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ABSTRACT

Our approach, using a set-inversion method in a
bounded-error context, enables to compute a position
fix in the form of a localization area taking into
account all sources of error (notably space vehicles
position errors) without linearizing. The method
computes an integrity zone recursively using bisec-
tion. Robustness can also be achieved with several
simultaneous faulty measurements. A way to set
bounds on measurements to meet an integrity risk
requirement is presented. An experimental validation
using real L1 code measurements is also presented in
the paper.

1 INTRODUCTION

GNSS is broadly used in applications requiring
a positioning service. In addition to a punctual
estimate of the position, uncertainty (precision and
accuracy) indicators are crucial when the position
estimate leads to a decision linked to safety.

The snapshot GNSS localization problem consists
in inverting a non-linear pseudo-range observation
function, with often redundant measurements. This
is generally solved as a non-linear Least Squares
problem, using a Gauss-Newton algorithm. Alterna-
tive techniques (like Bancroft’s method [1, 2]) also
provide a non-iterative computation of position.

Then, localization uncertainty can be roughly esti-
mated from User Equivalent Range Error (UERE)
and Dilution Of Precision (DOP). This however
only provides estimates of horizontal and vertical
error standard deviations, i.e., how measurement
noise is reported on position. To deal with outlier
measurements, Fault Detection and Exclusion (FDE)
can be implemented if data redundancy exists. M-
estimation or Range Consensus algorithms [3] are
examples to do FDE. Unfortunately, FDE can miss
small faults and this minimal detectable bias is
usually added to the effect of the noise to characterize
an integrity zone under the hypothesis of only one
fault at a time.

In this paper, a new framework to address these
issues is presented. It relies on a set-inversion
method in a bounded-error context. It computes
a position fix in the form of a localization area
taking into account all sources of error (notably
space vehicles position errors) without linearizing.
The method characterize an outer-bound integrity
zone recursively using bisection. Using a relaxed
constraint version of the method, robustness can
also be achieved with several simultaneous faulty
measurements.

After a presentation of set-theoretic localization,
around a simple example, we will introduce software
tools based on interval analysis allowing to perform
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set-inversion. As we deal with bounded error models,
a method to set bounds on measurement intervals so
as to meet specific risk requirements is presented.
The computation of location zones is performed with
real GPS L1 code measurements. An evaluation
of the experimental results is done, as well as
a comparison between robust and non-robust set-
inversion results.

2 SET-THEORETIC LOCALIZATION

Let’s consider a pedagogical example having similar-
ities with GNSS navigation. A robot and three bea-
cons in a planar world communicate altogether via a
radio link. The robot is equipped with an ultrasonic
emitter, while the beacons feature a receptor. To
range itself to the beacons, the robot simultaneously
emits a radio message and an ultrasound at time te.
Beacons start timing, and stop when they receive
the ultrasound at tr. Since radio propagation time is
negligible compared to sound travel time, the time of
flight measurement is tr− te. Knowing the speed of
sound cs, distance measurements to each beacon can
easily be determined di = cs · (t i

r− te).

Each measurement has to be represented as the set
of possible values, taking uncertainty into account.
Intervals are commonly used to express measure-
ment inaccuracy. In the case of time of flight
measurements based on ultrasound transducers, a
proportional error is expected, due to the variation
of the speed of sound. Measurements can be
represented as intervals

[di] = [(1−α) ·di, (1+α) ·di]

Each measurement acts as a constraint on the robot
location, setting bounds on the distance between the
robot and the beacon. Thus we have the membership
relation: √

(xR− xBi)2 +(yR− yBi)2 ∈ [di] (1)

Given equation 1, each measurement constrains the
robot location inside a ring, whose inner and outer
radii are respectively the lower and outer bounds of
the measurement interval [di].

Since there are three beacons, equation 1 has to be
verified for all three measurements. As a conse-
quence, the robot is located inside the intersection
of the three measurement annuli (Fig. 1a), given the
measurement error bounds.

