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Abstract. In this paper we investigate fair computations in the π-calculus [25]. Following
Costa and Stirling’s approach for CCS-like languages [10, 11], we consider a method to
label process actions in order to filter out unfair computations. We contrast the existing
fair-testing notion [35, 26] with those that naturally arise by imposing weak and strong
fairness. This comparison provides insight about the expressiveness of the various ‘fair’
testing semantics and about their discriminating power.

1. Introduction

One of the typical problems of concurrency is to ensure that all the tasks that are
supposed to be executed do not get postponed indefinitely in favor of other activities. This
property, which is called fairness, can be implemented by using a particular scheduling
policy that excludes unfair behavior. For instance, in Pict [33], (weak) fairness is obtained
by using FIFO channel queues and a round-robin policy for process scheduling. A stronger
property (strong fairness) is obtained by using priority queues.

Of course in practice it is not feasible to impose that all implementations adopt a certain
scheduler. One reason is that, depending on the underlying machine, one scheduling policy
may be much more efficient than another one. Hence fairness has been studied, since the
beginning of the research on Concurrency, as an abstract property and independently from
the implementation.
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1.1. Fairness in literature. Most of the common notions of fairness share the same gen-
eral form: “Every entity that is enabled sufficiently often will eventually make progress.”
Varying the interpretations of ‘entity’ and ‘sufficiently often’ leads to different notions of
fairness.

Kuiper and de Roever [18] identified a wide hierarchy of fairness notions for the CSP
language (channel fairness, process fairness, guard fairness, and communication fairness),
according to the entity taken into account (respectively channel, process, guard and com-
munication). Each of these fairness notions have a weak and a strong variant, which differ
in the interpretation of sufficiently often: weak forms of fairness are concerned with contin-
uously enabled entities, whereas strong forms of fairness are concerned with the infinitely
enabled entities.

Independently, Costa and Stirling investigated (weak and strong) fairness of actions
for a CCS-like language without restriction in [10], and fairness of components for the full
CCS in [11]. An important result of their investigation was the characterization of fair
executions in terms of the concatenation of certain finite sequences, called LP-steps. This
result allowed expressing fairness as a local property instead than a property of complete
maximal executions.

Although [18] and [10, 11] seem to define different fairness varieties, there is a corre-
spondence between some notions in the two approaches (up to the language on which the
study is based): guard fairness corresponds to fairness of actions, while process fairness
corresponds to fairness of components. However, the communication mechanism of the
languages chosen for the study - CSP in [18] and CCS in [10, 11] - modifies the interrela-
tionships among notions. In fact, in CSP processes communicate by name, each channel
corresponds precisely to a pair of processes, i.e only two processes communicate along any
given channel and only one channel is used between any two processes; on the other hand,
in CCS any number of processes may communicate along a given channel, and two processes
may communicate along any number of channels. This implies that some fairness notions
are related in CSP while they are not related in CCS. For example, while every channel-fair
computation is also process-fair in CSP ([15]), in CCS it is possible for a particular channel
to be used sufficiently often and yet for another process to become blocked while trying to
use that same channel1.

Hennessy [16] introduced the concept of fairness in his acceptance trees model, by adding
limit points indicating which infinite paths are fair. The notion of fairness incorporated into
this semantics is a form of unconditional fairness: an infinite execution is considered fair if
every process makes infinitely many transitions along that computation.

Francez [15] characterized the notions of fairness in [18] in terms of a so-called machine
closure property and by means of a topological model.

Fairness has also been investigated in the context of probabilistic systems. Koomen
[21] explained fairness with probabilistic arguments: the Fair Abstraction Rule establishes
that no matter how small the probability of success is, if one tries often enough one will
eventually succeed. Pnueli introduced in [32] the notion of extreme fairness and α-fairness,
to abstract from the precise values of probabilities.

1It suffices to consider the term ā | !a.ā | ā, where a and ā denote actions of input and output on channel
a, respectively, and !a.ā denotes a process which can perform infinitely often an input on channel a, followed
by an output on the same channel. Although channel a must be used infinitely often along any infinite
computation, it is possible under channel fairness that the leftmost ā is ignored, while the right-most ā

synchronizes continually with the process !a.ā. This is not the case under process fairness.
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1.2. Fairness in bisimulation equivalences and testing semantics. Observational
equivalences and preorders can have different bearings with respect to fairness. In particular,
this is the case of testing preorders [12] and bisimulation equivalences [24, 31].

The first framework was presented by De Nicola and Hennessy in their seminal work
[12], where they proposed the concept of testing and defined the must- and the may-testing
semantics, as well as their induced preorders. Given a process P and a test (observer) o,

- P may o means that there exists a successful computation from P | o (where | is
the parallel operator, and successful means that there is a state where the special
action ω is enabled);

- P must o means that every maximal computation from P | o is successful;
- The preorder P ≤sat Q means that for any test o, P sat o implies Q sat o, where sat

denotes may or must ;
- The equivalence P ≈sat Q means P ≤sat Q and Q ≤sat P .

The second framework [24, 31] arises from the principle of (mutual) simulation of sys-
tems. The prime representatives of this family are bisimilarity and observation congruence
[24]. In particular, weak bisimulation incorporates a particular notion of fairness: it ab-
stracts from the τ -loops (i.e infinite sequences of τ - or internal - actions) in which the
“normal” behavior can be resumed each time after a finite sequence of τ -actions. Such a
property can be useful in practice - for instance for communication protocols in systems with
lossy communication media, which retransmit lost messages. There is a fairness principle
implicitly associated with such systems, based on the assumption that the path which stays
in the loop forever is not a possible behavior of the system. Interesting proofs of protocol
correctness based on this principle are given in [4, 22].

Bisimulation equivalences are usually rather strict, since they depend on the whole
branching structure of processes, which in some cases may be not relevant. On the other
hand, most of the standard testing preorders interpret τ -loops as divergences, making them
quasi-observable. In fact, the must-predicate on P | o immediately fails if P is able to do a
τ -loop that never reaches a successful state. Hence, while the standard testing equivalences
are coarser than weak bisimulation in the case of divergence-free processes, they are not
comparable with the latter in general.

In [35] and in [26] a new testing semantics was proposed to incorporate the fairness
notion: the fair-testing (aka should-testing) semantics. In contrast to the classical must-
testing (semantics), fair-testing abstracts from certain τ -loops. This is achieved by stating
that the test o is satisfied if success always remains within reach in the system under test.
In other words, P fair o holds if in every maximal computation from P | o every state can
lead to success after finitely many interactions. The characterizing semantics for fair-testing
and a similar testing scenario can already be found in [38].

The relation between bisimulations and fair-testing was investigated in [13], in the
context of name-passing process calculi like the asynchronous π-calculus [19] and the join-
calculus [14]. The authors of [13] presented a hierarchy of equivalences obtained as variations
of Milner and Sangiorgi’s weak barbed bisimulation. In particular, they proved that the
coupled barbed equivalence strictly implies the fair-testing equivalence. They also showed
that those relations coincide in the join-calculus and on a restricted version of the asyn-
chronous π-calculus, called local π-calculus, where reception occurs only on names bound
by a restriction (not on free and received names).

Another relation motivated by the aim of incorporating in must-testing the fairness
property of observation congruence is the acceptance-testing, which was defined and studied
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in [5]. This relation is captured by the failures model but, in contrast to must-testing, it
does not yield a precongruence with respect to abstraction (or hiding), a construction which
internalizes visible actions and may thereby introduce new divergences.

The probabilistic intuitions motivating the Koomen’s rule inspired another approach
to incorporate fairness in a testing semantics [29]. The authors of [29] defined a proba-
bilistic must-semantics in which a (probabilistic) process must-satisfy a test if and only
if the probability with which the process satisfies the test equals 1, and proved that two
non-probabilistic processes are fair-equivalent if and only if their probabilistic versions are
equivalent in the probabilistic testing semantics.

1.3. The goal of this work: A study of testing semantics with implicit and explicit

fairness. Fair-testing is an appealing equivalence. Some of its advantages are that it detects
deadlocks and implements fairness. It has also been used in various works. For example, [6]
uses the fair-testing preorder as an implementation relation for distributed communication
protocols.

The purpose of our study is to try to make operationally explicit the fairness assump-
tion which is implicit in the fair-testing semantics. The advantages of the formulation in
operational terms is to have a better understanding of this notion. Also, it can help elim-
inating some of the known drawbacks: for example, fair-testing abstract fairness is not
enforced by practical scheduling policies, and direct proofs of equivalence are very difficult
because they involve nested inductions for all quantifiers in the definition of fair-testing and
all evaluation contexts.

In contrast to [29] we want to keep invariant the original testing scenario and try to
characterize (or approximate) fair-testing semantics - which does not involve any probability
assumption - in term of a non-probabilistic testing semantics equipped with some explicit
fairness notion.

We proceed as follows:

• We consider the choiceless π-calculus [25] and we develop for it an approach to
fairness (of actions) similar to that which has been proposed in [10, 11] for CCS-like
languages [24]. More precisely, we define (i) a labeling method for π-calculus terms
that ensures that no label occurs more than once in a labeled term (unicity), that a
label disappears only when the corresponding action is performed (disappearance),
and that, once it has disappeared, it will not appear in the computation anymore
(persistence), (ii) the notion of live action, which refers to the fact that the action
can currently be performed, and (iii) weak and strong fairness of actions.

• We then contrast the existing fair-testing semantics [35, 26] with those that naturally
arise by imposing weak and strong fairness [10, 11] on a must-testing semantics.

In the following we justify our choices, and describe in detail our setting and results.

1.4. The choiceless π-calculus. The choiceless π-calculus is essentially the π-calculus
without the choice operator (+). This seems a rather appealing framework to study fairness.
In fact, the choice operator is a bit controversial with respect to fairness, because it is not
clear what fairness should mean in the case of a repeated execution of a choice construct.
In [11] the continuous selection of the same branch of a choice construct turns out to be
fair, while other researcher would not agree to consider fair this kind of computation. The
reason why it is fair in [11] is that when the action that has not been selected comes back
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in the recursive call, it is considered a new action, and it is relabeled. On the contrary, in
other approaches, like for instance [18], the guards that come back are precisely the object
of weak fairness.

