Diletta Cacciagrano
email: diletta.cacciagrano@unicam.it

Flavio Corradini
email: flavio.corradini@unicam.it

Catuscia Palamidessi
email: catuscia@lix.polytechnique.fr

Explicit Fairness in Testing Semantics

Keywords: Pi-Calculus, Testing Semantics, Strong Fairness, Weak Fairness

HAL is

Introduction

One of the typical problems of concurrency is to ensure that all the tasks that are supposed to be executed do not get postponed indefinitely in favor of other activities. This property, which is called fairness, can be implemented by using a particular scheduling policy that excludes unfair behavior. For instance, in Pict [START_REF] Pierce | Pict: A Programming Language Based on the Pi-Calculus[END_REF], (weak) fairness is obtained by using FIFO channel queues and a round-robin policy for process scheduling. A stronger property (strong fairness) is obtained by using priority queues.

Of course in practice it is not feasible to impose that all implementations adopt a certain scheduler. One reason is that, depending on the underlying machine, one scheduling policy may be much more efficient than another one. Hence fairness has been studied, since the beginning of the research on Concurrency, as an abstract property and independently from the implementation.

1.1. Fairness in literature. Most of the common notions of fairness share the same general form: "Every entity that is enabled sufficiently often will eventually make progress." Varying the interpretations of 'entity' and 'sufficiently often' leads to different notions of fairness.

Kuiper and de Roever [START_REF] Kuiper | Fairness assumptions for CSP in a temporal logic framework[END_REF] identified a wide hierarchy of fairness notions for the CSP language (channel fairness, process fairness, guard fairness, and communication fairness), according to the entity taken into account (respectively channel, process, guard and communication). Each of these fairness notions have a weak and a strong variant, which differ in the interpretation of sufficiently often: weak forms of fairness are concerned with continuously enabled entities, whereas strong forms of fairness are concerned with the infinitely enabled entities.

Independently, Costa and Stirling investigated (weak and strong) fairness of actions for a CCS-like language without restriction in [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF], and fairness of components for the full CCS in [START_REF] Costa | Weak and Strong Fairness in CCS[END_REF]. An important result of their investigation was the characterization of fair executions in terms of the concatenation of certain finite sequences, called LP-steps. This result allowed expressing fairness as a local property instead than a property of complete maximal executions.

Although [START_REF] Kuiper | Fairness assumptions for CSP in a temporal logic framework[END_REF] and [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF][START_REF] Costa | Weak and Strong Fairness in CCS[END_REF] seem to define different fairness varieties, there is a correspondence between some notions in the two approaches (up to the language on which the study is based): guard fairness corresponds to fairness of actions, while process fairness corresponds to fairness of components. However, the communication mechanism of the languages chosen for the study -CSP in [START_REF] Kuiper | Fairness assumptions for CSP in a temporal logic framework[END_REF] and CCS in [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF][START_REF] Costa | Weak and Strong Fairness in CCS[END_REF] -modifies the interrelationships among notions. In fact, in CSP processes communicate by name, each channel corresponds precisely to a pair of processes, i.e only two processes communicate along any given channel and only one channel is used between any two processes; on the other hand, in CCS any number of processes may communicate along a given channel, and two processes may communicate along any number of channels. This implies that some fairness notions are related in CSP while they are not related in CCS. For example, while every channel-fair computation is also process-fair in CSP ([START_REF] Francez | Fairness[END_REF]), in CCS it is possible for a particular channel to be used sufficiently often and yet for another process to become blocked while trying to use that same channel 1 .

Hennessy [START_REF] Hennessy | Acceptance trees[END_REF] introduced the concept of fairness in his acceptance trees model, by adding limit points indicating which infinite paths are fair. The notion of fairness incorporated into this semantics is a form of unconditional fairness: an infinite execution is considered fair if every process makes infinitely many transitions along that computation.

Francez [START_REF] Francez | Fairness[END_REF] characterized the notions of fairness in [START_REF] Kuiper | Fairness assumptions for CSP in a temporal logic framework[END_REF] in terms of a so-called machine closure property and by means of a topological model.