Now let’s consider the case of a beacon measurement
inconsistent with respect to the bounded-error model,

B1

B2

B3
(a) No erroneous measurement

B1

B2

B3
(b) Erroneous measurement from green bea-
con B3

B1

B2

B3
(c) Non-detectable small error

B1

B2

B3
(d) Non-detectable large error

Figure 1: Localization using 3 beacons.
Solution set in black. 1-relaxed solution set in black and
grey. The red cross represents the actual robot position.
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i.e., the geometrical distance between the robot and
the beacon is not in the measurement interval. This
kind of measurement is often called “outlier” or
“fault”. There are two possible consequences:

• There is no common intersection for the three
measurement annuli (Fig. 1b). In this case, the
solution is the empty set, which indicates an in-
consistency between model and measurements.
One can thus easily detect the presence of an
erroneous measurement.

• There is a non-empty solution. This is the
case in Fig. 1c and 1d, where the true robot
location is not inside the measurement annulus
generated by beacon B3, but the intersection
of the three annuli is not the empty set. The
set-inversion method is unable to detect the
erroneous measurement in such a case, and
returns a solution set which does not include the
actual location.

Robustification of the method against erroneous
measurements can be achieved by allowing the
presence of at most one aberrant measurement (in
this example case). This is done by relaxing the
constraints intersection: instead of returning the set
of solutions compatible with three measurements, we
will consider the set of solutions compatible with
at least two measurements. In the case of Fig. 1,
it corresponds to the gray and black surfaces. This
method can be generalized to allowing q erroneous
measurements, using the q-relaxed intersection of
the constraints [4]. The main drawback of allowing
erroneous measurements is that it generates larger
solution sets.

Since robust set-theoretic localization is done by
relaxing constraints, one should ensure than the
problem remains constrained enough to get usable
results. In the example, three non aligned beacons
are needed for an non ambiguous localization. If
one constraint is relaxed, two-beacon solutions are
considered. Two beacons are not enough to get a non
ambiguous location: such a configuration generally
generates two location zones. As a consequence, the
1-relaxed solution sets of Fig. 1 are made of several
disjoint subsets. Thus, robust set-inversion methods
should only be used when there is enough data
redundancy to keep the problem well constrained.

Another robust scheme called Guaranteed Minimum
Outlier Number Estimator [5] (GOMNE) consists in
adaptively relaxing a growing number of constraints,
as long as the solution set is empty. The main

State space Measurement space

[f]

f

[f]*

Figure 2: Inclusion functions. [f] is an inclusion function
for f. [f]∗ is the minimal inclusion function for f.

advantage is to keep the solution set small as long
as there is no inconsistency between measurements.
However, since we already shown that erroneous
measurements may lead to a non-empty solution set,
GOMNE does not ensures that the true solution is
inside the solution set. In figure 1a, GOMNE will
return the black zone; in figure 1b, the gray zone will
be returned. In these two cases, the returned location
zone is consistent with ground truth. On the contrary,
in the cases of figures 1c and 1d, GOMNE will return
the black zone, which does not contain the actual
robot location. Therefore, GOMNE is not adapted
to protection zone computation.

3 SET INVERSION VIA INTERVAL ANALY-
SIS

3.1 Interval analysis

Computing and handling exact representations of
arbitrary sets is not tractable on a computer. An
efficient representation is to consider intervals, and
their multidimensional extension: boxes (also called
interval vectors). IR will denote the set of real
intervals, and IRn is the set of n-dimensional boxes.

The classical real arithmetic operations
(+,−,× and ÷) can be extended to intervals.
They are defined such as (� being a binary operator)

[x]� [y] = [{x� y ∈ R|x ∈ [x],y ∈ [y]}].

In other words, the interval extension of an operator
returns the smallest interval containing all the results
of the operation when the two operands cover their
respective intervals.

Elementary functions such as tan,sin,exp . . . also
extend to intervals. Given a function f : R→ R, its
interval extension [ f ] satisfies

[ f ]([x]) = [{ f (x)|x ∈ [x]}].

Let’s consider a function f from Rn to Rm. The
interval function [f] from IRn to IRm is an inclusion
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Figure 3: Bracketing of the hatched set between two
subpavings. Red boxes: inner subpaving, Red and yellow:
outer subpaving

function (Fig. 2) for f if

∀[x] ∈ IRn, f([x])⊂ [f]([x]).

The minimal inclusion function for f, [f]∗ is defined
such as for any [x], [f]∗([x]) is the smallest box that
contains f([x]) — i.e., the interval hull of f([x]).