On the other hand, thanks to the fact that the restriction operator “ν” allows the
creation of new names and the scope extrusion, the π-calculus is more expressive than
CCS, and it is possible to represent in it various types of choices in a compositional way by
means of the parallel operator (see [27, 28, 30]). In particular, the internal choice and the
input-guarded choice. For example, the term (νa)(ā | a.b.0 | a.c.0) represents the internal
choice between b and c. If we want to repeat the execution of this choice, we use the
replication operator “!” which creates an arbitrary number of copies of the argument. The
issue of fairness depends on where we place “!” in the term: !(νa)(ā | a.b.0 | a.c.0) can
produce an infinite sequence of “b”’s, and the corresponding computation is considered fair
because the subterms a.b.0, a.c.0 have only one copy of ā in the same scope, so if such copy
synchronizes with a.b.0, then a.c.0 will be disabled forever. In a sense, the term represents
a new choice each time. On the contrary, (νa)!(ā | a.b.0 | a.c.0) can also produce an infinite
sequence of “b”’s, but the corresponding computation is not fair because all the copies of
ā are in the same scope and therefore a.c.0 is always enabled. In a sense, here we repeat
always the same choice.

We find that the reduction of choice to the parallel operator brings some insight to the
relation between repeated choice and fairness, in the sense that the definition of fairness for
the various kinds of combination of choice and repetition stems naturally from the definition
of fairness for the parallel operator.

1.5. The labeling method. In [10, 11], labels are flat sequences of 1’s and 2’s and are
assigned to operators according to the syntactic structure of the term, without distinguishing
between static and dynamic operators. In our approach, labels are pairs 〈s, n〉 in ({0, 1}∗×N)
and are associated to prefix and replication operators; restriction and parallel operators do
not get a label on their own. In contrast to [10, 11], the aim is to keep separated the
information about static and dynamic operators and avoid labels which (at least for our
purpose) are superfluous, thus making more intuitive their role in the notion of fairness.

The first component of a pair, s, represents the position of the process (whose top-
level operator is associated to that label) in the term structure, and it depends only on
the (static) parallel operator. This component ensures the unicity of a label. The second
component, n, provides information about the dynamics of the process in the term structure.
More precisely, it indicates how many actions that process has already executed since the
beginning of the computation, and it depends only on the (dynamic) prefix operator. This
second component serves to ensure the persistence property of a label.

Informally, a label 〈s, n〉 denotes unambiguously a parallel process - the one associated
to s - and a precise action of it - the one nested at level n in the original term. Note that:
(i) all the actions of a parallel process share the first label component s and they only differ
from the second component n; (ii) actions of different parallel processes at the same level
share the second label component n and are distinguished by the first component s.

We give now an example to illustrate the difference with the labeling method of [10, 11].
We recall that in [10, 11] the labels are assigned essentially by using the tree representing
the abstract syntax of the term: we add 1 to the string representing the label on the left
branch, and 2 on the right branch.
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Figure 1: Tree-representation of labeled terms.

Example 1.1. Consider the term S = x(y).((νz)(z(k).0 | z̄h.0)) | a(u).0 . The left-most
tree in Figure 1 is the the labeling of S in the approach of [10, 11], while the right-most one
is the the labeling of S in our approach. The representation of both labeled terms in the
usual linear syntax is given in Example 4.7.

1.6. Testing with explicit fairness vs. fair-testing. The labeling method allows defin-
ing weak- and strong-fair computations. Using these notions, we adapt must-testing se-
mantics [2] to obtain what we call weak-fair must-testing semantics and strong-fair must-
testing semantics. Then we compare these two ‘fair’-testing semantics with the fair-testing
[35, 26], that does not need any labeling of actions, and with the standard must-testing.
This comparison reveals the expressiveness of the various testing semantics we consider. In
particular:

• we show that weak-fair must testing is strictly stronger than strong-fair must testing,
• we show that must-testing is strictly stronger than weak-fair must testing,
• we prove that strong-fair must testing is strictly stronger than fair-testing,
• we prove that strong-fair and weak-fair must-testing cannot be characterized by a

notion based on the transition tree, like fair-testing.

1.7. Roadmap of the paper. The rest of the paper is organized as follows. Section 2
recalls the definition of the π-calculus. Section 3 recalls the definition of the must-testing
and the fair-testing semantics. Section 4 shows the labeling method and its main proper-
ties. Weak–fair must- and strong-fair must-testing semantics are defined in Section 5 and
compared in Section 6. Finally, in Section 7 we investigate why strong and weak fairness
notions are not enough to characterize fair-testing semantics. Section 8 contains some con-
cluding remarks and plans for future work. All the proofs omitted in the body of the paper
are in the appendixes.
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2. The π-calculus

We briefly recall here the basic notions about the (choiceless) π-calculus. Let N (ranged
over by x, y, z, . . . ) be a set of names. The set P of processes (ranged over by P,Q, R, . . . )
is generated by the following grammar:

P ::= 0 x(y).P x̄y.P P | P (νx)P !P

The input prefix y(x).P , and the restriction (νx)P , act as name binders for the name
x in P . The free names fn(P ) and the bound names bn(P ) of P are defined as usual. The
set of names of P is defined as n(P ) = fn(P ) ∪ bn(P ).

The operational semantics of processes is given via a labeled transition system, whose
states are the process themselves. The labels (ranged over by µ, γ, . . .) “correspond” to
prefixes, input xy and output x̄y, and to the bound output x̄(y) (which models scope
extrusion). If µ = xy or µ = x̄y or µ = x̄(y) we define sub(µ) = x and obj(µ) = y. The
functions fn(·), bn(·) and n(·) are extended to cope with labels as follows:

bn(xy) = ∅ bn(x̄(y)) = {y} bn(x̄y) = ∅ bn(τ) = ∅
fn(xy) = {x, y} fn(x̄(y)) = {x} fn(x̄y) = {x, y} fn(τ) = ∅

We take into account the early operational semantics for P in [37], as shown in Table
1. We only omit symmetric rules of Par, Com and Close for simplicity, and we assume
alpha-conversion to avoid collision of free and bound names.

Definition 2.1. (Weak transitions) Let P and Q be P processes. Then:

- P
ε

=⇒ Q iff ∃ P0, ..., Pn ∈ P, n ≥ 0, s.t. P = P0
τ

−→ ...
τ

−→ Pn = Q ;

- P
µ

=⇒ Q iff ∃ P1, P2 ∈ P s.t. P
ε

=⇒ P1
µ

−→ P2
ε

=⇒ Q .

Notation 2.2. For convenience, we write x(y) and x̄y instead of x(y).0 and x̄y.0, respec-

tively. Furthermore, we write P
µ

−→ (respectively P
µ

=⇒) to mean that there exists P ′ such

that P
µ

−→ P ′ (respectively P
µ

=⇒ P ′) and we write P
ε

=⇒
µ

−→ to mean that there are P ′

and Q such that P
ε

=⇒ P ′ and P ′ µ
−→ Q.

3. Testing semantics

In this section we briefly summarize the basic definitions behind the testing machinery
for the π-calculus.

Definition 3.1. (Observers)

- Let ω 6∈ N . ω denotes a special action used to report success. By convention
fn(ω) = bn(ω) = ∅.

- The set O (ranged over by o, o′, o′′, . . .) of observers is defined like P, where the
grammar is extended with the production P ::= ω.P .

- The operational semantics of P is extended to O by adding ω.P
ω

−→ P .
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Input x(y).P
xz
−→ P{z/y}

Output x̄y.P
x̄y
−→ P

Open
P

x̄y
−→ P ′

(νy)P
x̄(y)
−→ P ′

x 6= y Res
P

µ
−→ P ′

(νy)P
µ

−→ (νy)P ′
y 6∈ n(µ)

Par
P

µ
−→ P ′

P | Q
µ

−→ P ′ | Q
bn(µ) ∩ fn(Q) = ∅

Com
P

xy
−→ P ′, Q

x̄y
−→ Q′

P | Q
τ

−→ P ′ | Q′
Close

P
xy
−→ P ′, Q

x̄(y)
−→ Q′

P | Q
τ

−→ (νy)(P ′ | Q′)
y 6∈ fn(P )

Rep
P

µ
−→ P ′

!P
µ

−→ P ′ | !P

Table 1: Early operational semantics for P terms.

Definition 3.2. (Experiments) The set of experiments over P is defined as

E = { (P | o) | P ∈ P, o ∈ O}

Definition 3.3. (Maximal Computations) Given P ∈ P and o ∈ O, a maximal computa-
tion from P | o is either an infinite sequence of the form

P | o = T0
τ

−→ T1
τ

−→ T2
τ

−→ . . .

or a finite sequence of the form

P | o = T0
τ

−→ T1
τ

−→ . . .
τ

−→ Tn 6
τ

−→ .

We are now ready to define must- and fair-testing semantics.

Definition 3.4. (Must- and Fair-Testing Semantics) Given a process P ∈ P and an ob-
server o ∈ O, define:

- P must o if and only if for every maximal computation from P | o

P | o = T0
τ

−→ T1
τ

−→ . . .
τ

−→ Ti [
τ

−→ . . .]

there exists i ≥ 0 such that Ti
ω

−→;
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- P fair o if and only if for every maximal computation from P | o

P | o = T0
τ

−→ T1
τ

−→ . . .
τ

−→ Ti [
τ

−→ . . .]

Ti
ω

=⇒, for every i ≥ 0.

4. A labeled version of the π-calculus

In order to deal with the notion of fairness of actions [10], we first need to introduce a
labeling method. Consider the following term:

P = ā | !a.ā | ā.

Notice that every maximal computation from P is always of the form

P
τ

−→ P
τ

−→ P
τ

−→ . . .

However, without labels we would not be able to distinguish fair computations from unfair
ones, since we do not know which ā synchronizes with !a.ā and makes progress at each step.
So, we need to be able to refer unambiguously to individual actions and to monitor them
along any computation.

4.1. The idea behind the labeling method. A ‘reasonable’ labeling method, indepen-
dently from the choice of the labels domain, has to provide unicity (e.g. no label occurs
more than once in a labeled term), disappearance (e.g. a label disappears only when the
corresponding action is performed) and persistence (e.g. once a label disappears, it does
not appear in the computation anymore).

The labeling method can be more or less informative, in the sense that the degree of
information about the structure of terms (static information) and about the computation
history (dynamic information) can vary. For our purpose we find useful to adopt a labeling
method which is rather informative and keeps separate the static and dynamic aspects.

