in (1.6). It
is a bit suprising to obtain an efficient method in this way. Indeed, the inner
infimum in (1.6) (which is exactly equal to zero for a feasible x) is replaced
with its ”naive” Laplace approximation by Lp-norms, and to the best of
our knowledge, the efficiency of this approximation has not been proved or
even tested numerically! Similarly, when using the same Laplace Lp-norm
approximation technique for the infimum in the definition (1.3) of the con-
jugate function g∗, we obtain a function φp : R

m → R which: (a) depends
on an integer parameter p and (b), is valid on the relative interior riD of
some domain D ⊂ R

m. In doing so for conic optimization problems, the set
D is just the feasible set of the (known) explicit dual problem P∗, and φp

is (up to a constant) the LBF with parameter p, associated with P∗. So
again, for conic programs, the simple Laplace approximation of a supremum
by Lp-norms permits to retrieve the LBF of the dual problem P∗!

Interestingly, the function y 7→ minλ φp(λ;y) is nothing less than the

Cramer transform of the Laplace approximation ‖ef‖p
Lp(Ω(y)), where Ω(y) ⊂
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X is the feasible set of problem P and ‖ · ‖Lp is the usual norm associated
with the Lebesgue space Lp. Analogies between the Laplace and Fenchel
transforms via exponentials and logarithms in the Cramer transform have
been already explored in other contexts, in order to establish nice parallels
between optimization and probability via a change of algebra; see e.g. Bacelli
et al. [1], Maslov [10], Lasserre [9], and the many references therein. In
probability, the Cramer transform of a probability measure has also been
used to provide exact asymptotics of some integrals as well as to derive large
deviation principles. For a nice survey on this topic the interested reader is
referred to Piterbarg and Falatov [13].

In addition, an interesting feature of this Laplace approximation tech-
nique is to provides us with a systematic way to obtain a dual problem
(1.4) in cases when g∗ cannot be obtained explicitly from its definition
(1.3). Namely, in a number of cases and in contrast with g∗, the func-
tion φp(λ;y) obtained by using the Laplace approximation of the conjugate
function g∗ by Lp-norms, can be computed in closed-form explicitly. Ex-
amples of such situations are briefly discussed. In the general case, φp is
of the form φ(λ;y) + ψ(p, λ) where: for every λ ∈ riD fixed, the function
ψ(p, λ) → 0 as p → ∞; and for each fixed p, the function λ 7→ ψ(p, λ) is a
barrier for the domain D. This yields to consider the optimization problem

P∗ : min
λ

{φ(λ;y) : λ ∈ D}

as a natural dual of P, and for which φp is an associated barrier function
with parameter p. If g∗ is concave then strong duality holds.

2. Main result

We need some intermediary helpful results before stating our main result.

2.1. Some preliminary results. Let Lq(X) be the usual Lebesgue space
of integrable functions defined on a Borel-measurable set X ⊆ R

n, and
‖h‖Lq(X) (or sometimes ‖h‖q) be the associated norm

‖h‖Lq(X) = ‖h‖q :=

(∫

X

|h(x)|qdx
)1/q

.

To make the paper self-contained we prove the following known result.

Lemma 1. Let X ⊆ R
n be any Borel-measurable set, and h ∈ Lq(X) for

some given q ≥ 1, so that ‖h‖Lq(X) <∞. Then:

lim
p→∞

‖h‖Lp(X) = ‖h‖∞ := ess sup
x∈X

|h(x)|.

Proof. Notice that X may be an unbounded set. Suppose that ‖h‖q < ∞
for some given q > 1, and define Λ to be the essential suppremum of |h| in
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X. The result is trivial when Λ = 0, so we assume that Λ ∈ (0,∞). Then

ess sup
x∈X

h(x) = Λ = lim
p→∞

(

‖h/Λ‖Lq (X)

)q/p
Λ

= lim
p→∞

[
∫

X

Λp

( |h(x)|
Λ

)q

dx

]1/p

≥ lim
p→∞

[
∫

X

|h(x)|p dx
]1/p

= lim
p→∞

‖h‖Lp(X).(2.1)

It is also obvious that Λ ≥ limp ‖h‖p when Λ = ∞. On the other hand,
suppose that the essential suppremum Λ of |h| in X is finite. Given an
arbitrary parameter ǫ > 0, there exists a bounded subset B ⊂ X with
positive finite Lebesgue measure λ(B) ∈ (0,∞) such that |h(x)| > Λ−ǫ for
every x ∈ B. Then

lim
p→∞

‖h‖Lp(X) ≥ lim
p→∞

‖h‖Lp(B) ≥ lim
p→∞

λ(B)1/p(Λ−ǫ) = Λ − ǫ.