If a function f : Rn→ R can be expressed as a finite
composition of operators +,−,×,÷ and elementary
functions (sin, cos, sqr...), an inclusion function [ f ]
for f is obtained by replacing each variable and each
operator or function by their interval counterparts.
This inclusion function is called the natural inclusion
function of f . If f only involves continuous operators
and functions, and if moreover each variable appears
at most once in the expression of f , then the natural
inclusion function is minimal.

The natural inclusion function for a vector function f
can be obtained by taking natural inclusion functions
for each of its coordinate functions fi.

A subpaving of a box [x] is the union of non-empty
non-overlapping subboxes of [x]. They can be used
to approximate compact sets in a guaranteed way. An
guaranteed approximation of the compact set X can
be done by bracketing it between an inner subpaving
X and an outer subpaving X such as X ⊂ X ⊂ X.
Fig. 3 shows the approximation of the set delimited
by the black boundary: red boxes constitute an inner
subpaving, while the union of red and yellow boxes
is an outer subpaving for the set.

3.2 Algorithms for set inversion

Determining the set X such as f(X) = Y when Y is
known is a set inversion problem.

A box [x] of IRn will be feasible if [x] ∈ X and
unfeasible if [x]∩X = /0, otherwise [x] is ambiguous.
Using an inclusion function [f], we can identify
feasibility of boxes:

• If [f]([x])⊂ Y then [x] is feasible

• If [f]([x])∩Y = /0 then [x] is unfeasible

• Else [x] is indeterminate, meaning it can be
feasible, unfeasible or ambiguous.

The Set Inversion Via Interval Analysis [6] algorithm
(SIVIA) works by testing feasibility of boxes, start-
ing from an arbitrarily big prior searching box [x0].
If a box is feasible, it is added to the inner subpaving
of solution X. If a box is unfeasible, it is discarded.
Finally, if a box is indeterminate, it is bisected into
two sub-boxes, which are enqueued in the list of
boxes to examine L. Indeterminate boxes whose
width is too small are added to the ∆X subpaving
of indeterminate boxes. The outer subpaving is then
X = X∪∆X.

Algorithm 1 SIVIA(in: [x0],Y; out: X, ∆X)
Original algorithm

1: push([x0],L)
2: while L 6= /0 do
3: [x] = pull(L)
4: if [f]([x])⊂ Y then
5: X = X∪ [x]
6: else if [f]([x])∩Y = /0 then
7: discard [x]
8: else if w([x]) < ε then
9: ∆X = ∆X∪ [x]

10: else
11: ([x1], [x2]) = bisect([x])
12: push([x1],L); push([x2],L)
13: end if
14: end while

The working list of boxes L used in the algorithm
can be implemented in various ways, each having its
advantages and drawbacks :

• L as a stack : the memory occupation of the
algorithm is minimal and can be bounded as
a function of n and ε . It is an in depth
first implementation, requiring the algorithm to
complete to get a usable result.

• L as a queue : search over the state space is done
in width first, allowing a similar paving width
over the whole solution set. On the one hand,
this enables the computation to be stopped at
any time to get a result. This approach is thus
compatible with real time applications. On the
other hand, memory occupation is a lot larger
than using a stack.

ha
l-0

04
44

80
6,

 v
er

si
on

 1
 - 

7 
Ja

n 
20

10



SIVIA is described in algorithm 1, where the push
function adds a box to the list, and the pull function
extracts the next box from the list.

As the dimension of the problem gets bigger, the
number of needed bisections gets exponentially
bigger and the computational burden becomes in-
tractable. A solution to this problem is to add a
contraction stage to the algorithm, which shrinks the
boxes without loosing any solution (Alg. 2). Such a
contractor can be built using a constraint propagation
algorithm [7].

Algorithm 2 SIVIAP(in: [x0],Y; out: X, ∆X)
SIVIA with constraint propagation

1: push([x0],L)
2: while L 6= /0 do
3: [x] = pull(L)
4: contract([x])
5: if [f]([x])⊂ Y then
6: X = X∪ [x]
7: else if [f]([x])∩Y = /0 then
8: discard [x]
9: else if w([x]) < ε then

10: ∆X = ∆X∪ [x]
11: else
12: ([x1], [x2]) = bisect([x])
13: push([x1],L); push([x2],L)
14: end if
15: end while

When a contraction step is included in the algorithm,
the generated subpavings are no longer regular,
and size of boxes is unpredictable. The queue
implementation of the working list of boxes may
thus be replaced by an sorted list implementation,
allowing to bisect the largest boxes first.