Definition 4.1. (Ground Labeled P) We define Pe
gr

as the language generated by the fol-
lowing grammar:

E ::= 0 µ〈s,n〉.E (νx)E E | E !〈s,n〉P

where s ∈ {0, 1}∗, n ∈ N, P ∈ P and the prefix µ is of the form x(y) or x̄y.

Obviously, Pe
gr

also contains labeled terms in which the labels do not respect the struc-
ture and/or the execution order. To avoid this problem, we restrict the labeled language to
those terms which are well-formed. The well-formedness predicate wf (·) (Table 4), allows
us to obtain a well-defined labeling method; it is defined by using a binary relation ℜ over
sets of labels, which checks the absence of label conflicts in the parallel composition, and
a labeling function L〈s,n〉(·), where s ∈ {0, 1}∗ and n ∈ N, which allows us to avoid label
conflicts in the prefix composition.

First, we define ℜ: if L0 and L1 are sets of labels, L0 ℜL1 holds if and only if for every
〈s0, n0〉 ∈ L0 and 〈s1, n1〉 ∈ L1, the first elements of the labels, s0 and s1, are not related
w.r.t. the usual prefix relation between strings. Formally:
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Definition 4.2.

1. Given two strings s0, s1 ∈ {0, 1}∗, we write s0 ⊑ s1 if and only if s0 is a prefix of
s1, i.e. s1 = s0α for some α ∈ {0, 1}∗;

2. Given L0, L1 ⊆ ({0, 1}∗ × N), we write L0 ℜ L1 if and only if ∀〈s0, n0〉 ∈ L0.
∀〈s1, n1〉 ∈ L1. s0 6⊑ s1 and s1 6⊑ s0.

Remark 4.3. From Definition 4.2, it follows immediately that

L0 ℜ L1 implies ∀〈s0, n0〉 ∈ L0. ∀〈s1, n1〉 ∈ L1. 〈s0, n0〉 6= 〈s1, n1〉.

Then, the labeling function L〈s,n〉(·) is defined following inductively the P terms oper-
ational structure.

Definition 4.4. Let P ∈ P. Define L〈s,n〉(P ), where 〈s, n〉 ∈ ({0, 1}∗ × N), as in Table 2.

L〈s,n〉(0) = 0

L〈s,n〉(µ.P ) = µ〈s,n〉.L〈s,n+1〉(P )

L〈s,n〉(P0 | P1) = L〈s0,n〉(P0) | L〈s1,n〉(P1)

L〈s,n〉((νx)P ) = (νx)L〈s,n〉(P )

L〈s,n〉(!P ) = !〈s,n〉P

Table 2: Labeling function L〈s,n〉(.).

We will use the relation ℜ in combination with the function top(·), defined in Table 3,
which gives the top-level label set of a labeled term. In the same table we define also the
function lab(·), which returns the whole set of labels, and which will be useful later.

E = 0: top(E) = ∅ lab(E) = ∅

E = µ〈s,n〉.E
′ : top(E) = {〈s, n〉} lab(E) = {〈s, n〉} ∪ lab(E′)

E = (νx)E′ : top(E) = top(E′) lab(E) = lab(E′)

E = E0|E1 : top(E) = top(E0) ∪ top(E1) lab(E) = lab(E0) ∪ lab(E1)

E =!〈s,n〉P : top(E) = {〈s, n〉} lab(E) = {〈s, n〉}

Table 3: Function top(·) and lab(·).
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Remark 4.5. From the definitions in Table 3, we have that

∀E ∈ Pe
gr

. top(E) ⊆ lab(E)

Finally, Table 4 defines formally the well-formedness predicate wf (·). Note that we use
ℜ to check the lack of conflict, between labels in parallel components, at the top-level only.
This constraint will turn out to be sufficient. In fact, in Lemma A.6 in the appendix it is
proved that

top(E0) ℜ top(E1) implies lab(E0) ℜ lab(E1).

Nil
wf (0)

Pref
µ.P ∈ P

wf (L〈s,n〉(µ.P ))

Par
wf (E0), wf (E1), top(E0) ℜ top(E1)

wf (E0 | E1)

Res
wf (E)

wf ((νx)E)
Rep

P ∈ P

wf (!〈s,n〉P )

Table 4: Well formed terms.

Now we are ready to define the set of labeled P-calculus terms, denoting it by Pe.

Definition 4.6. The labeled P-calculus, denoted by Pe, is the set

{E ∈ Pe
gr

| wf (E)}

It would be possible to defined well-formed terms without explicitly relying on the la-
beling function: for example, defining an ordering relation between labels to characterize
well-formedness of prefixing. However, our aim is to keep separated static and dynamic in-
formations. More in detail, Pe contains all the well-formed processes of the form ‘L〈s,n〉(P )’
(Lemma A.4). However, the operational semantics of Pe, introduced in the following, does
not preserve the ‘L〈s,n〉(P )’ format: for this reason, the wf (.) predicate is defined in order

to ensure the closure of Pe w.r.t
τ

−→.

Example 4.7. Consider again the term S = x(y).((νz)(z(k).0 | z̄h.0)) | a(u).0 of Example
1.1. In the approach of [10, 11], the labeling of S would give the term

x(y)1.((νz)11(z(k)1111.011111 |111 z̄h1112.011121)) |ε a(u)2.021.

In our approach, the labeling of S is the term

x(y)〈0,0〉.((νz)(z(k)〈00,1〉.0 | z̄h〈01,1〉.0)) | a(u)〈1,0〉.0.
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4.2. Some properties of the labeled π-calculus. The operational semantics of Pe is
similar to the one in Table 1; we simply ignore labels in order to derive a transition.
The only rule that needs attention is the one for processes in the scope of the replication
operator, since the unfolding generates new parallel processes and we must ensure unicity,
disappearance and persistence of labels. We use the dynamic labeling described in Table 5.

Rep
P

µ
−→ P ′

!〈s,n〉P
µ

−→ L〈s0,n+1〉(P
′) | !〈s1,n+1〉P

Table 5: Replication Rule in Pe.

Pe is trivially closed w.r.t. renaming, since a renaming does not change labels. It

follows that the language is closed w.r.t.
τ

−→.
Next result states the main properties which make our labeling method ‘reasonable’:

Theorem 4.8. Let E ∈ Pe.

1. (Unicity) No label 〈s, n〉 occurs more than once in E;

2. (Disappearance) If E
µ

−→ E′ then ∃〈s, n〉 ∈ lab(E). 〈s, n〉 6∈ lab(E′);

3. (Persistence) ∀k ≥ 1. E0
µ0
−→ E1

µ1
−→ E2

µ2
−→ . . .

µk−1
−→ Ek, if 〈s, n〉 ∈ lab(E0)∩lab(Ek)

then 〈s, n〉 ∈ lab(Ei) for any i ∈ [1..(k − 1)].

Proof. (1) By induction on the structure of E.

- E = 0: then lab(0) = ∅.
- E = L〈s,n〉(µ.P ′): then lab(E) = {〈s, n〉} ∪ lab(L〈s,n+1〉(P

′)). By Lemma A.4,
wf (L〈s,n+1〉(P

′)), i.e. L〈s,n+1〉(P
′) ∈ Pe and, by induction hypothesis, for every

〈s′, n′〉 ∈ lab(L〈s,n+1〉(P
′)), 〈s′, n′〉 does not occur more than once in lab(L〈s,n+1〉(P

′)).
By Lemma A.3, ∀〈s′, n′〉 ∈ lab(L〈s,n+1〉(P

′)). s ⊑ s′ and n + 1 ≤ n′. Hence
〈s, n〉 6∈ lab(L〈s,n+1〉(P

′)).
- E = (E0 | E1): by definition, ∀i ∈ {0, 1}. wf (Ei) holds, implying Ei ∈ Pe, and

lab(E) =
⋃

i lab(Ei). By induction hypothesis, for every i ∈ {0, 1} and every
〈si, ni〉 ∈ lab(Ei), 〈si, ni〉 does not occur more than once in lab(Ei). By Lemma
A.6, top(E0)ℜ top(E1) implies lab(E0)ℜ lab(E1), i.e. ∀〈s0, n0〉 ∈ lab(E0).∀〈s1, n1〉 ∈
lab(E1). 〈s0, n0〉 6= 〈s1, n1〉. Hence, for every i ∈ {0, 1} and every 〈si, ni〉 ∈ lab(Ei),
〈si, ni〉 does not occur more than once in lab(E).

- Cases E = (νx)E′ and E =!〈s,n〉P can be proved similarly.

(2) By Remark 4.5 and Lemma A.8, it suffices to prove that

E
µ

−→ E′ implies ∃〈s, n〉 ∈ top(E). 〈s, n〉 6∈ top(E′).

In fact, 〈s, n〉 ∈ top(E) implies 〈s, n〉 ∈ lab(E) (by Remark 4.5), and 〈s, n〉 6∈ top(E′) implies
〈s, n〉 6∈ lab(E′) (by Lemma A.8).

By induction on the depth of E
µ

−→ E′.
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- Rule Input/Output: E = L〈s,n〉(µ.P )
µ

−→ E′ = L〈s,n+1〉(P
′) (either P ′ = P or

P ′ = P{z/y}). top(L〈s,n〉(µ.P )) = {〈s, n〉} and, by Lemma A.3 on L〈s,n+1〉(P
′),

∀〈r′, m′〉 ∈ top(L〈s,n+1〉(P
′)) ⊆ lab(L〈s,n+1〉(P

′)). s ⊑ r′ and n + 1 ≤ m′. Hence
〈s, n〉 ∈ top(E) and 〈s, n〉 6∈ top(L〈s,n+1〉(P

′)).

- Rule Par: E = (E0 | E1)
µ

−→ (E′
0 | E1), where bn(µ) ∩ fn(E1) = ∅ and E0

µ
−→

E′
0. By induction hypothesis, ∃〈r0, m0〉 ∈ top(E0). 〈r0, m0〉 6∈ top(E′

0). Since
top(E0) ℜ top(E1) holds, then {〈r0, m0〉}ℜtop(E1), i.e. 〈r0, m0〉 6∈ top(E1). We
conclude that 〈r0, m0〉 6∈ top(E′

0 | E1).