Fairness has also been investigated in the context of probabilistic systems. Koomen [START_REF] Koomen | Albegraic Specification and Verification of Communications protocols[END_REF] explained fairness with probabilistic arguments: the Fair Abstraction Rule establishes that no matter how small the probability of success is, if one tries often enough one will eventually succeed. Pnueli introduced in [START_REF] Pnueli | On the Extremely Fair Treatment of Probabilistic Algorithms[END_REF] the notion of extreme fairness and α-fairness, to abstract from the precise values of probabilities. 1 It suffices to consider the term ā | !a.ā | ā, where a and ā denote actions of input and output on channel a, respectively, and !a.ā denotes a process which can perform infinitely often an input on channel a, followed by an output on the same channel. Although channel a must be used infinitely often along any infinite computation, it is possible under channel fairness that the leftmost ā is ignored, while the right-most ā synchronizes continually with the process !a.ā. This is not the case under process fairness.

1.2. Fairness in bisimulation equivalences and testing semantics. Observational equivalences and preorders can have different bearings with respect to fairness. In particular, this is the case of testing preorders [START_REF] De Nicola | Testing Equivalences for Processes[END_REF] and bisimulation equivalences [START_REF] Milner | Communication and Concurrency[END_REF][START_REF] Park | Concurrency and Automata on Infinite Sequences[END_REF].

The first framework was presented by De Nicola and Hennessy in their seminal work [START_REF] De Nicola | Testing Equivalences for Processes[END_REF], where they proposed the concept of testing and defined the must-and the may-testing semantics, as well as their induced preorders. The second framework [START_REF] Milner | Communication and Concurrency[END_REF][START_REF] Park | Concurrency and Automata on Infinite Sequences[END_REF] arises from the principle of (mutual) simulation of systems. The prime representatives of this family are bisimilarity and observation congruence [START_REF] Milner | Communication and Concurrency[END_REF]. In particular, weak bisimulation incorporates a particular notion of fairness: it abstracts from the τ -loops (i.e infinite sequences of τ -or internal -actions) in which the "normal" behavior can be resumed each time after a finite sequence of τ -actions. Such a property can be useful in practice -for instance for communication protocols in systems with lossy communication media, which retransmit lost messages. There is a fairness principle implicitly associated with such systems, based on the assumption that the path which stays in the loop forever is not a possible behavior of the system. Interesting proofs of protocol correctness based on this principle are given in [START_REF] Brinksma | Cache Consistency by Design[END_REF][START_REF] Larsen | Verifying a Protocol using Relativized Bisimulation[END_REF].

Bisimulation equivalences are usually rather strict, since they depend on the whole branching structure of processes, which in some cases may be not relevant. On the other hand, most of the standard testing preorders interpret τ -loops as divergences, making them quasi-observable. In fact, the must-predicate on P | o immediately fails if P is able to do a τ -loop that never reaches a successful state. Hence, while the standard testing equivalences are coarser than weak bisimulation in the case of divergence-free processes, they are not comparable with the latter in general.

In [START_REF] Rensink | Fair Testing, Information and Computation[END_REF] and in [START_REF] Natarajan | Divergence and Fair Testing[END_REF] a new testing semantics was proposed to incorporate the fairness notion: the fair-testing (aka should-testing) semantics. In contrast to the classical musttesting (semantics), fair-testing abstracts from certain τ -loops. This is achieved by stating that the test o is satisfied if success always remains within reach in the system under test. In other words, P fair o holds if in every maximal computation from P | o every state can lead to success after finitely many interactions. The characterizing semantics for fair-testing and a similar testing scenario can already be found in [START_REF] Vogler | Modular Construction and Partial Order Semantics of Petri Nets[END_REF].

The relation between bisimulations and fair-testing was investigated in [START_REF] Fournet | A Hierarchy of Equivalences for Asynchronous Calculi[END_REF], in the context of name-passing process calculi like the asynchronous π-calculus [START_REF] Honda | An Object calculus for Asynchronous Communication[END_REF] and the joincalculus [START_REF] Fournet | The Join Calculus: A Language for Distributed Mobile Programming[END_REF]. The authors of [START_REF] Fournet | A Hierarchy of Equivalences for Asynchronous Calculi[END_REF] presented a hierarchy of equivalences obtained as variations of Milner and Sangiorgi's weak barbed bisimulation. In particular, they proved that the coupled barbed equivalence strictly implies the fair-testing equivalence. They also showed that those relations coincide in the join-calculus and on a restricted version of the asynchronous π-calculus, called local π-calculus, where reception occurs only on names bound by a restriction (not on free and received names).