Therefore, since ǫ is arbitrary, combining the previus identity with (2.1)
yields the desired result limp→∞ ‖h‖Lp(X) = Λ. In the same way, assume that
the essential supremum of |h| in X is infinite. Given an arbitrary natural
number N ∈ N, there exists a bounded subset B ⊂ X with positive finite
Lebesgue measure λ(B) ∈ (0,∞) such that |h(x)| > N for every x ∈ B.
Then

lim
p→∞

‖h‖Lp(X) ≥ lim
p→∞

‖h‖Lp(B) ≥ lim
p→∞

λ(B)1/pN = N.

Therefore, since N is arbitrary, combining the previus identity with (2.1)
yields the desired result limp→∞ ‖h‖Lp(X) = Λ = ∞. �

Next we also need the following intermediate result.

Lemma 2. For every p ∈ N let Up ⊂ R
n be some open subset, and let

hp : Up → R be a sequence of functions indexed by the parameter p ∈ N.
Suppose that hp converges pointwise to a function h defined on an open
subset U of R

n. Then:

lim
p→∞

inf
x∈Up

hp(x) ≤ inf
x∈U

h(x),

provided that the limit in the left side of the equation exists in the extended
interval [−∞,∞).

Proof. Suppose that the infinimum of h on U is equal to −∞. For every
N ∈ R there is a point x ∈ U such that h(x) < N , and so there is also
an index p0 such that x ∈ Up and hp(x) < N for every p > p0. Hence the
infinimum of hp on Up is strictly less than N , and so

lim
p→∞

inf
x∈Up

hp(x) = −∞ = inf
x∈U

h(x),

because N ∈ R is arbitrary. On the other hand, assume that the infinimum
of h on U is equal to λ ∈ R. For every ǫ > 0 there is a point x ∈ U such
that h(x) < λ+ǫ, and so there is also an index p0 such that x ∈ Up and
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hp(x) < λ+ǫ for every p > p0. Since the infinimum of hp on Up is strictly
less than λ+ǫ and ǫ > 0 is arbitrary,

lim
p→∞

inf
x∈Up

hp(x) ≤ λ = inf
x∈U

h(x).

�

2.2. Lp-norm approximations for the primal. Let us go back to prob-
lem P in (1.1) where X ⊆ R

n is a convex cone, and let Z := R
m
+ . Let

X∗ ⊂ R
n be the dual cone associated with X, and let x 7→ ∆(x) be the

universal logarithmic barrier function associated with the convex cone X,
that is,

x 7→ ∆(x) := ln

(∫

X∗

e−x′ydy

)

, x ∈ intX,

where intX denotes the interior of X. See e.g. Güller [4] and Güler and
Tuncel [5]. Next, let H ⊂ R

n be the set

H := {x ∈ R
n : ω(x) < y; x ∈ intX}.

Recalling that P is a maximization problem, the LBF associated with the
(primal) problem P, and with parameter p ∈ N, is the function ψ : H → R

defined by:

(2.2) x 7→ ψp(x) := f(x) +
1

p



−∆(x) +

m
∑

j=1

ln(y − ω(x))j



 ,

The LBF in convex programming dates back to Frisch [3] and became widely
known later in Fiacco and McCormick [2]. For more details and a discus-
sion, see e.g. den Hertog [6, Chapter 2]. It is well-known that under some
convexity assumptions, and if g(y) <∞,

(2.3) g(y) = lim
p→∞

sup
x

{ψp(x) : x ∈ H},

and the sequence of minimizers (xp)p∈N ⊂ H of ψp converges to a minimizer
of P.