- Rule Com: E = (E0 | E1)
τ

−→ (E′
0 | E′

1), where E0
xy
−→ E′

0 and E1
x̄y
−→ E′

1. By
induction hypothesis, ∃〈r0, m0〉 ∈ top(E0). 〈r0, m0〉 6∈ top(E′

0) and ∃〈r1, m1〉 ∈
top(E1). 〈r1, m1〉 6∈ top(E′

1).
Consider 〈r0, m0〉 (case 〈r1, m1〉 is symmetric). Since wf (E0 | E1), then we have

top(E0) ℜ top(E1). This implies {〈r0, m0〉}ℜtop(E1).

By item (3) of Lemma A.5 on E1
x̄y
−→ E′

1, ∀〈r′1, m
′
1〉 ∈ top(E′

1). ∃〈r′, m′〉 ∈
top(E1). r′ ⊑ r′1 and m′ ≤ m′

1. By Lemma A.2, it follows that {〈r0, m0〉} ℜ top(E′
1),

and therefore 〈r0, m0〉 6∈ top(E′
1). We can conclude that 〈r0, m0〉 ∈ top(E0 |E1) and

〈r0, m0〉 6∈ top(E′
0) ∪ top(E′

1) = top(E′
0 | E

′
1).

- Rule Open/Res/Close/Rep: These cases can be proved similarly.

(3) In [11] (Lemma 8.8), the analogous property is only proved for k = 2. However,
the general case cannot be obtained by induction, since the reasoning for the case k = 2
does not contain the essential elements to prove the inductive step. Differently from [11],
we prove the property in the general case. We proceed as follows.

By contradiction, let i ∈ [1..(k − 1)] be the least index such that 〈s, n〉 6∈ lab(Ei) and
let j ∈ [(i + 1)..k] be the least index such that 〈s, n〉 ∈ lab(Ej). By the minimality of i, we
can apply Lemma A.7 and we obtain that 〈s, n〉 ∈ top(Ei−1). By item (2) of Lemma A.5

on Ej , ∃〈rj , mj〉 ∈ top(Ej). rj ⊑ s and mj ≤ n. By item (3) of Lemma A.5 on Ec
µc
−→ Ec+1

for any c ∈ [(i − 1)..(j − 1)], ∃〈rc, mc〉 ∈ top(Ec). rc ⊑ rc+1 and mc ≤ mc+1. It follows that
∃〈ri−1, mi−1〉 ∈ top(Ei−1). ri−1 ⊑ s and mi−1 ≤ n.

- In the case 〈ri−1, mi−1〉 and 〈s, n〉 are distinct labels: we contradict item (1) of
Lemma A.5.

- In the case 〈ri−1, mi−1〉 = 〈s, n〉: it follows that ∀c ∈ ((i − 1)..(j − 1)]. ∃〈rc, mc〉 ∈
top(Ec). s ⊑ rc ⊑ s and n ≤ mc ≤ n, i.e. s = rc and n = mc, contradicting that
〈s, n〉 6∈ lab(Ec).

Remark 4.9. The disappearance property states that a label disappears when the cor-
responding action is performed. On the other hand, the persistence ensures a complete
disappearance of a label, once the corresponding action is performed. In fact, it is clear that
the following situation

∃E0
µ0
−→ E1

µ1
−→ ...

µk−1
−→ Ek. ∃h ∈ [1..(k − 1)]. 〈s, n〉 ∈ lab(E0) ∩ lab(Ek) but 〈s, n〉 6∈ lab(Eh)

would contradict item (3).

As expected, the labeled language is a conservative extension of the unlabeled one. To
prove the statement, we have to formally define the P process that is obtained by deleting
all the labels appearing within a labeled term.
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Definition 4.10. Let E ∈ Pe. Define Unl(E) as the P process obtained by removing all
the labels in E. It can be defined by induction as in Table 6.

Unl(0) = 0

Unl(µ〈s,n〉.E) = µ.Unl(E)

Unl(E0 | E1) = Unl(E0) | Unl(E1)

Unl((νx)E) = (νx)Unl(E)

Unl(!〈s,n〉P ) = !P

Table 6: Function Unl(·).

The conservative property of the labeled extension is expressed by the following lemma,

which can be proved by induction on the depth of E
µ

−→ E′ (item (1)) and Unl(E)
µ

−→ P ′

(item (2)).

Proposition 4.11. Let E ∈ Pe.

1. E
µ

−→ E′ implies Unl(E)
µ

−→ Unl(E′);

2. Unl(E)
µ

−→ P ′ implies ∃E′ ∈ Pe. E
µ

−→ E′ and Unl(E′) = P ′.

5. Strong and weak fairness of actions

The labeling method proposed in the previous section can be extended in a natural way

over the observers, adding B ::= ω.B in the grammar of Pe
gr

, ω.o
ω

−→ o in the operational
semantics and extending the functions L〈s,n〉, top(·), lab(·), Unl(·) and the predicate wf (·)
as shown in Table 7. No label is associated to ω since we do not need to distinguish ω
occurrences2.

In the following, Oe (ranged over by ρ, ρ′, ..) denotes the set of labeled observers and
Ee denotes the set of labeled experiments over Pe, as expected.

The definition of live label is crucial in the notion of fairness. Given a labeled experiment
S ∈ Ee, a live label is a label associated to a top-level action which can immediately be
performed, i.e. an input/output prefix able to synchronize. Table 8 defines the live labels
of a labeled experiment S ∈ Ee, according to the labeling method proposed in Section 4.
Informally, Table 8 is a rephrasing of operational rules: even if live labels cannot be directly
defined in term of transitions, deductions of live predicate mime the proof for a derivation.
As a consequence, ω is not live, since a complementary action (ω) does not exist. Given a
labeled experiment S, the set of S live labels is denoted by Ll(S).

2
E

ω
−→ whenever an arbitrary occurrence of ω is at the top level in E.
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(L〈s,n〉/Unl) L〈s,n〉(ω.o) = Unl(L〈s,n〉(ω.o)) = ω.o

(top/lab) top(ω.o) = lab(ω.o) = ∅

(wf )
ω.o ∈ O

wf (ω.o)

Table 7: Labeling method extension over observers.

Definition 5.1. Let S ∈ Ee, let 〈s, n〉 ∈ ({0, 1}∗ × N).

Ll(S) = {〈s, n〉 ∈ ({0, 1}∗ × N) | live(〈s, n〉, τ, S)}

is the set of live labels associated to initial
τ

−→ from S.

If S 6
τ

−→, then Ll(S) = ∅. Since top(S) is defined as the set of labels appearing at the
top of S, it follows immediately by the definition of live actions that Ll(S) ⊆ top(S). For
simplicity, labels will be denoted in the following by v, v1, v2, . . . ∈ ({0, 1}∗ × N).

We can now formally define the strong and weak notions of fairness. Intuitively, a
weak-fair computation is a maximal computation such that no label becomes live and then
stays live forever.

Definition 5.2. (Weak-fair Computations) Given S ∈ Ee, a weak-fair computation from S
is a maximal computation,

S = S0
τ

−→ S1
τ

−→ S2
τ

−→ . . .
τ

−→ Si [
τ

−→ . . .]

where ∀v ∈ ({0, 1}∗ × N). ∀i ≥ 0. ∃j ≥ i. v 6∈ Ll(Sj).

A strong-fair computation is a maximal computation such that no label is live infinitely
often. Formally, strong fairness imposes that for every label there is some point beyond
which it is never live.

Definition 5.3. (Strong-fair Computations) Given S ∈ Ee, a strong-fair computation from
S is a maximal computation,

S = S0
τ

−→ S1
τ

−→ S2
τ

−→ . . .
τ

−→ Si [
τ

−→ . . .]

where ∀v ∈ ({0, 1}∗ × N). ∃i ≥ 0. ∀j ≥ i. v 6∈ Ll(Sj).

Note that every finite computation is strong-fair (resp. weak-fair), because there is no

transition
τ

−→ from the end state, which implies that there are no live labels.
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Input
x, y, z ∈ N

live(〈s, n〉, xz, x(y)〈s,n〉.S)

Output
x, z ∈ N

live(〈s, n〉, x̄z, x̄z〈s,n〉.S)
Res

live(〈s, n〉, µ, S) y 6∈ n(µ)

live(〈s, n〉, µ, (νy)S)

Open
live(〈s, n〉, x̄y, S) x 6= y

live(〈s, n〉, x̄(y), (νy)S)
Rep

S
µ

−→ S′

live(〈s, n〉, µ, !〈s,n〉S)

Par
live(〈s, n〉, µ, S0) bn(µ) ∩ fn(S1) = ∅

live(〈s, n〉, µ, (S0 | S1))

Com
live(〈s, n〉, xy, S0), live(〈r, m〉, x̄y, S1)

live(〈s, n〉 , τ, S0 | S1), live(〈r, m〉 , τ, S0 | S1)

Close
live(〈s, n〉, xy, S0), live(〈r, m〉, x̄(y), S1), y 6∈ fn(S0)

live(〈s, n〉 , τ, (νy)(S0 | S1)), live(〈r, m〉 , τ, (νy)(S0 | S1))

Table 8: Live labels.

Some useful results follow:

Theorem 5.4. ∀S ∈ Ee.

1. there is always a strong-fair computation from S, and

2. every strong-fair computation from S is weak-fair, but not vice versa.

Proof. (1) We apply items of Lemma C.1. If S 6
τ

−→, then the empty computation is strong-
fair, since Ll(S) = ∅. Otherwise, there is a maximal computation C

S = S0
τ

−→ S1
0

τ
−→ ..

τ
−→ Sn0

0
τ

−→ S1 [
τ

−→ S1
1

τ
−→ ..

τ
−→ Sn1

1
τ

−→ S2
τ

−→ . . .]

where ∀i ≥ 0. Ll(Si) ∩ Ll(Si+1) = ∅ and ∀j ≥ i. Ll(Si) ∩ Ll(Sj) = ∅. Suppose, by
contradiction, that C is not strong-fair: then there exists a label v such that ∀i ≥ 0. ∃j ≥ i.
v ∈ Ll(S̃), where either S̃ = Sj or S̃ = Sk

j , contradicting the hypothesis on C.