Another relation motivated by the aim of incorporating in must-testing the fairness property of observation congruence is the acceptance-testing, which was defined and studied in [START_REF] Brinksma | A theory for the Derivation of Tests[END_REF]. This relation is captured by the failures model but, in contrast to must-testing, it does not yield a precongruence with respect to abstraction (or hiding), a construction which internalizes visible actions and may thereby introduce new divergences.

The probabilistic intuitions motivating the Koomen's rule inspired another approach to incorporate fairness in a testing semantics [START_REF] Núñez | Fair testing through probabilistic testing, Protocol Specification[END_REF]. The authors of [START_REF] Núñez | Fair testing through probabilistic testing, Protocol Specification[END_REF] defined a probabilistic must-semantics in which a (probabilistic) process must-satisfy a test if and only if the probability with which the process satisfies the test equals 1, and proved that two non-probabilistic processes are fair-equivalent if and only if their probabilistic versions are equivalent in the probabilistic testing semantics.

The goal of this work:

A study of testing semantics with implicit and explicit fairness. Fair-testing is an appealing equivalence. Some of its advantages are that it detects deadlocks and implements fairness. It has also been used in various works. For example, [START_REF] Brinksma | Applications of Fair Testing[END_REF] uses the fair-testing preorder as an implementation relation for distributed communication protocols.

The purpose of our study is to try to make operationally explicit the fairness assumption which is implicit in the fair-testing semantics. The advantages of the formulation in operational terms is to have a better understanding of this notion. Also, it can help eliminating some of the known drawbacks: for example, fair-testing abstract fairness is not enforced by practical scheduling policies, and direct proofs of equivalence are very difficult because they involve nested inductions for all quantifiers in the definition of fair-testing and all evaluation contexts.

In contrast to [START_REF] Núñez | Fair testing through probabilistic testing, Protocol Specification[END_REF] we want to keep invariant the original testing scenario and try to characterize (or approximate) fair-testing semantics -which does not involve any probability assumption -in term of a non-probabilistic testing semantics equipped with some explicit fairness notion.

We proceed as follows:

• We consider the choiceless π-calculus [START_REF] Milner | A Calculus of Mobile Processes, Part I and II[END_REF] and we develop for it an approach to fairness (of actions) similar to that which has been proposed in [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF][START_REF] Costa | Weak and Strong Fairness in CCS[END_REF] for CCS-like languages [START_REF] Milner | Communication and Concurrency[END_REF]. More precisely, we define (i) a labeling method for π-calculus terms that ensures that no label occurs more than once in a labeled term (unicity), that a label disappears only when the corresponding action is performed (disappearance), and that, once it has disappeared, it will not appear in the computation anymore (persistence), (ii) the notion of live action, which refers to the fact that the action can currently be performed, and (iii) weak and strong fairness of actions. • We then contrast the existing fair-testing semantics [START_REF] Rensink | Fair Testing, Information and Computation[END_REF][START_REF] Natarajan | Divergence and Fair Testing[END_REF] with those that naturally arise by imposing weak and strong fairness [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF][START_REF] Costa | Weak and Strong Fairness in CCS[END_REF] on a must-testing semantics. In the following we justify our choices, and describe in detail our setting and results.

1.4. The choiceless π-calculus. The choiceless π-calculus is essentially the π-calculus without the choice operator (+). This seems a rather appealing framework to study fairness. In fact, the choice operator is a bit controversial with respect to fairness, because it is not clear what fairness should mean in the case of a repeated execution of a choice construct. In [START_REF] Costa | Weak and Strong Fairness in CCS[END_REF] the continuous selection of the same branch of a choice construct turns out to be fair, while other researcher would not agree to consider fair this kind of computation. The reason why it is fair in [START_REF] Costa | Weak and Strong Fairness in CCS[END_REF] is that when the action that has not been selected comes back in the recursive call, it is considered a new action, and it is relabeled. On the contrary, in other approaches, like for instance [START_REF] Kuiper | Fairness assumptions for CSP in a temporal logic framework[END_REF], the guards that come back are precisely the object of weak fairness.