We next provide a simple rationale that explains how the LBF naturally
appears to solve problem P. Observe that (1.6) can be rewritten as

(2.4) g(y) = sup
x∈Rn

inf
(λ,µ)∈Z×X∗

{f(x) + λ′(y − ω(x)) + µ′x },

and in the above equation, the inner minimization

inf
(λ,µ)∈Z×X∗

{f(x) + λ′(y − ω(x)) + µ′x },

(whose value is 0 if ω(x) ≤ y and x ∈ X), may be rewritten as

f(x) − sup
(λ,µ)∈Z×X∗

{λ′(ω(x) − y) − µ′x }.
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But for fixed x ∈ R
n and y ∈ R

m, one may approximate the above supremum
via Lp-norms. Indeed, if y ∈ R

m and x ∈ H, then for every p ∈ N,
∫

Z

∫

X∗

epλ′(ω(x)−y)−pµ′xdµ dλ <∞,

and so ‖eλ′(ω(x)−y)−µ′x‖Lp(Z×X) <∞, p ∈ N. Therefore, by Lemma 1,

sup
(λ,µ)∈Z×X∗

{λ′(ω(x) − y) − µ′x } = lim
p→∞

ln ‖eλ′(ω(x)−y)−µ′x‖Lp(Z×X∗)

= lim
p→∞

1

p
ln

(∫

Z

∫

X∗

epλ′(ω(x)−y)−pµ′xdµ dλ

)

,

=















lim
p→∞





1

p
∆(px) − 1

p

m
∑

j=1

ln(y − ω(x))j



 if x ∈ H

+∞ otherwise.

Next, observe that for each p ∈ N, ∆(px) = pn∆(x) because X∗ is a cone,
and so (2.4) now reads

(2.5) g(y) = sup
x∈H







f(x) + lim
p→∞

1

p



−∆(x) +

m
∑

j=1

ln(y − ω(x))j











.

A direct application of Lemma 2 to (2.5) yields

g(y) ≤ lim
p→∞

sup
x∈H







f(x) + lim
p→∞

1

p



−∆(x) +

m
∑

j=1

ln(y − ω(x))j











= lim
p→∞

sup
x

{ψp(x) : x ∈ H},

and so (2.3) states that in fact one also has the reverse inequality, that is,
in (2.5) one may interchange the ”sup” and ”lim” operators.

In other words, the LBF ψp appears naturally when one approximates

inf
(λ,µ)∈Z×X∗

{f(x) + λ′(y − ω(x)) + µ′x },

(whose value is exactly zero if ω(x) ≤ y and x ∈ X), by the quantity

1

p



−∆(x) +
m
∑

j=1

ln(y − ω(x))j



 ,

which comes from the Laplace approximation of a ”sup” by Lp-norms.
For instance, in Linear programming where X = R

n
+, x 7→ c′x and x 7→

ω(x) = Ax for some vector c ∈ R
n and some matrix A ∈ R

m×n,

g(y) = lim
p→∞

sup
x

{c′x +
1

p





m
∑

j=1

ln(y − Ax)j +

n
∑

i=1

ln(xi)



 : x ∈ H}.
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2.3. Lp-norm approximations for the dual. We now use the same ap-
proximation technique via Lp-norms to either retrieve the known dual P∗

when it is explicit, or to provide an explicit dual problem P∗ in cases where
g∗ cannot be obtained explicitly from its definition (1.3). Recall that if g
is concave, upper semi-continuous, and bounded from above by some linear
function, then by Legendre-Fenchel duality,

g(y) = inf
λ

{

λ′y − g∗(λ)
}

, where(2.6)

g∗(λ) := inf
y

{

λ′y − g(y)
}

.(2.7)

One can express g∗ in terms of the definition (1.1) of g and the involved
continuous transformations f and ω. Namely,

− g∗(λ) = sup
y

{

g(y)−λ′y
}

= sup
y

sup
x∈X,

ω(x)≤y

{

f(x)−λ′y
}

(2.8)

=

{

sup
x∈X

{

f(x)−λ′ω(x)
}

if λ ≥ 0,

+∞ otherwise.
(2.9)

Therefore the domain of definition D ⊂ R
m of g∗ is given by:

(2.10) D :=

{

λ ∈ R
m : λ ≥ 0, sup

x∈X

{

f(x)−λ′ω(x)
}

<∞
}

,

with relative interior denoted by riD. Observe that D is convex because
−g∗ is convex and proper on D.

Theorem 3. Let g and g∗ be as in (1.1) and (2.7), respectively. Assume
that g is concave, upper semi-continuous, and bounded from above by some
linear function. Suppose that the relative interior riD is not empty and for
every λ ∈ riD there exists an exponent q ≫ 1 such that

(2.11)
∥

∥

∥
ef(x)−λ′ω(x)

∥

∥

∥

Lq(X)
< ∞.