(2) The positive result is trivial: by definition, a strong-fair computation is a special
case of weak-fair computation. To prove the negative result, let S = E | ρ, where E =
!v0

1
a|(νb)(b̄v0

2
|!v0

3
b.(ā|b̄)) and ρ = av4

.ω: it is not difficult to check that there exists a maximal
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computation from S, along which av4
is never performed. The maximal computation C we

consider is the following one (we omit 0 term by convenience):

E | ρ = S0
τ

−→ S1
τ

−→ S2
τ

−→ . . .
τ

−→ Si
τ

−→

where ∀j ≥ 0. Q(vj
2, v

j
3) = (νb)(b̄

v
j
2

| !
v

j
3

b.( ā | b̄)) and

S0 =!v0
1
a | Q(v0

2, v
0
3) | av4

.ω . . .

S1 =!v0
1
a | āv1

5
| Q(v1

2, v
1
3) | av4

.ω Si =!vi
1
a | Q(vi−1

2 , vi−1
3 ) | av4

.ω

S2 =!v2
1
a | Q(v1

2, v
1
3) | av4

.ω Si+1 =!vi
1
a | ā

vi+1

5

| Q(vi+1
2 , vi+1

3 ) | av4
.ω

S3 =!v2
1
a | āv3

5
| Q2(v

3
2, v

3
3) | av4

.ω Si+2 =!
vi+2

1

a | Q(vi+1
2 , vi+1

3 ) | av4
.ω

S4 =!v4
1
a | Q(v3

2, v
3
3) | av4

.ω . . .

Notice that, in C, we have v4 6∈ Ll(S0), v4 ∈ Ll(S1), v4 6∈ Ll(S2), v4 ∈ Ll(S3), . . . , v4 6∈
Ll(Si), v4 ∈ Ll(Si+1), v4 6∈ Ll(Si+2), . . . and so on. Moreover for every v ∈ Ll(Sj), where
v 6= v4, there exists k > j such that v 6∈ Ll(Sk). I.e., C is weak-fair but it is not strong-fair.

6. Comparing ‘fair’-testing semantics

In this section we consider the addition of the requirement of fairness in the definition of
the must-testing and investigate the resulting semantic relations. In particular, we compare
the different notions of fairness (the notions we introduce and the existing notion of fair-
testing semantics), and the must-testing semantics.

Let us start by observing that P must o implies P fair o, but not vice versa: it suffices
to consider the process P = (νb)(b̄ | !b.b̄) | ā and the observer o = a.ω.

Now, we define our notions of ‘fair’ must-testing.

Definition 6.1. (Strong/Weak-fair Must Semantics) Let E ∈ Pe and ρ ∈ Oe. Define
E sfmust ρ (E wfmust ρ) if and only if for every strong-fair (respectively, weak-fair) compu-
tation from (E | ρ)

E | ρ = S0
τ

−→ S1
τ

−→ . . .
τ

−→ Si [
τ

−→ . . .]

∃i ≥ 0 such that Si
ω

−→.

The following result states the relation between weak-fair must-testing and strong-fair
must-testing. It is the case that weak-fair must-testing implies strong-fair must-testing, but
not vice versa. In fact, any strong-fair computation is also weak-fair. To prove the negative
result, we consider an experiment with weak-fair computation in which the label prefixing
ω becomes live, loses its liveness, becomes live again, etc., without being performed: this
computation is weak-fair by definition and unsuccessful. Notice that this label should be
always performed in a strong-fair computation, determining the success of it.
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Proposition 6.2. ∀E ∈ Pe. ∀ρ ∈ Oe.

E wfmust ρ implies E sfmust ρ, but not vice versa.

Proof. For the positive part, suppose, by contradiction, that there exists a strong-fair com-
putation C

E | ρ = S0
τ

−→ S1
τ

−→ . . .
τ

−→ Si [
τ

−→ . . .]

such that ∀i ≥ 0. Si 6
ω

−→. Since a strong-fair computation is weak-fair too, then C is weak-
fair. It follows that E 6wfmust ρ, thus contradicting the hypothesis.

We now prove the negative result. Consider again E =!v0
1
a | Q(v0

2, v
0
3) and ρ = av4

.ω,

where Q(vj
2, v

j
3) = (νb)(b̄

v
j
2

|!
v

j
3

b.(ā | b̄)).

Notice that the computation proposed in the proof of item (2) of Theorem 5.4, where
v4 6∈ Ll(S0), v4 ∈ Ll(S1), v4 6∈ Ll(S2), v4 ∈ Ll(S3), .., v4 6∈ Ll(Sj), v4 ∈ Ll(Sj+1), v4 6∈
Ll(Sj+2) etc., is unsuccessful: in fact, v4 loses its liveness even if av4

is not performed. In

such a case ∀j ≥ 0. Sj 6
ω

−→. It follows that E 6wfmust ρ.
To prove that E sfmust ρ holds, it suffices to notice that for every j ≥ 0 and every

vj
2, v

j
3 ∈ ({0, 1}∗ × N),

a. Q(vj
2, v

j
3)

τ
−→ ā

v
j+1

5

|Q2(v
j+1
2 , vj+1

3 ), i.e. Q(vj
2, v

j
3) can perform infinite

τ
−→ sequences;

b. for every T ∈ Ee, every
τ

−→ from (Q(vj
2, v

j
3) |T ) does not follow from a synchroniza-

tion (either Rule Com or Close) between Q(vj
2, v

j
3) and T ;

c. for every maximal computation C′ from E | ρ

E | ρ = S0
τ

−→ S1
τ

−→ . . .
τ

−→ Si [
τ

−→ . . .]

there always exists

S1 =!v0
1
a | āv1

5
| Q(v1

2, v
1
3) | av4

.ω.

d. v4 6∈ Ll(S0), v4 ∈ Ll(S1) and v4 ∈ Ll(Sj+1) whenever there exists k ≥ (j + 1) such
that āvk

5
is a top-level parallel component of Sj+1.

By definition of Q(vj
2, v

j
3), there exist infinitely many indexes k such that āvk

5
is a top-

level parallel component of Sj+1; it follows that v4 can be live infinitely often. But this is
not possible if C′ is a strong-fair computation: in fact, by definition, v4 will lose its liveness
forever, i.e. av4

will be performed. In such a case there will be i ≥ 2 in C′ such that

Si
ω

−→.

Proposition 6.3 shows the relation between strong-fair must- (respectively, weak-fair
must-) testing semantics and must-testing.

Proposition 6.3. ∀E ∈ Pe. ∀ρ ∈ Oe.

1. Unl(E) must Unl(ρ) implies E wfmust ρ, but not vice versa;

2. Unl(E) must Unl(ρ) implies E sfmust ρ, but not vice versa.

Proof. (1) For the positive part, suppose there is a weak-fair computation from E | ρ

E | ρ = S0
τ

−→ S1
τ

−→ . . .
τ

−→ Si [
τ

−→ . . . ]
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such that ∀i ≥ 0. Si 6
ω

−→. Then there exists the following maximal computation

Unl(E | ρ) = Unl(S0)
τ

−→ Unl(S1)
τ

−→ . . .
τ

−→ Unl(Si) [
τ

−→ . . . ]

where ∀i ≥ 0. Unl(Si) 6
ω

−→, i.e. Unl(E) 6must Unl(ρ).

We now prove the negative part. Let E = (νb)(b̄v0
1
| !v0

2
b.b̄) | āv3

and ρ = av4
.ω, we have

Unl(E) 6must Unl(ρ). However, in every weak-fair computation from E | ρ

E | ρ = S0
τ

−→ S1
τ

−→ . . .
τ

−→ Si
τ

−→ . . .

there must exist j ≥ 0 such that Sj+1 = (νb)(b̄
v

j
1

| !
v

j
2

b.b̄) | ω
ω

−→ and ∀i ∈ [0..j]. Si =

(νb)(b̄vi
1
| !vi

2
b.b̄) | āv3

| av4
.ω. It follows by the fact that ∀i ∈ [0..j]. v4 ∈ Ll(Si) and there

must exist k > i (k = j + 1) such that v4 6∈ Ll(Sk). It is possible only in the case av4
.ω

synchronizes with āv3
in Sk−1 = (νb)(b̄vk

1
| !vk

2
b.b̄) | āv3

| av4
.ω.

(2) Immediate consequence of item (1) and Proposition 6.2.

7. Fair-testing and ‘fair’-testing semantics

In [35] it is shown that fair-testing semantics on finite state systems corresponds to
some (strong) notion of fairness. However, this result does not hold in general. We will
show that strong-fair must-testing (and hence weak-fair must-testing) does not suffice to
characterize fair-testing.

The reason behind the negative result relies on the fact that we can construct a term for
which there exist experiments being successful under fair-testing and performing maximal
unsuccessful computations which are strong fair.

Theorem 7.1. ∀E ∈ Pe. ∀ρ ∈ Oe.

1. E sfmust ρ implies Unl(E) fair Unl(ρ), but not vice versa;

2. E wfmust ρ implies Unl(E) fair Unl(ρ), but not vice versa.

Proof. (1) For the positive result, suppose, by contradiction, there exists a maximal com-
putation from Unl(E) | Unl(ρ)

Unl(E) | Unl(ρ) = T0
τ

−→ T1
τ

−→ . . .
τ

−→ Ti [
τ

−→ . . . ]

and there exists i ≥ 0 such that Ti 6
ω

=⇒, i.e. for each T ′ such that Ti
ε

=⇒ T ′, we have T ′ 6
ω

−→.
It follows that for every maximal computation from Ti of the form

Ti = T ′
0

τ
−→ T ′

1
τ

−→ . . .
τ

−→ T ′
j [

τ
−→ . . . ]

T ′
j 6

ω
−→ for every j. Since ω cannot synchronize, it does not disappear once it is at the top

level of a term. It implies that ∀j ∈ [0..(i − 1)]. Tj 6
ω

−→. Now, consider the computation

E | ρ = S0
τ

−→ S1
τ

−→ . . .
τ

−→ Si [
τ

−→ . . . ]

where for every k ≥ 0 we have Tk = Unl(Sk). Then there exists i ≥ 0 such that Si 6
ω

=⇒,

i.e. for each S′ such that Si
ε

=⇒ S′, we have S′ 6
ω

−→. It follows that for any maximal
computation from Si

Si = S′
0

τ
−→ S′

1
τ

−→ . . .
τ

−→ S′
j [

τ
−→ . . . ]
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S′
j 6

ω
−→ for every j. Hence for every strong-fair computation from Si (which always exists,

by Theorem 5.4)