On the other hand, thanks to the fact that the restriction operator "ν" allows the creation of new names and the scope extrusion, the π-calculus is more expressive than CCS, and it is possible to represent in it various types of choices in a compositional way by means of the parallel operator (see [START_REF] Nestmann | What is a 'good' encoding of guarded choice[END_REF][START_REF] Nestmann | Decoding choice encodings[END_REF][START_REF] Palamidessi | Comparing the Expressive Power of the Synchronous and Asynchronous π-calculus[END_REF]). In particular, the internal choice and the input-guarded choice. For example, the term (νa)(ā | a.b.0 | a.c.0) represents the internal choice between b and c. If we want to repeat the execution of this choice, we use the replication operator "!" which creates an arbitrary number of copies of the argument. The issue of fairness depends on where we place "!" in the term: !(νa)(ā | a.b.0 | a.c.0) can produce an infinite sequence of "b"'s, and the corresponding computation is considered fair because the subterms a.b.0, a.c.0 have only one copy of ā in the same scope, so if such copy synchronizes with a.b.0, then a.c.0 will be disabled forever. In a sense, the term represents a new choice each time. On the contrary, (νa)!(ā | a.b.0 | a.c.0) can also produce an infinite sequence of "b"'s, but the corresponding computation is not fair because all the copies of ā are in the same scope and therefore a.c.0 is always enabled. In a sense, here we repeat always the same choice.

We find that the reduction of choice to the parallel operator brings some insight to the relation between repeated choice and fairness, in the sense that the definition of fairness for the various kinds of combination of choice and repetition stems naturally from the definition of fairness for the parallel operator.

1.5. The labeling method. In [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF][START_REF] Costa | Weak and Strong Fairness in CCS[END_REF], labels are flat sequences of 1's and 2's and are assigned to operators according to the syntactic structure of the term, without distinguishing between static and dynamic operators. In our approach, labels are pairs s, n in ({0, 1} * ×N) and are associated to prefix and replication operators; restriction and parallel operators do not get a label on their own. In contrast to [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF][START_REF] Costa | Weak and Strong Fairness in CCS[END_REF], the aim is to keep separated the information about static and dynamic operators and avoid labels which (at least for our purpose) are superfluous, thus making more intuitive their role in the notion of fairness.

The first component of a pair, s, represents the position of the process (whose toplevel operator is associated to that label) in the term structure, and it depends only on the (static) parallel operator. This component ensures the unicity of a label. The second component, n, provides information about the dynamics of the process in the term structure. More precisely, it indicates how many actions that process has already executed since the beginning of the computation, and it depends only on the (dynamic) prefix operator. This second component serves to ensure the persistence property of a label.

Informally, a label s, n denotes unambiguously a parallel process -the one associated to s -and a precise action of it -the one nested at level n in the original term. Note that: (i) all the actions of a parallel process share the first label component s and they only differ from the second component n; (ii) actions of different parallel processes at the same level share the second label component n and are distinguished by the first component s.

We give now an example to illustrate the difference with the labeling method of [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF][START_REF] Costa | Weak and Strong Fairness in CCS[END_REF]. We recall that in [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF][START_REF] Costa | Weak and Strong Fairness in CCS[END_REF] the labels are assigned essentially by using the tree representing the abstract syntax of the term: we add 1 to the string representing the label on the left branch, and 2 on the right branch. 1 is the the labeling of S in the approach of [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF][START_REF] Costa | Weak and Strong Fairness in CCS[END_REF], while the right-most one is the the labeling of S in our approach. The representation of both labeled terms in the usual linear syntax is given in Example 4.7.

1.6. Testing with explicit fairness vs. fair-testing. The labeling method allows defining weak-and strong-fair computations. Using these notions, we adapt must-testing semantics [START_REF] Boreale | Testing Equivalence for Mobile Processes[END_REF] to obtain what we call weak-fair must-testing semantics and strong-fair musttesting semantics. Then we compare these two 'fair'-testing semantics with the fair-testing [START_REF] Rensink | Fair Testing, Information and Computation[END_REF][START_REF] Natarajan | Divergence and Fair Testing[END_REF], that does not need any labeling of actions, and with the standard must-testing. This comparison reveals the expressiveness of the various testing semantics we consider. In particular:

• we show that weak-fair must testing is strictly stronger than strong-fair must testing,

• we show that must-testing is strictly stronger than weak-fair must testing,

• we prove that strong-fair must testing is strictly stronger than fair-testing,

• we prove that strong-fair and weak-fair must-testing cannot be characterized by a notion based on the transition tree, like fair-testing.