Adding robustness can be done by relaxing a given
number q of constraints. The solver will then
compute a sub-paving of the state space consistent
with at least m−q measurements (Alg. 3).

The component functions fi of f are considered
independently, with their inclusion functions [ fi]. If
feasibility of [x] is achieved with at least m − q
components of Y via component inclusion functions
[ fi], [x] will be considered as feasible. Else, if
infeasibility of [x] is concluded for more than q
components, [x] will be unfeasible. Otherwise, [x]
will be indeterminate.

Algorithm 3 RSIVIA(in: [x0], Y, q; out: X, ∆X)
Robustified SIVIA

1: push([x0],L)
2: while L 6= /0 do
3: [x] = pull(L)
4: incl := 0;sep := 0
5: for i = 1 . . .m do
6: if [ fi]([x])⊂ [yi] then
7: incl := incl +1
8: else if [ fi]([x])∩ [yi] = /0 then
9: sep := sep+1

10: end if
11: end for
12: if incl ≥ m−q then
13: X = X∪ [x]
14: else if sep > q then
15: discard [x]
16: else if w([x]) < ε then
17: ∆X = ∆X∪ [x]
18: else
19: ([x1], [x2]) = bisect([x])
20: push([x1],L); push([x2],L)
21: end if
22: end while

4 SETTING BOUNDS ON MEASUREMENTS

A nice characteristic of bounded-error models is
that a risk is taken when the measurement bounds
are chosen. In an opposite manner, other methods
(like Kalman filtering or weighted least squares for
instance) often consists in propagating measurement
errors using the two first statistical moments (mean
and covariance). Then, the risk arises when trying
to bound the obtained estimation error. An essential
quality of a set-inversion solver is than since the
computation and the inversion are guaranteed, it does
not add any risk. This way, the integrity risk of
the solution set not to include the ground truth is
only linked to the risk taken when formulating initial
assumptions on measurements (bounds parameters
and maximum number of outliers).

In the following, we present a method to choose the
bounds of the measurement errors given an integrity
risk.

Each measurement can be considered as a Bernoulli
trial “Is the true value inside the measurement
bounds?”. Knowing the probability density function
fey of the measurement error ey and the error bounds
[a,b] such as a measurement ymeas is represented by
the interval [ymeas] = [ymeas + a,ymeas + b], we can
compute the probability p = P(y∈ [ymeas]) of the true
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y being inside [ymeas].

p = P(y ∈ [ymeas]) =
ˆ b

a
fey(α)dα

Let nok be the number of measurements consistent
with the bounded error model (in other words there
are m − nok outliers). Under the assumption of
independence, if m measurements are made with a
probability p of the true value being inside each
measurement interval, the probability of all the m
measurements being consistent with the true value is

P(nok = m) = pm

If a number q of faulty measurements is tolerated,
we have to compute the probability of having at least
m−q good measurements. The probability of having
exactly k good measurements out of m is given by
binomial law:

P(nok = k) =
(

m
k

)
pk(1− p)m−k (2)

where
(

m
k

)
=

m!
k!(m− k)!

Thus, by summing equation 2 over successive k
values, the probability of having at least m−q good
measurements is

P(nok ≥ m−q) =
m

∑
k=m−q

(
m
k

)
pk(1− p)m−k (3)

SIVIA algorithm (see section 3.2) computes a con-
servative approximation X of the solution set X.
Moreover, if the hypotheses made on the measure-
ments are verified, the solution set is consistent with
the truth. This way,

nok ≥ m−q⇒ x ∈ X⇒ x ∈ X

which leads to

P(x ∈ X)≥ P(x ∈ X)≥ P(nok ≥ m−q)

Equivalently, the risk taken when formulating as-
sumptions on measurements is an upper-bound of the
risk than the solution set does not include the ground
truth.

