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Abstract—This paper presents a new criterion to deal with
training data heterogeneity in space-time adaptive processing
(STAP). It is based on Siegel measure, which is a distance in
the space of Hermitian positive definite matrices, and consists in
computing the distance between the covariance matrix estimated
from training data and an a priori matrix. After deriving a test
based on this distance, the statistical behavior of Siegel distance
is analyzed, as a function of the number of training samples.
Its probability density function (PDF) is derived and related to
that of the generalized inner product (GIP) in the case of one
single training snapshot. Finally, simulations are performed to
illustrate the interest of preprocessing training data using Siegel
distance, in terms of STAP signal to interference plus noise ratio
(SINR) performance.

Index Terms—STAP, Siegel distance, Generalized Inner Prod-
uct

I. I NTRODUCTION

STAP is a well-known technique used for clutter mitigation
in radar applications among any others. For a cell under
test (CUT), STAP algorithms are based on the estimation
of the covariance matrix of clutter and background noise.
In an ideal situation, there exist training samples which are
independent and identically distributed (i.i.d.) and share the
same covariance matrix. In that case, the true covariance ma-
trix is estimated by its maximum-likelihood covariance matrix
(the sample covariance matrix (SCM) under the assumption
of Gaussian training samples) and the estimation improves
when the number of training samples increases. Consequently,
the performance of adaptive filters increases with the number
of training samples. For instance, when the sample matrix
inversion (SMI) STAP processor [1] is used, the average SINR
performance becomes within 3 dB of the optimal performance
when more than2N (whereN is the number of space-time
degrees of freedom) samples are used.

However, in practical applications, i.i.d. training samples
are scarce since the environments are very frequently hetero-
geneous (e.g., see [2]). Since the presence of heterogeneous
samples (outliers) in the training data, leads to a biased covari-
ance matrix estimate, the performance of adaptive algorithms
degrade. To take this problem into account, preprocessing
schemes of the training data have been developed. An im-
portant class of solutions are based on non homogeneity
detection (NHD). The principle of NHD techniques is to detect
and excise nonhomogeneous training snapshots to avoid a
bias in the covariance matrix estimation and thus keep good
SINR performance for STAP algorithms. For instance, the GIP
[3], [4] is a commonly-used NHD technique which aims at
detecting outliers in the training snapshots. For each sample
x of the training data, it consists in computing a scalar value
equal toxHR̂−1x, where R̂ is the SCM derived from all
the training data. Then, the resulting value is compared to a
threshold and the sample is removed from the training samples
if the value exceeds the threshold. Other techniques also exist,
based for instance on power tests or on more sophisticated
techniques like the projection statistics test (PS) [5].

In this paper, we consider the context of a forward-looking
radar where data heterogeneity is mostly due to the pres-
ence/absence of clutter in the training data and to the fact
that clutter characteristics depend on physical parameters and
vary with range and Doppler [6]. Other factors can also gen-
erate heterogeneities such as for instance complex scattering
environments. In that context, heterogeneous training data
cannot only be modelled by discrete outliers, but other models
must be developed [7]. In that condition, the use of NHD
techniques may not be the most appropriate solution to deal
with it. Moreover, although these techniques can be efficient
to detect one or more outliers in the data, they can have an



high computational complexity since they need to process each
of the different samples in the training data. The number of
operations is therefore proportional to that number of training
samples.

Here, we propose another approach which aims at having
good SINR performance on powerful clutter areas, with-
out degrading the performance with respect to conventional
processing on other areas, and by minimizing the number of
detection tests. It consists in computing a SCM with a few
training samples in the neighborhood of the CUT (so that we
limit clutter heterogeneity which extends with the distance to
the CUT). Then, a test on the resulting SCM is performed to
decide whether powerful clutter is present in the training data
or not and whether there is a need to implement an adaptive
filter or not. This test is significant since when a small number
of samples are used to compute an adaptive filter, estimation
errors occur, which limit the algorithm SINR performance.
Choosing a non-adaptive filter on background noise therefore
avoids those SINR performance losses. Then, let us note that
compared to NHD techniques, this algorithm does not need
any detection for each training sample, but only for the SCM
computed for each CUT.