Si = S′
0

τ
−→ S′

1
τ

−→ . . .
τ

−→ S′
j [

τ
−→ . . . ]

S′
j 6

ω
−→ for every j. It follows that, given a strong-fair computation from Si

Si = S′′
0

τ
−→ S′′

1
τ

−→ . . .
τ

−→ S′′
j [

τ
−→ . . . ]

where S′′
j 6

ω
−→ for every j, the following maximal computation

E | ρ = S0
τ

−→ S1
τ

−→ . . .
τ

−→ Si = S′
0

τ
−→ S′′

1
τ

−→ . . .
τ

−→ S′′
j [

τ
−→ . . . ]

is strong-fair (by Lemma C.2), and ∀k ∈ [0..(i − 1)]. Sk 6
ω

−→, and ∀j ≥ 0. S′′
j 6

ω
−→. It follows

that E 6sfmust ρ, contradicting the hypothesis.
We now prove the negative part. As explained before, it suffices to consider E =

c̄v0
1
| !v0

2
c.((νb)(b̄ | b.c̄ | b.ā)) and ρ = av3

.ω. Clearly, Unl(E) fair Unl(ρ), but there exists the

following maximal computation

E | ρ = c̄v0
1
| !v0

2
c.((νb)(b̄ | b.c̄ | b.ā)) | av3

.ω
τ

−→

(νb)(b̄v1
4
| bv1

5
.c̄v1

6
| bv1

7
.āv1

8
) | !v1

2
c.((νb)(b̄ | b.c̄ | b.ā)) | av3

.ω
τ

−→

(νb)(bv1
7
.āv1

8
) | c̄v1

6
| !v1

2
c.((νb)(b̄ | b.c̄ | b.ā)) | av3

.ω
τ

−→

. . .
τ

−→
∏

i∈[1..k](νb)(bvi
7
.āvi

8
) | c̄vk

6
| !vk

2
c.((νb)(b̄ | b.c̄ | b.ā)) | av3

.ω
τ

−→

. . .
τ

−→

where no term has ω enabled. Notice that ω is always prefixed in av3
.ω and v3 is always

disabled since every occurrence of āvi
8

is prefixed in a deadlock term (νb)(bvi
7
.āvi

8
). Hence

this computation is strong-fair.

(2) The positive part is an immediate consequence of item (1) and Proposition 6.2.
As for the negative part, observe that the counterexample in the proof of item (1) is a
counterexample here too, because the computation considered is also weak-fair.

Previous result establishes that the notion of weak- and strong-fair must-testing differ
from the notion of fair-testing in literature. A natural question is, then, which notion
is more suitable than the other in given situations. As shown by the counterexample in
the proof of previous theorem, the difference is with respect to computations that are fair
but unsuccessful, and they offer at every state the possibility of being successful. These
computations are considered acceptable by the notion of fair-testing, but not by our notion,
and in our opinion, they should not be.

Example 7.2. We illustrate the difference with the well-known example of the dining
philosophers. We can specify the system in our language in the following way. The system,
DP, is composed by three forks f̄0, f̄1, f̄2 and three philosophers P0, P1, P2, in parallel:

DP
def
= f̄0 | P0 | f̄1 | P1 | f̄2 | P2

Each philosopher replicates the following activity: first, he chooses whether to start with
the left fork (if available) or with the right fork (if available). For the choice we use the
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input-guarded choice construct, represented here by the operator +. It is well-known that
this kind of choice can be expressed in the asynchronous π-calculus, and therefore also in
the language that we consider here, by a translation that preserves must semantics [28].

Pi
def
= ! (Li + Ri)

Under the left choice the philosopher takes the left fork, then chooses whether to take the
right fork (if available) or to give up. In the first case, he takes the fork, eats, and then
releases both forks. In the second case, he releases the left fork. This behavior can be
represented as follows (where ⊕ denotes summation modulo 3):

Li
def
= fi.(fi⊕1.eat .(f̄i | f̄i+1) + τ.f̄i)

The behavior under the right choice is analogous:

Ri
def
= fi⊕1.(fi.eat .(f̄i⊕1 | f̄i) + τ.f̄i⊕1)

Let us consider the observer which detects whether one philosopher succeeds to eat:

o
def
= eat . ω

We can see that

DP fair o

In fact, in every computation either a philosopher succeeds in taking both forks, and in
that case he eats and the observer is satisfied, or there is always the possibility that one
fork becomes available and can be taken by a philosopher who has already another fork.
On the other hand, the computation in which each philosopher in turn takes the right fork,
releases it, then take the second fork, releases it, then take the right fork . . . etc. is strongly
fair, and unsuccessful. Hence we have

DP 6sfmust o

The answer given by our semantics is consistent with the view in Distributed Com-
puting, where fairness and progress (a generalization of success - in this case, the fact that
someone will eventually eat) are distinct concepts, and the Dining Cryptographers are con-
sidered an example of the fact that the first (fairness) does not imply the latter (progress).

The difference between fair-testing and both weak- and strong-fair must-testing relies
on the fact that the former is based on properties of the transition tree and the latter are
based on the notion of fairness.

We will prove in fact that no notion based only on the transition tree can characterize
strong-fair must- and weak-fair must-testing. To this purpose, let us recall the definition of
(strong) bisimulation.

Definition 7.3. (Bisimulation) A bisimulation is a binary relation R satisfying the follow-
ing: P R Q implies that:

1. P
µ

−→ P ′ then ∃Q′ : Q
µ

−→ Q′ ∧ P ′ R Q′;

2. Q
µ

−→ Q′ then ∃P ′ : P
µ

−→ P ′ ∧ P ′ R Q′.
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Bisimilarity ∼ is the largest bisimulation R such that P R Q.

We recall that bisimilarity is a congruence.
We now prove that sfmust and wfmust cannot be characterized by a notion that, like

fair-testing, relies on the transition tree only.

Theorem 7.4. ∃E,F ∈ Pe. Unl(E) ∼ Unl(F ) but E 6≈sat F , where sat ∈ {wfmust, sfmust}.

Proof. Let
E = (νc)(c̄w0

0
| !w0

1
c.(c̄ | ā)) | (νc)(c̄w0

2
| !w0

3
c.c̄)

and
F =!v0

0
((νb)(b̄ | b | b.ā)) | (νc)(c̄v0

1
| !v0

2
c.c̄).

E and F are neither sfmust nor wfmust equivalent, since the observer ρ = av3
.ω

distinguishes E and F w.r.t. both sfmust and wfmust. In fact, every strong-fair (respectively,
weak-fair) computation from E | ρ forces the synchronization between c̄w0

0
and !w0

1
c.(c̄ | ā),

i.e. the transition (νc)(c̄w0
0
| !w0

1
c.(c̄ | ā))

τ
−→ āw1

4
| (νc)(c̄w1

0
| !w1

1
c.(c̄ | ā)) and it also forces the

execution of āw1
4

(or equivalently of āwi
4

for some i ≥ 1 such that (νc)(c̄
wi−1

0

|!
wi−1

1

c.(c̄|ā))
τ

−→

ā
wi−1

4

| (νc)(c̄
wi−1

0

| !
wi−1

1

c.(c̄ | ā)) occurred in the computation).

It follows that there exists a transition in which av3
is performed, implying that there

exists a term which has ω enabled.

This is not the case of the following strong-fair (and weak-fair) computation from F |ρ:

F | ρ =!v0
0
((νb)(b̄ | b | b.ā)) | (νc)(c̄v0

1
| !v0

2
c.c̄) | av3

.ω
ε

=⇒

(νb)(bv1
4
.āv1

5
) | !v1

0
((νb)(b̄ | b | b.ā)) | (νc)(c̄v1

1
| !v1

2
c.c̄) | av3

.ω
ε

=⇒

(νb)(bv1
4
.āv1

5
) | (νb)(bv2

4
.āv2

5
) | !v2

0
((νb)(b̄ | b | b.ā)) | (νc)(c̄v2

1
| !v2

2
c.c̄) | av3

.ω
ε

=⇒

. . .
ε

=⇒
∏

i∈[1..k](νb)(bvk
4
.āvk

5
) | !vk

0
((νb)(b̄ | b| b.ā)) | (νc)(c̄vk

1
| !vk

2
c.c̄) | av3

.ω
ε

=⇒

. . .
ε

=⇒

where there are no terms with ω enabled. Notice that ω is always prefixed in av3
.ω and av3

is always disabled since every occurrence of āvi
5

is prefixed in a deadlock term (νb)(bvi
4
.āvi

5
).

However Unl(E) ∼ Unl(F ), implying that (Unl(E) | Unl(ρ)) ∼ (Unl(F ) | Unl(ρ)), for
any observer ρ.

8. Conclusion and future work

We have designed a labeled version of the π-calculus, we have defined weak and strong
fairness, and we have introduced the natural (weak and strong) fair versions of testing
semantics. We have compared the various notions and proved that neither weak nor strong
fairness correspond to fair-testing, and we have investigated the reason of this failure.

Our results are quite general, since they also hold for CCS, for the asynchronous π-
calculus [3] (it is easy to see that all proofs can be adapted immediately to these other
calculi), to a π-calculus with choice operator (as explained in the introduction), and they
do not depend on the labeling method (i.e. they hold for any labeling method for which
unicity, disappearance and persistence hold).
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As a future work, we plan to investigate on the existence of alternative characterizations
of the fairness notions, allowing simple and finite representations of fair computations such
as the use of regular expressions as in [8, 9]. It is also interesting to investigate the impact
that these different notions of fairness may have on the encodings from the π-calculus into
the asynchronous π-calculus [7].

Another line of research that seems worth exploring is the the adaptation in our frame-
work of the fairness notions of [18]. As we have mentioned in the introduction, it is possible
to represent several forms of choice in the choiceless π-calculus using the parallel operator,
and it would be interesting to see how the fairness notions of [18] relative to the choice
operator get translated in our formalism.
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Appendix A. A labeled version of the π-calculus

This appendix section contains intermediate results and proofs of the statements omit-
ted in Section 4. Several proofs follow the same lines as the corresponding results in [11].

Lemma A.1. Let r0, r1, s ∈ {0, 1}∗. r0 ⊑ s and r1 ⊑ s. Then either r0 ⊑ r1 or r1 ⊑ r0.