P(x /∈ X)≤ P(x /∈ X)≤ 1−P(nok ≥ m−q)

One can try to tune the measurement error bounds
to meet a global risk requirement. Equation 3 has
to be inverted to compute the required probability

Figure 4: log10 of individual measurement risk (1− p) to
achieve a global risk of 10−7

Table 1: Computation of (1− p) to achieve a risk of
10−7 using m measurements and allowing q erroneous
measurements

m = 4 m = 5 m = 6 m = 7

q = 0 2.5 ·10−8 2 ·10−8 1.66 ·10−8 1.42 ·10−8

q = 1 1.29 ·10−4 1.0 ·10−4 8.16 ·10−5 6.90 ·10−5

q = 2 2.93 ·10−3 2.16 ·10−3 2.71 ·10−3 1.42 ·10−3

p of each measurement, for a given number m of
measurements and q tolerated outliers. Using a
bisection method, we computed the required value of
p to achieve a global risk of 10−7 for different (m,q)
combinations (Fig. 4).

Table 1 contains the value of probabilities for GPS-
like application.

Once the required probability p of each measurement
interval to contain the actual value is computed, the
measurement error bounds can be set to meet this
requirement. In the case of a centered Gaussian
measurement error ey ∼ N (0,σy), if Φ represents
the cumulative distribution function of the standard
normal distribution, the measurement interval should
be set to

[ymeas] = [ymeas−Kσy,ymeas +Kσy]

with K =−Φ
−1
(

1− p
2

)
This way, the probability of a wrong measurement
is evenly distributed on the two tails of the Gaussian
error distribution (Fig. 5). Table 2 contains values of
K to achieve a global risk of 10−7 for different (m,q)
combinations, in the case of Gaussian measurement
errors.

5 GPS INTEGRITY ZONE COMPUTATION

Using L1 code pseudo-range measurements and a
bounded error model, we here compute a location
zone with outliers. The risk of the actual user
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Table 2: Computation of K to achieve a risk of 10−7 using
m measurements and allowing q erroneous measurements

m = 4 m = 5 m = 6 m = 7

q = 0 5.57 5.61 5.64 5.67

q = 1 3.83 3.89 3.94 3.98

q = 2 2.98 3.07 3.14 3.19

σ

½ P(y∉[ymeas])
K.σ

f(ey)

ey

Figure 5: Risk when choosing a K.σ bound associated to
Gaussian noise

position not being inside the computed zone is an
input of the method.

5.1 Set-theoretic GPS localization

GPS localization using pseudoranges is a four-
dimensional problem: along with space coordinates
(x,y,z) of the user, the user clock offset dtu has to
be estimated. With ρi being the corrected pseudo-
ranges, the GPS code observation model is :


ρ1
ρ2
...

ρm

=



√
(x− xs

1)
2 +(y− ys

1)
2 +(z− zs

1)
2 + cdtu√

(x− xs
2)

2 +(y− ys
2)

2 +(z− zs
2)

2 + cdtu
...√
(x− xs

m)2 +(y− ys
m)2 +(z− zs

m)2 + cdtu



Satellite positions (xs
i ,y

s
i ,z

s
i ) are known with un-

certainty due to the inaccuracy of the broadcast
ephemeris information. For each satellite, we
consider a box [xs

i ] = ([xs
i ], [y

s
i ], [z

s
i ]) whose bounds

are chosen to contain the true satellite position at a
given confidence level.

Measured pseudo-ranges are compensated from rel-
ativistic effects, ionosphere and troposphere propa-
gation delays using EGNOS to get corrected pseu-
doranges ρi. These corrections are imprecise due to
model and parameters errors. Moreover, the receiver
makes also measurement errors. Therefore, we
model the pseudo-range measurements as intervals
[ρi] whose bounds will be determined given an
integrity risk.

The location zone computation consists in character-
izing the set X of all locations compatible with the
measurements and the satellite positions intervals:

X =
{

(x,y,z,cdtu) ∈ R4,∀i = 1 . . .m,

∃ρi ∈ [ρi],∃(xs
i ,y

s
i ,z

s
i ) ∈ [xs

i ],

ρi =
√

(x− xs
i )2 +(y− ys

i )2 +(x− ys
i )2 + cdtu

}
The solution set is the set of locations for which a
pseudorange and a satellite position can be found in-
side the measurement and satellite position intervals
for every satellite.