Then:

(2.12) g(y) = lim
p→∞

inf
λ∈riD

{

λ′y + ln
∥

∥

∥
ef(x)−λ′ω(x)

∥

∥

∥

Lp(X)
−

m
∑

j=1

ln(pλj)

p

}

Proof. In view of (2.8)

(2.13) − g∗(λ) =











ln

[

sup
y

sup
x∈X

ω(x)≤y

{

e−λ′y+f(x)
}

]

if λ ∈ D

+∞ otherwise.
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Hypothesis (2.11) and Lemma 1 allow us to replace the supremum in
(2.13) by the limit of the Lp-norms as p→ ∞. Namely,

− g∗(λ) = lim
p→∞

ln

(

∫

x∈X

∫

ω(x)≤y

e−pλ′y+pf(x) dy dx

)1/p

= lim
p→∞







ln

(
∫

x∈X

e−pλ′ω(x)+pf(x) dx

)1/p

−
m
∑

j=1

ln(pλj)

p







= lim
p→∞

{

ln
∥

∥

∥
ef(x)−λ′ω(x)

∥

∥

∥

Lp(X)
−

m
∑

j=1

ln(pλj)

p

}

.(2.14)

Hence from (2.14), equation (2.6) can be rewritten as follows:

g(y) = inf
λ∈riD

{

λ′y − g∗(λ)
}

=

= inf
λ∈riD

lim
p→∞

{

λ′y + ln
∥

∥

∥
ef(x)−λ′ω(x)

∥

∥

∥

Lp(X)
−

m
∑

j=1

ln(pλj)

p

}

≥ lim
p→∞

inf
λ∈riD

{

λ′y + ln
∥

∥

∥ef(x)−λ′ω(x)
∥

∥

∥

Lp(X)
−

m
∑

j=1

ln(pλj)

p

}

,(2.15)

where we have applied Lemma 2 in order to interchange the ”inf” and ”lim”
operators. Notice that the terms between the brackets are the functions
hp(λ) of Lemma 2. On the other hand, given y ∈ R

m, let

Θ(y) := {(x, z) ∈ X× R
m
+ : ω(x) + z ≤ y} ⊂ R

n+m,

so that whenever λ ∈ riD,
∥

∥

∥
ef(x)

∥

∥

∥

Lp(Θ(y))
≤

∥

∥

∥
ef(x)+λ′(y−ω(x)−z)

∥

∥

∥

Lp(Θ(y))

≤ eλ′y
∥

∥

∥
ef(x)−λ′ω(x)−λ′z

∥

∥

∥

Lp(X×Rm
+ )

= eλ′y
∥

∥

∥ef(x)−λ′ω(x)
∥

∥

∥

Lp(X)

m
∏

j=1

(pλj)
−1/p.

By hypothesis (2.11), given λ ∈ riD fixed, the Lp-norm term in the last
above identity is finite for some p large enough. Therefore, by definition
(1.1) and Lemma 1, one obtains

g(y) = sup
(x,z)∈Θ(y)

ln
{

ef(x)
}

= lim
p→∞

ln
∥

∥

∥ef(x)
∥

∥

∥

Lp(Θ(y))
≤

≤ lim
p→∞

inf
λ∈riD

{

λ′y + ln
∥

∥

∥ef(x)−λ′ω(x)
∥

∥

∥

Lp(X)
−

m
∑

j=1

ln(pλj)

p

}

,

which combined with (2.15) yields the desired result (2.12). �
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Remark 1. Condition (2.11) can be easily checked in particular cases. For
instance let x 7→ ω(x) := Ax for some matrix A ∈ R

m×n.

• If X := R
n
+ and x 7→ f(x) := c′x + lnxd for some c and d in R

n

with d ≥ 0. The notation xd stands for the monomial
∏n

k=1 x
dk

k .
Then f is concave and
∫

Rn
+

epf(x)−pλ′ω(x)dx =

∫

Rn
+

ep(c−A′λ)′x xp ddx

=
n
∏

k=1

Γ(1 + pdk)

(A′
kλ− ck)1+pdk

< ∞,

whenever λ ∈ riD := {λ ∈ R
m : λ > 0, A′λ > c} and p ∈ N.

• If X = R
m and x 7→ f(x) := −x′Qx + c′x for some c ∈ R

n and a
symmetric (strictly) positive definite matrix Q ∈ R

n×n, then
∫

Rn

epf(x)−pλ′ω(x)dx =

∫

Rn

e−px′Qx ep(c−A′λ)′xdx < ∞,

whenever λ ∈ riD := {λ ∈ X : λ > 0} and p ∈ N.