To test whether using a STAP filter based on the SCM
is useful, we compute the distance between the background
noise covariance matrix (which is assumed to be known in
this paper) and the SCM. The chosen distance is the Siegel
distance [8], which is defined on the space of Hermitian
positive matrices.

This paper is organized as follows. In Section II, data model
and problem statement are presented. Then, in Section III, the
expression of Siegel distance is given and its PDF in the case
of an SCM estimated with one training snapshot is derived.
Finally, simulations are performed in Section IV to illustrate
the SINR performance of the proposed scheme.

II. PROBLEM STATEMENT

A. Data model

Let us consider an airborne radar with an arbitrary array
composed ofN sensors. The radar emits anM -pulse wave-
form. Then, let us suppose that the environment be composed
of clutter, background noise and a moving target. For STAP
processing, the data is divided into two sets of data called
primary and secondary data. The primary data consists of
the samples to be filtered and is composed of background
noise, and possibly clutter and signal. The secondary data
is the training data, and is supposed to be only composed
of background noise and possibly clutter. We denoteK the
number of secondary samples used to compute adaptive filters
and assume that for each adaptive filter, theK secondary
samples used for its computation share the same distribution.
The background noise is modelled by a zero-mean i.i.d. com-
plex process not necessarily spatially white, with covariance
matrixR. Then, the signal is considered as deterministic, with
unknown power, but known direction and speed. Finally, the
clutter is modelled by elementary reflectors. Those ones are
supposed to be motionless, spatially and from pulse to pulse

correlated but white from sample to sample during a pulse.
They are assumed to be zero-mean, with power depending on
their direction of arrival (DOA) and distance.

B. Problem statement

STAP filtering consists in computing, for each sample of
the primary data, an adaptive filter based on the inverse of
an estimated covariance matrix. Let us denotezi, the primary
sample to be filtered,Ri its covariance matrix andzk(i)k=1..K

the secondary samples in the neighborhood ofzi which are
used for the estimation of the covariance matrixRi. This one
will be computed by:

R̂i =
1
K

K∑

k=1

zk(i)zk(i)H .

In the case where the secondary samples are composed of
background noise alone Gaussian distributed, the estimated
covariance will be distributed with the following Wishart
distribution:

R̂i ∼ W(N,K,R).

Before filtering the primary sample, our problem is first to
decide whetherR̂i is the SCM of R (hypothesisH0) or
not. Then, to optimize the SINR, we apply the filterR−1φ
based onR under hypothesisH0 or the adaptive filter̂R−1

i φ

based on̂Ri otherwise, whereφ is the spatio-temporal steering
vector of the target.

III. U SE OFSIEGEL DISTANCE BETWEENHERMITIAN

POSITIVE DEFINITE MATRICES

A. Test based on Siegel distance

To test the hypothesisH0, we compute the distance between
R̂i andR. We choose the Siegel distance, since it is a distance
on the space of Hermitian positive definite matrices, with good
invariance properties [9], [10]. This distance is defined by:

d(R, R̂i)2 =
∥∥∥log(R−1/2R̂iR−1/2)

∥∥∥
2

=
N∑

n=1

log2(λn)

where(λn)n=1...N are the generalized eigenvalues of(R̂i,R),
equal to the eigenvalues ofR−1R̂i or R−1/2R̂iR−1/2 where
R−1/2 is an arbitrary square root ofR. The test consists
in comparingd(R, R̂i) with a thresholds. If the distance
is below the thresholds, we decide to implement processing
using the a priori matrixR, whereas in the contrary case, we
implement STAP algorithm based on the SCM̂Ri. It is clear
that sinceR−1/2R̂iR−1/2 ∼ W(N, K, I), under hypothesis
H0, whereI is the identity matrix of dimensionN , the test
based on this distance is constant false alarm rate (CFAR).
Indeed, the joint density of the eigenvalues ofR−1/2R̂iR−1/2

and consequently that ofd(R, .) only depends onK and N
and not on the background covariance matrix.