Proof. For i ∈ {0, 1}, ri ⊑ s implies s = riαi for some αi ∈ {0, 1}∗. Then r0α0 = s = r1α1.
Let |ri| the length of ri. If |r0| ≤ |r1|, then r0 ⊑ r1. Otherwise, r1 ⊑ r0.

Lemma A.2. Let 〈r0, m0〉, 〈r1, m1〉, 〈r
′
0, m

′
0〉, 〈r

′
1, m

′
1〉 ∈ ({0, 1}∗ ×N). r0 ⊑ r′0, r1 ⊑ r′1 and

{〈r0, m0〉}ℜ{〈r1, m1〉}. Then {〈r′0, m
′
0〉}ℜ{〈r

′
1, m

′
1〉}.

Proof. For i ∈ {0, 1}, ri ⊑ r′i implies r′i = riαi for some αi ∈ {0, 1}∗. By contradiction,
suppose r′0 ⊑ r′1 (the other case is similar). Then r0α0 ⊑ r1α1. Let |ri| the length of ri.
In the case |r0| ≤ |r1|, then r0 ⊑ r1, contradicting {〈r0, m0〉}ℜ{〈r1, m1〉}. In the case
|r1| ≤ |r0|, then r1 ⊑ r0, contradicting again {〈r0, m0〉}ℜ{〈r1, m1〉}.
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Lemma A.3. Let E = L〈r,m〉(P ), for some P ∈ P. ∀〈s, n〉 ∈ lab(E). r ⊑ s and m ≤ n.

Proof. By induction on the structure of P .

- E = 0: then lab(0) = ∅;

- E = L〈r,m〉(µ.P ): then lab(E) = {〈r, m〉} ∪ lab(L〈r,m+1〉(P )).

- E = L〈r,m〉(P0 | P1): lab(L〈r,m〉(P0 | P1)) = lab(L〈r0,m〉(P0)) ∪ lab(L〈r1,m〉(P1)). By
induction, ∀〈s0, n0〉 ∈ lab(L〈r0,m〉(P0)). r ⊑ r0 ⊑ s0 and m ≤ n0. Analogously,
∀〈s1, n1〉 ∈ lab(L〈r1,m〉(P1)). r ⊑ r1 ⊑ s1 and m ≤ n1.

- E =!〈r,m〉P : then lab(E) = {〈r, m〉}.

- Case E = L〈r,m〉((νx)P ) can be proved similarly.

Lemma A.4. ∀P ∈ P. ∀〈r, m〉 ∈ ({0, 1}∗ × N). wf (L〈r,m〉(P )).

Proof. By induction on the structure of P .

- P = 0, µ.P ′, !P ′: these cases are trivial.

- P = P0 | P1: then L〈r,m〉(P0 | P1) = L〈r0,m〉(P0) | L〈r1,m〉(P1) and by Lemma A.3
on top(L〈ri,m〉(Pi)) we have that ∀〈si, ni〉 ∈ top(L〈ri,m〉(Pi)). ri ⊑ si and m ≤ ni

(i ∈ {0, 1}). Hence top(L〈r0,m〉(P0)) ℜ top(L〈r1,m〉(P1)).

- P = (νx)P ′: L〈r,m〉(P ) = (νx)L〈r,m〉(P
′), where wf (L〈r,m〉(P

′)). Hence wf (L〈r,m〉(P )).

Lemma A.5.

Let E ∈ Pe.

1. For any distinct 〈r, m〉, 〈r′, m′〉 ∈ top(E). {〈r, m〉}ℜ{〈r′, m′〉};

2. ∀〈s, n〉 ∈ lab(E). ∃〈r, m〉 ∈ top(E). r ⊑ s and m ≤ n.

Let E′ ∈ Pe
gr

. E
µ

−→ E′. Then:

3. ∀〈r′, m′〉 ∈ top(E′). ∃〈r, m〉 ∈ top(E). r ⊑ r′ and m ≤ m′;

4. E′ ∈ Pe.

Proof. (1) By induction on the structure of E.

- E = 0: top(0) = ∅.

- E = L〈s,n〉(µ.P ): then top(E) = {〈s, n〉}.

- E = (E0 | E1): since wf (E0 | E1) then top(E0)ℜtop(E1). Moreover, by induc-
tion hypothesis, ∀〈r0, m0〉, 〈r

′
0, m

′
0〉 ∈ top(E0). {〈r0, m0〉}ℜ{〈r

′
0, m

′
0〉} and, similarly,

∀〈r1, m1〉, 〈r
′
1, m

′
1〉 ∈ top(E1). {〈r1, m1〉}ℜ{〈r

′
1, m

′
1〉}.

- Case E = (νx)E′: it can be proved similarly.

- E =!〈s,n〉P : then top(E) = {〈s, n〉}.

(2) By induction on the structure of E.

- E = 0: top(0) = ∅ and lab(0) = ∅.

- E = L〈s,n〉(µ.P ): then top(E) = {〈s, n〉}. By Lemma A.3 on L〈s,n〉(µ.P ), ∀〈s′, n′〉 ∈
lab(L〈s,n〉(µ.P )). s ⊑ s′ and n ≤ n′.
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- E = (E0 | E1): By induction, ∀〈s0, n0〉 ∈ lab(E0). ∃〈r0, m0〉 ∈ top(E0). r0 ⊑ s0

and m0 ≤ n0. Analogously ∀〈s1, n1〉 ∈ lab(E1). ∃〈r1, m1〉 ∈ top(E1). r1 ⊑ s1 and
m1 ≤ n1. It follows that ∀〈s′, n′〉 ∈ lab(E0 | E1) = lab(E0) ∪ lab(E1). ∃〈r

′, m′〉 ∈
top(E0 | E1) = top(E0) ∪ top(E1). r′ ⊑ s′ and m′ ≤ n′.

- Case E = (νx)E′: it can be proved similarly.

- E =!〈s,n〉P : then top(E) = {〈s, n〉} = lab(E).

(3) By induction on the depth of E
µ

−→ E′.

- Rule Input/Output: E = L〈s,n〉(µ.P )
µ

−→ E′ = L〈s,n+1〉(P
′) (either P ′ = P or

P ′ = P{z/y}). Then top(L〈s,n〉(µ.P )) = {〈s, n〉}. By Lemma A.3 on L〈s,n+1〉(P
′),

we have that ∀〈r′, m′〉 ∈ top(L〈s,n+1〉(P
′)) ⊆ lab(L〈s,n+1〉(P

′)). s ⊑ r′ and n+1 ≤ m′.
It follows that ∀〈r′, m′〉 ∈ top(L〈s,n+1〉(P

′)). s ⊑ r′ and n < m′.

- Rule Par: E = (E0 | E1)
µ

−→ (E′
0 | E1), where bn(µ) ∩ fn(E1) = ∅ and E0

µ
−→

E′
0. Since wf (E0 | E1), then top(E0) ℜ top(E1). By induction, E0

µ
−→ E′

0 implies
that ∀〈r′0, m

′
0〉 ∈ top(E′

0). ∃〈r0, m0〉 ∈ top(E0). r0 ⊑ r′0 and m0 ≤ m′
0. Since

top(E0|E1) = top(E0)∪top(E1) and top(E′
0|E1) = top(E′

0)∪top(E1), then ∀〈r′, m′〉 ∈
top(E′

0 |E1). either ∃〈r0, m0〉 ∈ top(E0). r0 ⊑ r′ and m0 ≤ m′ (in the case 〈r′, m′〉 ∈
top(E′

0)) or ∃〈r1, m1〉 ∈ top(E1). r1 = r′ and m1 = m′ (in the case 〈r′, m′〉 ∈
top(E1)).

- Rule Com: E = (E0 | E1)
τ

−→ (E′
0 | E′

1), where E0
xy
−→ E′

0 and E1
x̄y
−→ E′

1. By
induction hypothesis, ∀〈r′0, m

′
0〉 ∈ top(E′

0). ∃〈r0, m0〉 ∈ top(E0). r0 ⊑ r′0 and m0 ≤
m′

0. Analogously, ∀〈r′1, m
′
1〉 ∈ top(E′

1). ∃〈r1, m1〉 ∈ top(E1). r1 ⊑ r′1 and m1 ≤ m′
1.

Since top(E0 | E1) = top(E0) ∪ top(E1) and top(E′
0 | E

′
1) = top(E′

0) ∪ top(E′
1), then

∀〈r′, m′〉 ∈ top(E′
0 | E′

1) either ∃〈r0, m0〉 ∈ top(E0). r0 ⊑ r′ and m0 ≤ m′ (in the
case 〈r′, m′〉 ∈ top(E′

0)) or ∃〈r1, m1〉 ∈ top(E1). r1 ⊑ r′ and m1 ≤ m′ (in the case
〈r′, m′〉 ∈ top(E′

1)).

- Rule Open/Res/Close: These cases can be proved similarly.

- Rule Rep: !〈s,n〉P
µ

−→ L〈s0,n+1〉(P ) | !〈s1,n+1〉P . Then we have top(!〈s,n〉P )={〈s, n〉}
and top(L〈s0,n+1〉(P )|!〈s1,n+1〉P ) = top(L〈s0,n+1〉(P ))∪ {〈s1, n + 1〉}. By Lemma A.3
on L〈s0,n+1〉(P ), we have that ∀〈r′, m′〉 ∈ top(L〈s0,n+1〉(P )) ⊆ lab(L〈s0,n+1〉(P )).
s0 ⊑ r′ and n + 1 ≤ m′. It follows that 〈s, n〉 is such that s ⊑ s1 and n < n + 1, as
well as s ⊑ s0 ⊑ r′ and n < n + 1 ≤ m′ for any 〈r′, m′〉 ∈ top(L〈s0,n+1〉(P )).

(4) We prove that wf (E′) holds, by induction on the depth of E
µ

−→ E′.

- Rule Input/Output: E = L〈s,n〉(µ.P )
µ

−→ E′ = L〈s,n+1〉(P
′) (either P ′ = P or

P ′ = P{z/y}). By Lemma A.4, wf (L〈s,n+1〉(P
′)).

- Rule Par: E = (E0 | E1)
µ

−→ (E′
0 | E1), where bn(µ) ∩ fn(E1) = ∅ and E0

µ
−→ E′

0.