Consider next the following functions for every p ∈ N :

(2.16) λ 7→ φp(λ;y) := λ′y + ln
∥

∥

∥
ef(x)−λ′ω(x)

∥

∥

∥

Lp(X)
−

m
∑

j=1

ln(pλj)

p

defined on some domain of R
m, and

(2.17) y 7→ gp(y) := inf
λ

{

φp(λ;y) : λ ∈ riD
}

defined on R
m. Recall that the Cramer transform (denoted C) applied to an

integrable function u : R
m → R, is the Legendre-Fenchel transform (denoted

F) of the logarithm of the Laplace transform (denoted L) of u, i.e.,

u 7→ C(u) = F ◦ ln ◦L (u).

The Cramer transform is natural in the sense that the logarithm of the
Laplace transform is always a convex function. For our purpose, we will
consider the concave version of the Fenchel transform

(2.18) û 7→ [F(û)](λ) = inf
y
{λ′y + û(y)},

for û : R
m → R convex, so that −û is concave. We claim that:

Theorem 4. The function y 7→ p gp(y) defined in (2.17) is the Cramer
transform of the function

(2.19) y 7→ g̃p(y) :=

∫

Ω(y)
epf(x)dx =

∥

∥

∥
ef
∥

∥

∥

p

Lp(Ω(y))
,

where Ω(y) := {x ∈ X : ω(x) ≤ y} ⊂ R
n.
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Proof. The result follows from the definition of the Cramer transform C.

g̃p 7→ C(g̃p) := F ◦ ln ◦L (g̃p)

y 7→ C(g̃p)(y) = inf
λ

{

λ′y + [ln ◦L(g̃p)](λ)
}

.

Hence

[L(g̃p)](pλ) =

∫

y∈Rm

e−pλ′y g̃p(y) dy =

=

∫

y∈Rm

e−pλ′y

[
∫

x∈X, ω(x)≤y

epf(x)dx

]

dy

=

∫

x∈X

epf(x)

[
∫

y≥ω(x)
e−pλ′ydy

]

dx

=

[ ∫

x∈X

epf(x)−pλ′ω(x)dx

] m
∏

j=1

1

pλj

=
∥

∥

∥ef(x)−λ′ω(x)
∥

∥

∥

p

Lp(X)

m
∏

j=1

1

pλj
.

Therefore,

[ln ◦L(g̃p)](pλ) = ln
∥

∥

∥
ef(x)−λ′ω(x)

∥

∥

∥

p

Lp(X)
−

m
∑

j=1

ln(pλj).

On the other hand, recall the definition of gp(y) given in (2.17)-(2.16),

gp(y) = inf
λ∈riD

{

λ′y + ln
∥

∥

∥
ef(x)−λ′ω(x)

∥

∥

∥

Lp(X)
−

m
∑

j=1

ln(pλj)

p

}

.

Thus, with F as in (2.18) and Dp := {z : p z ∈ D}, we obtain the desired
result :

p gp(y) = inf
λ∈riD

{

pλ′y + ln
∥

∥

∥
ef(x)−λ′ω(x)

∥

∥

∥

p

Lp(X)
−

m
∑

j=1

ln(pλj)

}

= inf
λ∈riD

{

pλ′y + [ln ◦L(g̃p)](pλ)
}

= inf
z∈riDp

{

z′y + [ln ◦L(g̃p)](z)
}

= [F ◦ ln ◦L(g̃p)](y) = [C(g̃p)](y),

�

For linear programming, this result was already obatined in [8, 9].

Example 1. (Linear Programming) In this case set the cone X = R
n
+ and

the functions f(x) := c′x and ω(x) = Ax for some vector c ∈ R
n and matrix



Lp-NORMS AND CRAMER TRANSFORM IN OPTIMIZATION 11

A ∈ R
m×n. We easily have that

∥

∥

∥ef(x)−λ′ω(x)
∥

∥

∥

p

Lp(X)
=

∫

X

ep(c−A′λ)′xdx =

n
∏

k=1

1

pA′
kλ− p ck

for every p ∈ N and each λ in the relative interior riD of the set

(2.20) D = {λ ∈ R
m : A′λ ≥ c, λ ≥ 0}.