B. Statistical analysis of Siegel distance

Now, to fix the thresholds, we need to analyze the statistical
behavior of Siegel distance.(A supprimer: First, we consider
the particular caseK = 1). But deriving the theoretical PDF of
the Siegel distance for arbitraryK is rather challenging except
for the specific caseK = 1. In this case, althoughd(R, .) is
not defined (̂Ri is singular), the Siegel distance PDF can be
derived and compared to that of the GIP, using a regularization.
For instance, let us add the known covariance matriceεR and
considerR̂i + εR.

In that case, we have:

d(R, R̂i + εR)2 =
N∑

n=1

log2(λn(R−1R̂i + εI)).

SinceR−1R̂i is rank-one, it has a single non-zero eigenvalue
which is equal to

λ = Tr(R−1z1(i)z1(i)H)
= Tr(z1(i)HR−1z1(i))
= z1(i)HR−1z1(i)

which is equal to the GIP measure denotedQ. The largest
eigenvalue ofR−1R̂i +εI is therefore equal toQ+ε, whereas
the other eigenvalues are equal toε. In that case, the Siegel
distance is then a function of the GIP measure, given by:

d(R, R̂i) =
√

log(Q + ε)2 + (N − 1)log(ε)2. (1)

When the data are composed of background noise alone,
the PDF ofzk(i) is known, and the corresponding PDF of
Q can be computed. For instance, whenzk(i) are Gaussian
distributed, it is well known that the PDF ofQ follows a Chi-
Squared distribution withN degrees of freedom [4], given by:

fQ(q) =
qN−1

Γ(N)
e−q 0 ≤ q < ∞ (2)

whereΓ(N) is the Euler-Gamma function. Therefore, the PDF
of the Siegel distance given by (1) can be easily deduced after
a straightforward change of variable. It is given by:

fD(d) =
1

Γ(N)
[(e

√
d2−a − ε)N−1e−e

√
d2−a+

√
d2−a+ε

+ (e−
√

d2−a − ε)N−1e−e−
√

d2−a−√d2−a+ε]
d√

d2 − a
(3)

for d >
√

a wherea = (N − 1)log(ε)2, which reduces to

fD(d) =
(ed − 1)(N−1)

Γ(N)
ed+1−ed

0 ≤ d < ∞

for ε = 1.
Fig.1 presents a comparison of the PDF ofD obtained

from Monte-Carlo realizations using simulated data with the
theoretical value obtained by (3) forN = 4 with 4 values ofε.
In the simulation, we consider white noise, with unitary power,
so thatR = I. We note a goof fit between the theoretical and
empirical PDF of the Siegel distance. Moreover, we observe
that the mean ofD tends to infinity whereas its variance

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

x

f X
(x

)

Theoretical and empirical PDF for GIP and Siegel distancel 

ε=0.5

ε=0.2

ε=0.1

PDF of GIP

ε=1

Fig. 1. Theoretical (–) and empirical PDF for Siegel distance (××) and GIP
(+ +).

converges to zero whenε tends to zero. That figure shows
that the choice ofε, which is arbitrary, defines different
schemes associated with different thresholdss, each threshold
being chosen to have a given type-I error, and therefore very
dependent on the value ofε. In the following, we will make
the choiceε = 1 for simplicity. Then, for comparison, we also
plot the empirical and theoretical PDF ofQ obtained by (2).
We note that whatever the value ofε, the variance ofQ is
much larger than that ofD which results from the application
of the logarithm function in the definition of Siegel distance.