To solve this set inversion problem, SIVIA is em-
ployed (see section 3.2). By recursively bisecting
an arbitrarily big initial box, this algorithm returns a
subpaving of the state-space (user position and clock
offset) guaranteed to include the solution set — i.e.,
an outer approximation of the solution set by a set
of boxes. As long as the errors on measurements
and satellite positions stay inside their bounds, the
true receiver position is guaranteed to be inside the
computed localization zone.

We use a real-time oriented implementation, based
on an sorted list, that gives usable results even if
computation time is bounded. To reduce the practical
computational complexity, a contractor based on
Waltz constraint propagation algorithm is used at
each step to shrink the boxes. This allows to get a
good characterization of the localization zone in less
than one second.

To speed up computation, the prior position and
clock offset box at time tk is computed from the
interval-hull [Xk−1] of the location zone at time tk−1,
taking into account the physical limits of the system.
We assume that the user speed is no more than vmax

and that the receiver clock drift is no more than dmax.
This way, the prior box [xk

0] at time tk will be

[xk
0] = [Xk−1]+


[−vmax,+vmax]
[−vmax,+vmax]
[−vmax,+vmax]
[−dmax,+dmax]

 · (tk− tk−1) (4)

5.2 Experimentation with real data

GPS localization by set inversion has been tested
with data recorded using a Septentrio PolaRx receiver
and the experimental vehicle Strada of Fig. 6.
Ground truth was provided by a post-processed
Trimble 5700 receiver with a local base. Results
presented in the following are obtained from to a
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Figure 6: Our experimental vehicles: CARMEN and
STRADA.

170 second long sequence of data, recorded during
a 1800 m trip near the lab.

Error parameters have been obtained using the EG-
NOS satellite based augmentation system decoded
by the PolaRx receiver. This allows computing over-
bounding Gaussian distributions of the pseudorange
measurement errors.

We report here location zones with an integrity
risk of 0.5 · 10−7 per hour. Based on ionospheric
corrections, 360 s seems to be a reasonable delay
to ensure independence of measurements. Thus, we
consider 10 independent samples per hour [8]. It
leads to a probability of inconsistent location zone of
5 · 109 per sample. Following the method described
in section 4, if six pseudorange measurements are
available at each time, the probability of an out-
of-bounds measurement should then be at most
8.33 · 10−10, which translates into ±6.14σ bounds,
assuming a Gaussian distribution of pseudo-range
error.

The location zone is computed in a local tangent
plane, with East-North-Up coordinates. Four to six
satellites were in view during the trial. Figure 7
shows the evolution of location zone bounds during
the experiment. Figure 8 shows the bounding boxes
of the computed location zones and the ground truth
trajectory.

When six measurements are available, the location
zone radius stays within 15 to 20 meters in the
horizontal plane. This radius is about 35 to 40 meters
on the vertical axis; vertical dilution of precision is
usually higher than horizontal dilution of precision
due to the geometrical configuration of the GPS
localization problem.

The center of gravity of the computed location
subpaving is used as a punctual estimate of position
(red line in Fig. 7). The RMS error of this 3-
dimensional estimation of position is 0.84 m for the
experiment, and the absolute error stays within 3
meters.
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Figure 7: Upper (green) and lower (blue) bounds of the
location zone along the East, North and Up axis, with
respect to ground truth. Red line is the center of gravity of
the computed location zone.
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Figure 8: Trajectory. Boxes are bounding boxes of
solution sets. Reference trajectory is in black.
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(a) 50 ms computing time (b) 1 s computing time

Figure 9: X,Y projection (top) and X,Z projection
(bottom) of computed location zone. Actual location in
red.

Variations in the computed location area width
are due to the loss of satellites in view. Each
measurement acts as a constraint on the location
zone, consequently, when fewer measurement are
available, the location zone is less constrained.

Algorithm is implemented in C++ and works in a
time-bounded fashion, allowing devoted computed
time to be specified. The computation is paral-
lelized so as to take advantage of multicore and
multiprocessor computers. The computed subpaving
approximation of solution gets more precise and less
pessimistic as more time is alloted to computation
(Fig 9). One has to notice that more time will be
needed to precisely characterize a wide location zone
compared to a narrow zone, since more boxes will be
needed. Zones of less than 100 meters wide are well
approximated in a few tenths of second.