Hence from (2.16)

φp(λ;y) = λ′y +
1

p
ln
∥

∥

∥ef(x)−λ′ω(x)
∥

∥

∥

p

Lp(X)
−

m
∑

j=1

ln(pλj)

p
=

= λ′y −
n
∑

k=1

ln(A′
kλ− ck)

p
−

m
∑

j=1

ln(λj)

p
− m+n

p
ln p,

One easily recognizes (up to the constant (m+n)[ln p]/p) the LBF with
parameter p, of the dual problem:

P∗ : min
λ

{λ′y : A′λ ≥ c, λ ≥ 0}.

Example 2. (The general conic problem) Consider the conic optimization
problem

min
x

{c′x : ω x ≤ y, x ∈ X},
for some convex cone X ⊂ R

n, some vector c ∈ R
n, and some linear mapping

ω : R
n → R

m with adjoint mapping ω∗ : R
m → R

n. We easily have that
∥

∥

∥ec
′x−λ′ω x

∥

∥

∥

p

Lp(X)
=
∥

∥

∥e(c−ω∗λ)′x
∥

∥

∥

p

Lp(X)
=

=

∫

X

ep(c−ω∗λ)′xdx = p−n

∫

X

e(c−ω∗λ)′xdx,

because X is a cone. Claim (2.16) reads

φp(λ;y) = λ′y +
1

p
ln
∥

∥

∥
ec

′x−λ′ω x
∥

∥

∥

p

Lp(X)
−

m
∑

j=1

ln(pλj)

p

= λ′y +
ψ(ω∗λ−c)

p
−

m
∑

j=1

lnλj

p
− m+n

p
ln p,(2.21)

where ψ : R
n → R is the so-called universal LBF associated with the dual

cone X∗, and with domain riD, where

(2.22) D = {λ ∈ R
m : ω∗λ−c ∈ X∗, λ ≥ 0}.

See e.g. Güller [4] and Güler and Tuncel [5]. In φp (and up to a constant),
one easily recognizes the LBF with parameter p, of the dual problem:

P∗ : min
λ

{λ′y : ω∗λ−c ∈ X∗, λ ≥ 0}.
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Example 3. (Quadratic programming: non conic formulation) Consider
symmetric positive semidefinite matrixes Q[j] ∈ R

n×n and vectors c[j] ∈ R
n

for j = 0, 1, ...,m. The notation Q � 0 (resp. Q ≻ 0) stands for Q is
positive semidefinite (resp. strictly positive definite). Let X := R

n, f(x) :=
−x′Q[0]x−2c′[0]x and let ω : R

n → R
m have entries ωj(x) := x′Q[j]x+2c′[j]x

for every j = 1, . . . ,m. For λ ∈ R
m with λ > 0, define the real symmetric

matrix Q[λ] ∈ R
n×n and vector c[λ] ∈ R

n:

Q[λ] := Q[0] +

m
∑

j=1

λjQ[j] and c[λ] := c[0] +

m
∑

j=1

λjc[j],

so that
∥

∥

∥ef(x)−λ′ω(x)
∥

∥

∥

p

Lp(X)
=

∫

X

exp
(

−px′Q[λ]x−2p c′[λ]x
)

dx

= πn/2
exp

(

p c′[λ]Q
−1
[λ]c[λ]

)

√

det
(

pQ[λ]

)

< ∞,

whenever p ∈ N and Q[λ] ≻ 0. Therefore

φp(λ;y) = λ′y +
1

p
ln
∥

∥

∥ec
′x−λ′ω x

∥

∥

∥

p

Lp(X)
−

m
∑

j=1

ln(pλj)

p

= λ′y + c′[λ]Q
−1
[λ]c[λ] −

ln
(

detQ[λ]

)

2p
−(2.23)

−
m
∑

j=1

lnλj

p
+ n

lnπ− ln p

2p
−m

ln p

p
,

on the domain of definition riD := {λ : λ > 0, Qλ ≻ 0}. Again, in equation
(2.23) one easily recognizes (up to a constant) the LBF with parameter p,
of the dual problem P∗:

min
λ≥0, Qλ�0

max
x∈X

{

−x′Q[0]x− 2c′[0]x−
m
∑

j=1

λj

(

x′Q[j]x+2c[j]x−yj

)

}

= min
λ≥0,Qλ�0

{

λ′y + max
x∈X

{

− x′Q[λ]x− 2c′[λ]x)
}

}

= min
λ

{

λ′y + c′[λ]Q
−1
[λ]c[λ] : λ ≥ 0, Q[λ] � 0

}

,

where we have used the fact that x∗ = Q−1
[λ]c[λ] ∈ R

n is the unique optimal

solution to the inner maximization problem in the second equation above.
If −Q0 ≻ 0 and Qj � 0, j = 1, . . . ,m, then riD := {λ : λ > 0} because