Then, we consider the case whereK > 1. Since,R̂i is not
positive definite forK < N , we still consider the regularized
matrice. In that case, the derivation of the theoretical PDF of
Siegel distance is challenging. Therefore, we only consider the
mean and variance ofdK = d(R, R̂i + εR) for K > 1. For
both moments, we compute asymptotic values w.r.t.K. We
have:

E{dK} = E{

√√√√
N∑

n=1

log2(λn(R−1R̂i + εI))}

andE{d2
K} is equal to

E{
√√√√

N∑

n,n′=1

log2(λn(R−1R̂i + εI)) log2(λn′(R−1R̂i + εI))}.

For computing the limiting values of the mean and variance
of dK , whenK →∞, we use the continuity of the eigenvalue
function. Thus, we obtain

lim
K→∞

E{dK} =

√√√√
N∑

n=1

log2(λn((1 + ε)I))

=
√

N log(1 + ε)
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Fig. 2. Empirical (-+) PDF of Siegel distance for five values ofK with
ε = 1.

and

lim
K→∞

E{d2
K}=

√√√√
N∑

n=1

N∑

n′=1

log2(λn((1 +ε)I)) log2(λn′((1 +ε)I))

= lim
K→∞

E{dK}2

which shows that the variance converges to zero whenK
increases to infinity1.

In Fig.2, we plot the empirical PDF for Siegel distance, for
different values ofK for N = 4, with ε = 1 and white noise
of unit power. We see that the variance ofdK converges to
zero very rapidly. Then, in Tab.I, we compute the empirical
mean ofdK as a function ofK. We see that the asymptotic
value

√
N log(2) ≈ 1.386 is obtained very rapidly as well.

K 1 2 4 16 100 ∞
E{dK} 1.53 1.513 1.466 1.408 1.39 1.386

Tab.I: Empirical mean ofdK as a function ofK

IV. SIMULATIONS

We now illustrate the proposed scheme with simulations.
Thus, let us consider the context of an airborne radar with
rectangular array composed ofN = 4 subarrays. More,
precisely, we consider the case of a forward-looking radar,
for which clutter is distributed along an ellipse in the angle-
Doppler plane which varies with distance [6]. This naturally
leads to clutter heterogeneity. Therefore, for each primary
sample to filter, the number of secondary samplesK sharing
the same distribution as the CUT is limited. Consequently,
errors occur in the estimation of the noise covariance matrix,
what leads to performance degradation. In Fig.3, we illustrate
clutter heterogeneities by showing a clutter + noise power map.

1Let us note that this is a natural result sincebRi is a consistent estimate
of R.
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Fig. 3. Power map vs range and Doppler cell.

The number of pulses is equal toM = 256 and the number
of range cells is equal to60. The objective of the proposed
processing is to attain the maximal STAP SINR performance.
In the illustrations, we plot the normalized SINR, i.e., the ratio
between the SINR and its optimal value (obtained in exact
statistics with background noise alone).

First, we compare in terms of SINR performance, the
standard STAP processing based on the estimation of the
noise covariance matrix, to the processing based on a priori
background noise covariance matrix (that will be called in
the following a priori processing), which is optimal with
background noise alone. Thus, we plot in Fig.4 the normalized
SINR for both STAP processing (computed with the SMI
algorithm with diagonal loading) and a priori processing, at
a given (peut être pŕeciser cette Doppler cell pour pouvoir
mieux s’appuyer sur la Fig.3)Doppler cell and with a number
of training samples equal toK = 20. Both SINR must
be compared to the optimal SINR which is reached under
assumption of a known clutter + noise covariance matrix.
Depending on the range cell, 3 areas must be distinguished.
From range cell 0 to range cell 15, we observe that a priori
processing is sufficient to attain optimal performance, since
at those range cells, clutter is less powerful than background
noise as can be seen from Fig.3. By comparison, STAP with
K = 20 samples leads to poor SINR performance. From range
cell 15 to range cell 30, clutter is powerful and performance of
a priori processing significantly degrades. In that case, STAP
is very useful since it allows to increase the SINR up to about
10 dB.Note that at range cell 17, the clutter that is present in
the SCM estimated from the cells around it, is very strong
(as shown by the power map in Fig.3), whereas it is not
present in the a priori covariance matrix. Finally, the 3rd area
is between range cell 30 to 60, where the performance of a
priori processing becomes better than those of STAP, though
clutter is more powerful than background noise, as shown by
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Fig. 5. Normalized SINR vs range cell, at Doppler cell 100, for optimal
processing (–), and the proposed scheme (*).