Since wf (E0 | E1), then top(E0) ℜ top(E1). By induction, E0
µ

−→ E′
0 implies that

wf (E′
0). By item (3) and Lemma A.2, top(E0)ℜ top(E1) implies top(E′

0)ℜ top(E1).
Hence wf (E′

0 | E1).

- Rule Com: E = (E0 |E1)
τ

−→ (E′
0 |E

′
1), where E0

xy
−→ E′

0 and E1
x̄y
−→ E′

1. By induc-

tion hypothesis, E0
xy
−→ E′

0 implies that wf (E′
0); analogously, E1

x̄y
−→ E′

1 implies that
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wf (E′
1). By item (3) and Lemma A.2, top(E0)ℜ top(E1) implies top(E′

0)ℜ top(E′
1).

Hence wf (E′
0 | E

′
1).

- Rule Open/Res/Close: These cases can be proved similarly.

- Rule Rep: It suffices to recall that top(L〈s0,n+1〉(P
′)|!〈s1,n+1〉P

′) = {〈s1, n + 1〉} ∪
top(L〈s0,n+1〉(P

′)) and to apply Lemma A.3 on L〈s0,n+1〉(P
′).

Lemma A.6. Let E0, E1 ∈ Pe. top(E0) ℜ top(E1) implies lab(E0) ℜ lab(E1).

Proof. By item (2) of Lemma A.5, ∀i ∈ {0, 1}. ∀〈si, ni〉 ∈ lab(Ei). ∃〈ri, mi〉 ∈ top(Ei).
ri ⊑ si and mi ≤ ni. top(E0) ℜ top(E1) and Lemma A.2 imply ∀〈s0, n0〉 ∈ lab(E0).
∀〈s1, n1〉 ∈ lab(E1). {〈s0, n0〉}ℜ{〈s1, n1〉}, i.e. lab(E0) ℜ lab(E1).

Lemma A.7. Let E,E′ ∈ Pe. E
µ

−→ E′. Let 〈s, n〉 ∈ lab(E) and 〈s, n〉 6∈ lab(E′). Then
〈s, n〉 ∈ top(E).

Proof. By induction on the depth of E
µ

−→ E′.

- Rule Input/Output: E = L〈s′,n′〉(µ.P )
µ

−→ E′ = L〈s′,n′+1〉(P
′) (where either P ′ = P

or P ′ = P{z/y}). Then top(E) = {〈s′, n′〉} and lab(E) = lab(E′) ∪ {〈s′, n′〉}. It
follows that s = s′, n = n′, and therefore 〈s, n〉 ∈ top(E).

- Rule Par: E = (E0 | E1)
µ

−→ (E′
0 | E1) and E0

µ
−→ E′

0. Since lab(E0 | E1) =
lab(E0) ∪ lab(E1) and lab(E′

0 | E1) = lab(E′
0) ∪ lab(E1), we have 〈s, n〉 6∈ lab(E′

0),
〈s, n〉 6∈ lab(E1), and therefore 〈s, n〉 ∈ lab(E0). By induction, 〈s, n〉 ∈ top(E0) and
therefore 〈s, n〉 ∈ top(E0) ∪ top(E1) = top(E0 | E1) = top(E).

- Rule Com: E = (E0 | E1)
τ

−→ (E′
0 | E′

1), where E0
xy
−→ E′

0 and E1
x̄y
−→ E′

1.
Since lab(E0 | E1) = lab(E0) ∪ lab(E1), we have that either 〈s, n〉 ∈ lab(E0) or
〈s, n〉 ∈ lab(E1). Let us consider the first case (the other one is analogous). Since
lab(E′

0 | E′
1) = lab(E′

0) ∪ lab(E′
1), we have that 〈s, n〉 6∈ lab(E′

0). The rest is the
same as in the case of Par.

- Rules Open/Res: Immediate, by induction.

- Rule Close: Similar to the case of Com.
- Rule Rep: Trivial, since E =!〈s′,n′〉P and lab(!〈s′,n′〉P ) = {〈s′, n′〉} = top(!〈s′,n′〉P ).

Lemma A.8. Let E,E′ ∈ Pe. E
µ

−→ E′ and 〈r, m〉 ∈ top(E). 〈r, m〉 ∈ lab(E′) implies
〈r, m〉 ∈ top(E′).

Proof. Let 〈r, m〉 ∈ top(E) ∩ lab(E′) and suppose, by contradiction, that 〈r, m〉 6∈ top(E′).
By item (2) of Lemma A.5, ∃〈r′, m′〉 ∈ top(E′). r′ ⊑ r and m′ ≤ m. By item (3) of Lemma
A.5, ∃〈r′′, m′′〉 ∈ top(E). r′′ ⊑ r′ ⊑ r and m′′ ≤ m′ ≤ m. It follows that ∃〈r, m〉, 〈r′′, m′′〉 ∈
top(E) such that r′′ ⊑ r and m′′ ≤ m. Note also that the pairs 〈r, m〉, 〈r′, m′〉 must be
different and therefore also 〈r, m〉, 〈r′′, m′′〉 are different. Thus we get a contradiction with
item (1) of Lemma A.5.
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Appendix B. Must- and fair-testing semantics

This appendix section contains intermediate results and proofs of the statements omit-
ted in Section 5.

Proposition B.1. Let P ∈ P and o ∈ O. P must o implies P fair o.

Proof. By contradiction, suppose P 6fair o, i.e. there is a maximal computation from P | o

P | o = T0
τ

−→ T1
τ

−→ . . .
τ

−→ Ti [
τ

−→ . . . ]

such that Ti 6
ω

=⇒ for some i ≥ 0, i.e. for every T ′. Ti
ε

=⇒ T ′ it holds that T ′ 6
ω

−→. It

follows that Ti 6
ω

−→, ∀j ∈ [0..(i − 1)].Tj 6
ω

−→ and ∀h ≥ i. Th 6
ω

−→, by hypothesis on Ti. In
fact, since ω can not synchronize, it does not disappear once it is at the top level of a term.

It follows that the above computation is such that ∀j ≥ 0. Tj 6
ω

−→, i.e. P 6must o.

Proposition B.2. ∃P ∈ P. ∃o ∈ O. P fair o and P 6must o.

Proof. Consider P = (νb)(b̄ | !b.b̄) | ā and o = a.ω. Since (νb)(b̄ | !b.b̄)
τ

−→ (νb)(b̄ | !b.b̄)
τ

−→ . . . ,
there is an unsuccessful maximal computation from P | o, i.e. P 6must o. However, P fair o,
since every maximal computation from P | o

P | o = T0
τ

−→ T1
τ

−→ . . .
τ

−→ Ti
τ

−→ . . .

is such that either ∀i ≥ 0. Ti = (νb)(b̄ | !b.b̄) | ā | a.ω or ∃j ≥ 1. Tj = (νb)(b̄ | !b.b̄) | ω
ω

−→

and ∀i ∈ [0..(j − 1)]. Ti = (νb)(b̄ | !b.b̄) | ā | a.ω and Ti
ε

=⇒ Tj .

Appendix C. Weak-fair must, strong-fair must and fair-testing semantics

Lemma C.1. ∀S ∈ Ee.

1. Ll(S) is a finite set;

2. S 6
τ

−→ implies Ll(S) = ∅;

3. v ∈ Ll(S) implies ∃S′ ∈ Ee. S
µ

−→ S′ and ∀S′′. S′ ε
=⇒ S′′. v 6∈ Ll(S′′);

4. ∃S′ ∈ Ee. S
ε

=⇒ S′, Ll(S) ∩ Ll(S′) = ∅ and ∀S′′. S′ ε
=⇒ S′′. Ll(S) ∩ Ll(S′′) = ∅.

Proof. We recall that ∀S ∈ Ee. Ll(S) ⊆ top(S) ⊆ lab(S). Items (1) and (2) are trivial.
Consider item (3). S′ is the term obtained from S by performing the action labeled by v:

by Theorem 4.8 , v 6∈ lab(S′) and for every S′′ such that S′ ε
=⇒ S′′, v 6∈ lab(S′′) holds.

Hence v 6∈ Ll(S′) and for every S′′ such that S′ ε
=⇒ S′′, v 6∈ Ll(S′′) holds.

To prove item (4) it suffices to apply the previous item, where µ = τ . The term S′ is
obtained from S by performing any v ∈ Ll(S) and such that for every v ∈ Ll(S) and every

S′′ such that S′ ε
=⇒ S′′ either v 6∈ lab(S′) (following that v 6∈ lab(S′′)) or v 6∈ Ll(S′′) and

v ∈ lab(S′). In both cases, Ll(S)∩Ll(S′) = ∅ and Ll(S)∩Ll(S′′) = ∅. Since Ll(S) is finite,
such S′ exists.
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Lemma C.2. Let S ∈ Ee and S = S0
τ

−→ S1
τ

−→ . . .
τ

−→ Si [
τ

−→ . . . ] be a strong-fair
computation from S. If ∃S′

0, S
′
1, S

′
2, . . . , S

′
n ∈ Ee such that

S′ = S′
0

τ
−→ S′

1
τ

−→ . . .
τ

−→ S′
n = S,

then

S′ τ
−→ S′

1
τ

−→ . . .
τ

−→ S′
n

τ
−→ S1

τ
−→ . . .

τ
−→ Si [

τ
−→ . . . ]

is a strong-fair computation from S′.

Proof. Consider C = S′ τ
−→ S′

1
τ

−→ . . .
τ

−→ S′
n

τ
−→ S′

n+1
τ

−→ . . .
τ

−→ S′
n+i [

τ
−→ . . . ], where

∀j ≥ 0. S′
n+j ::= Sj . Obviously C is a maximal computation from S′. To prove that C is

also strong-fair, it suffices to prove that ∀v ∈ ({0, 1}∗ × N). ∃h ≥ 0. ∀k ≥ h. v 6∈ Ll(S′
k).

Since S′
n

τ
−→ S′

n+1
τ

−→ . . .
τ

−→ S′
n+i [

τ
−→ . . . ] is a strong-fair computation from S′

n, then
∀v ∈ ({0, 1}∗ × N). ∃h ≥ n. ∀k ≥ h. v 6∈ Ll(S′

k). Since n ≥ 0, ∀v ∈ ({0, 1}∗ × N). ∃h ≥ 0.
∀k ≥ h. v 6∈ Ll(S′

k). I.e., C is a strong-fair computation from S′.