Qλ ≻ 0 whenever λ > 0; in this case P is a convex optimization problem
and there is no duality gap between P and P∗.
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2.4. An explicit dual. In Examples 1, 2, and 3, the function φp defined
in (2.16) can be decomposed into a sum of the form:

(2.24) λ 7→ φp(λ;y) = h1(λ;y) + h2(λ; p)

where h1 is independent of the parameter p. Moreover, if h2(λ; p) < ∞ for
some λ > 0 fixed, the term h2(λ; p) converges to zero when p → ∞. One
may also verify that

h1(λ) = λ′y − g∗(λ), ∀λ ∈ D,

where g∗ is the Legendre-Fenchel conjugate in (2.7). In fact, the above pre-
vious decomposition is more general and can be deduced from some simple
facts. Recall the problem P given in (1.1),

y 7→ g(y) := sup
x

{f(x) : ω(x) ≤ y, x ∈ X},

for a convex cone X ⊂ R
n and continuous mappings f and ω. Assume that g

is concave, upper semi-continuous, and bounded from above by some affine
function, so that Legendre-Fenchel duality yields

g(y) = inf
λ

{

λ′y − g∗(λ)
}

, where

g∗(λ) := inf
y

{

λ′y − g(y)
}

,

and where the domain of g∗ is the set D ⊂ R
m in (2.10).

Lemma 5. Suppose that riD is not empty and for every λ ∈ riD there
exists an exponent q ≫ 1 such that (2.11) holds. Then:

(2.25) λ 7→ h1(λ;y) := lim
p→∞

φp(λ;y) = λ′y − g∗(λ), ∀λ ∈ riD.

Proof. Let λ ∈ riD be fixed. The given hypothesis and Lemma 1 imply that

lim
p→∞

ln
∥

∥

∥
ef(x)−λ′ω(x)

∥

∥

∥

Lp(X)
= sup

x∈X

{

f(x)−λ′ω(x)
}

=

= sup
y

sup
x∈X,

ω(x)≤y

{

f(x)−λ′y
}

= sup
y

{

g(y)−λ′y
}

= −g∗(λ),

and so (2.25) follows from the definition (2.16) of φp. �

As a consequence we obtain:

Corollary 6. Let D be as in (2.10), φp as in (2.16) and let λ 7→ h1(λ;y)
be as in (2.25). Then the optimization problem

(2.26) P∗ : min
λ

{h1(λ;y) : λ ∈ riD }.

is a dual of P. Moreover, if g is concave, upper-semicontinuous and bounded
above by some affine function, then strong duality holds.
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Proof. By Lemma 5, h1(λ;y) = λ′y−g∗(λ) for all λ ∈ riD. And so if minP∗

(resp. maxP) denotes the optimal value of P∗ (resp. P), one has

minP∗ = min
λ

{λ′y − g∗(λ) : λ ∈ riD} ≥ g(y) = maxP,

where we have used that −g∗(λ) = supz{g(z) − λ′z} ≥ g(y) − λ′y. Finally,
if g is concave, upper semi-continuous and bounded above by some affine
function, then −g∗ is convex. Therefore, as a convex function is continuous
on its domain D (which is convex)

minP∗ = min
λ

{h1(λ;y) : λ ∈ riD }

= min
λ

{λ′y − g∗(λ) : λ ∈ riD}

= min
λ

{λ′y − g∗(λ) : λ ∈ D} = g(y),

that is, strong duality holds. �

In a number of cases, the Lp-norm approximation of g∗ can be obtained
explicitly as a function of λ, whereas g∗ itself cannot be obtained explicitly
from (1.3). In this situation one obtains an explicit LBF φp with parameter
p, for some dual P∗ of P, and sometimes an explicit dual problem P∗.
Indeed if φp is known explicitly, one may sometimes get its pointwise limit
h1(λ,y) in (2.25), in closed form, and so P∗ is defined explicitly by (2.26).
With p fixed, computing φp(λ;y) reduces to compute the integral over a
convex cone of an exponential of some function parametrized by λ and p.
Sometimes this can be done with the help of some known transforms like
e.g. the Laplace or Weierstrass transforms, as illustrated below.

Linear mappings and Laplace transform. Let ω : R
n → R

m be a linear
mapping, with ω(x) = Ax for some real matrix A ∈ R

m×n, and let X = R
n
+.