power map in Fig.3.
Then, we implement the proposed scheme. Depending on

the value of Siegel distance, it consists in choosing between
a priori and estimated from training data covariance matrix,
for space-time processing. In Fig.5, we compare the resulting
normalized SINR of the proposed scheme to the optimal SINR.
The thresholds is chosen by use of Monte Carlo simulations
with background noise alone, so that the type-I error is less
than10−6.

We observe that this scheme makes a good choice between
conventional STAP and a priori filter since it allows to
attain good SINR performance. It allows both to improve the
performance of conventional STAP processing on the areas of
background noise alone (except in the close vicinity of clutter

discontinuities) and to avoid significant SINR losses, resulting
from the presence of clutter, when using a priori processing.
Finally, let us note that the use of this scheme can be extended
to the case where several a priori matrices are available, for
instance for knowledge-aided STAP.

V. CONCLUSIONS

In this paper, we have considered the use of Siegel distance,
in radar array processing. We have proposed to compute the
distance between the SCM of training data and an a priori
covariance matrix before STAP processing, to decide what
kind of filter to use. After having analyzed the statistical
behavior of the Siegel distance, we have performed simulations
to illustrate the interest of that preprocessing in terms of STAP
SINR performance.

REFERENCES

[1] I. Reed, D. Mallet, L. Brennan, “Rapid convergence rate in adaptive
arrays,” IEEE Trans. Aerosp. Electron. Syst.”, vol. 10, no. 6, pp. 853-
863, Nov. 1974.

[2] W.L. Melvin, “Space-time adaptive radar performance in heterogeneous
clutter,” IEEE Trans. Aerosp. Electron. Syst.”, vol. 36, no. 2, pp. 621-
633, Apr. 2000.

[3] P. Chen, “Screening Among Multivariate Normal Data”,Journal of
Multivariate Analysis, 69, pp. 10-29, 1999.

[4] M. Rangaswamy, B. Himed, J.H. Michels, “Statistical Analysis of the
Nonhomogeneity Detector”,Proc. Asilomar Conference on Signals,
Systems and Computers, vol. 2, pp. 1117-1121, Nov. 2000.

[5] G.N. Schoenig, M. L. Picciolo, “Improved Detection of Strong Nonho-
mogeneities for STAP via Projection Statistics”, inProc. of the IEEE
2005 International Radar Conference, Arlington, Virginia, 9-12, pp.
405-412, May 2005.

[6] R. Klemm, Principles of Space-Time Adaptive Processing, ser. IEE
Radar, Sonar, Navigation and Avionics Series 12. London, U.K.: The
Inst. Elec. Eng., 2002.

[7] S. Bidon, O. Besson, and J.Y. Tourneret, “A Bayesian approach to
adaptive detection in non-homogeneous environments”,IEEE Trans.
Signal Process., vol. 56, no. 1, pp. 205-217, Jan. 2007.

[8] C.L. Siegel,Symplectic Geometry, Academic Press, New York, 1964.
[9] F. Barbaresco, “Innovative Tools for Radar Signal Processing Based

on Cartan’s Geometry of SPD Matrices and Information Geometry”, in
Proc. of the IEEE International Radar Conference, Rome, May 2008.

[10] F. Barbaresco, ”Interactions between Symmetric Cones and Information
Geometrics: Bruhat-Tits and Siegel Spaces Models for High Resolution
Autoregressive Doppler Imagery”,ETCV’O8 Conference, Ecole Poly-
technique, Nov. 2008, published by Springer.