5.3 Results with the robust set-inversion solver

If the computation takes into account the presence of
at most one erroneous measurement at a time (like
often done in any RAIM algorithm), a risk of 5 ·109

per sample can be achieved if the probability of a
wrong measurement is 1.83 · 10−5 per sample (with
six satellites in view). The bounds will then be set
to±4.29σ , assuming a Gaussian measurement error.
The variances of measurement errors are obtained
using EGNOS augmentation system.

Computation of location zone under those hypothe-
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Figure 10: Upper (green) and lower (blue) bounds of the
location zone along the East, North and Up axis, with
respect to ground truth. One erroneous measurement is
tolerated.

ses require a robust solver, which can be based
on RSIVIA algorithm (see Alg. 3 in section 3.2).
Precise determination of location zones with the
robust solver takes more time than the non robust
algorithm. This is in part due to the overhead of
additional computations for relaxed intersection, but
the main factor is that relaxed solution sets are bigger.

Location zones computed under the hypothesis of
at most one outlier are larger that zones computed
without taking into account the presence of an
erroneous measurement. Given six satellites in view,
these zones are equivalent to the union of the zones
generated by all five-satellite combinations. Since
five-satellite solutions are more likely to be ill-
conditioned geometrically (with higher dilution of
precision) than a six-satellite solution, the compu-
tation of a relaxed solution-set will generate larger
location zones, despite the narrower measurement
bounds.

One may notice that since one constraint is relaxed,
at least five pseudo-ranges instead of four are needed
to compute a location zone with the robust solver.
The reason why the location zone does not become
huge when only four measurements are available is
the assumption of bounded vehicle speed and clock
drift (Eq. 4). This assumption roughly constrains

ha
l-0

04
44

80
6,

 v
er

si
on

 1
 - 

7 
Ja

n 
20

10



the expansion of the location zone. This emphasises
the need for data redundancy when using a robust
method. Such a data redundancy can be obtained
by using more than four GPS pseudorange measure-
ments. In difficult environments like urban areas,
redundancy is not always available from GPS alone,
thus other sources like geographical information [9]
can be employed.

Fig. 10 shows the bounds of the computed location
zones. One can notice than bounds on the x-axis
(East) remain the same order of magnitude than for
the solution allowing no outlier. However, y and
z axis (North and Up) suffer from the dilution of
precision of 5-satellite solutions.

Robust computation of location zone allows to keep
integrity in the presence of an outlier. Outliers
can frequently appear in urban environments, due to
unmodeled multipaths. When no outlier is present,
computed zone can be very wide if there is not
enough data redundancy to limit the effect of relaxing
intersections of constraints. However, when outliers
occur, location zone remains consistent with ground
truth as long as the number of tolerated outliers
is not exceeded, and moreover, the location zone
tends to get narrower (Fig 11). If the outlier
is incompatible with all other measurements, it
is automatically discarded without any additional
computation (Fig 11f). If needed, the identification
of the erroneous measurement can be done by
analysing compatibility of the location zone with
each measurement.

6 CONCLUSION

In this paper, a new way to compute integrity
zone has been proposed, using robust bounded error
solvers. The integrity risk is expressed on the
measurements, using a bounded error model, and
the number of outliers tolerated without affecting
integrity can be specified. A method to set bounds
on measurement to achieve a specific integrity risk
requirement has also been presented and developed
in the case of Gaussian error models.

An experimental validation has been carried out
to compute location zones with GPS pseudorange
measurements and EGNOS. A parallelized and time
bounded implementation in C++ has been done for
a real-time location zone computation application.
Robustness to outliers was also tested by altering
data.

Future work will be focused on data fusion for multi-
sensor localization, since the robust solver needs data

(a) No multipath (b) 10 m

(c) 20 m (d) 30 m

(e) 40 m (f) 50 m

Figure 11: Computed location zone (X,Y projection) with
a solver robust to one outlier. A multipath of growing
intensity is simulated on the first pseudorange. Ground
truth in red

redundancy to keep location zones narrow. Alti-
tude information from altimeters or digital elevation
models could be used to constrain solution. A
kinematic model of vehicle will also be introduced,
and proprioceptive sensors could help in localization,
especially during GPS outages. We plan also to study
difficult situations like urban canyons where several
multipath can occur simultaneously.
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