Then

ln ‖ef(x)−λ′ω(x)‖Lp(X) =
1

p
ln

(∫

X

e−(pA′λ)′x epf(x) dx

)

=
1

p
ln
(

L[epf ](pA′λ)
)

.

That is, the Lp-norm approximation is the logarithm of the Laplace trans-
form of the function ef , evaluated at the point pA′λ ∈ R

n. So if in problem
P, the objective function f is such that ef has an explicit Laplace transform,
then one obtains an explicit expression for the LBF λ 7→ φp(λ;y) defined in
(2.16).

For instance if f(x) = c′x + ln q(x) for some vector c ∈ R
n and some

polynomial q ∈ R[x], positive on the feasible set of P, write

q(x)p =
∑

α∈Nn

qpαx
α,
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for finitely many non zero coefficients (qpα), and where the notation xα stand

for the monomial xα1
1 · · · xαn

n . Then ln
(

L[epf ](pA′λ)
)

can be computed in
closed-form since we have:

ln
(

L[epf ](pA′λ)
)

= ln

(

∑

α∈Nn

qpα

∫

X

ep(c−A′λ)′x xα dx

)

,

= −n ln p+ ln

(

∑

α∈Nn

qpα
∂|α|

∂xα

1
∏n

i=1(A
′λ− c)i

)

,

where ∂|α|

∂xα =
∏n

i=1
∂αi

∂x
αi
i

. Of course the above expression can become quite

complicated, especially for large values of p. But it is explicit in the variables
(λi). If the function x 7→ ln q(x) is concave, then Corollary 6 applies.

Similarly if f is linear, i.e. x 7→ f(x) = c′x for some vector c ∈ R
n, then

ln ‖ef(x)−λ′ω(x)‖Lp(X) = p−1 ln
(

L[e−pλ′ω(x)](pc)
)

and so if the function x 7→ e−pλ′ω(x) has an explicit Laplace transform then
so does the Lp-norm approximation, and again, φp is obtained in closed
form.

Example 4. As a simple illustrative example, consider the optimization
problem:

P : sup
x

{

c′x +

n
∑

k=1

bk lnxk : Ax ≤ y, x ≥ 0, x ∈ R
n

}

,

for some given matrix A ∈ R
m×n and vectors b, c ∈ R

n and y ∈ R
m. We

suppose that b ≥ 0, so that c′x + ln(xb) is concave, and in which case P is
a convex program. Notice that with X = R

n
+,

sup
x

{

c′x + ln(xb) − λ′Ax : x ∈ R
n, x ∈ X

}

< ∞

whenever λ lies in D = {λ ∈ R
m : A′λ < c, λ ≥ 0}. We have

∥

∥

∥
ec

′x−λ′Ax xb
∥

∥

∥

p

Lp(X)
=

∫

X

ep(c−A′λ)′x xpbdx

=
n
∏

k=1

Γ(1+pbk)

(pA′
kλ−pck)1+p bk

< ∞,
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whenever p ∈ N and λ > 0 in R
m satisfies A′λ > c. Next, φp in (2.16) reads

φp(λ;y) = λ′y − 1

p
ln
∥

∥

∥
ec

′x−λ′Ax xb
∥

∥

∥

p

Lp(X)
−

n
∑

k=1

ln(pλk)

p

= λ′y +
n
∑

k=1

[

ln Γ(1+pbk)

p
− bk ln(pA′

kλ−pck)

]

−
n
∑

k=1

ln(A′
kλ−ck)

p
−

m
∑

j=1

lnλj

p
− m+ n

p
ln p.

Stirling’s approximation Γ(1 + t) ≈ (t/e)t
√

2πt for real numbers t ≫ 1
allow us to calculate the limit when p goes to infinity

lim
p→∞

ln Γ(1+pbk)

p
− bk ln p = lim

p→∞
bk ln

[

pbk

e

]

− bk ln p

= bk ln(e−1bk).

Lemma 5 implies that

λ′y − g∗(λ) = lim
p→∞

φp(λ;y) = λ′y −
n
∑

k=1

bk ln

[

A′
kλ−ck

e−1bk

]

.

And so the function φp is the LBF with parameter p, of the dual problem

P∗ : inf
λ

{

λ′y −
n
∑

k=1

bk ln

[

A′
kλ−ck

e−1bk

]

: A′λ ≥ c, λ ≥ 0

}

.

In particular, by Corollary 6, strong duality holds, i.e., maxP = minP∗.
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