1.7.

Roadmap of the paper. The rest of the paper is organized as follows. Section 2 recalls the definition of the π-calculus. Section 3 recalls the definition of the must-testing and the fair-testing semantics. Section 4 shows the labeling method and its main properties. Weak-fair must-and strong-fair must-testing semantics are defined in Section 5 and compared in Section 6. Finally, in Section 7 we investigate why strong and weak fairness notions are not enough to characterize fair-testing semantics. Section 8 contains some concluding remarks and plans for future work. All the proofs omitted in the body of the paper are in the appendixes.

The π-calculus

We briefly recall here the basic notions about the (choiceless) π-calculus. Let N (ranged over by x, y, z, . . .) be a set of names. The set P of processes (ranged over by P, Q, R, . . .) is generated by the following grammar:

P ::= 0
x(y).P xy.P P | P (νx)P !P

The input prefix y(x).P , and the restriction (νx)P , act as name binders for the name x in P . The free names fn(P) and the bound names bn(P) of P are defined as usual. The set of names of P is defined as n(P) = fn(P) ∪ bn(P).

The operational semantics of processes is given via a labeled transition system, whose states are the process themselves. The labels (ranged over by µ, γ, . . .) "correspond" to prefixes, input xy and output xy, and to the bound output x(y) (which models scope extrusion). If µ = xy or µ = xy or µ = x(y) we define sub(µ) = x and obj(µ) = y. The functions fn(•), bn(•) and n(•) are extended to cope with labels as follows:

bn(xy) = ∅ bn(x(y)) = {y} bn(xy) = ∅ bn(τ) = ∅ fn(xy) = {x, y} fn(x(y)) = {x} fn(xy) = {x, y} fn(τ) = ∅
We take into account the early operational semantics for P in [START_REF] Sangiorgi | The Pi-calculus: a Theory of Mobile Processes[END_REF], as shown in Table 1. We only omit symmetric rules of Par, Com and Close for simplicity, and we assume alpha-conversion to avoid collision of free and bound names. Definition 2.1. (Weak transitions) Let P and Q be P processes. Then:

-P ε =⇒ Q iff ∃ P 0 , ..., P n ∈ P, n ≥ 0, s.t. P = P 0 τ -→ ... τ -→ P n = Q ; -P µ =⇒ Q iff ∃ P 1 , P 2 ∈ P s.t. P ε =⇒ P 1 µ -→ P 2 ε =⇒ Q . Notation 2.2.
For convenience, we write x(y) and xy instead of x(y).0 and xy.0, respectively. Furthermore, we write P µ -→ (respectively P µ =⇒) to mean that there exists P ′ such that P µ -→ P ′ (respectively P µ =⇒ P ′) and we write P ε =⇒ µ -→ to mean that there are P ′ and Q such that P ε =⇒ P ′ and P ′ µ -→ Q.

Testing semantics

In this section we briefly summarize the basic definitions behind the testing machinery for the π-calculus.

Par P µ -→ P ′ P | Q µ -→ P ′ | Q bn(µ) ∩ fn(Q) = ∅ Com P xy -→ P ′ , Q xy -→ Q ′ P | Q τ -→ P ′ | Q ′ Close P xy -→ P ′ , Q x(y) -→ Q ′ P | Q τ -→ (νy)(P ′ | Q ′) y ∈ f n(P) Rep P µ -→ P ′ !P µ -→ P ′ | !P
P | o = T 0 τ -→ T 1 τ -→ T 2 τ -→ . . .
or a finite sequence of the form

P | o = T 0 τ -→ T 1 τ -→ . . . τ -→ T n τ -→ .
We are now ready to define must-and fair-testing semantics.

P | o = T 0 τ -→ T 1 τ -→ . . . τ -→ T i [τ -→ . . .]
there exists i ≥ 0 such that T i ω -→;

-P fair o if and only if for every maximal computation from

P | o P | o = T 0 τ -→ T 1 τ -→ . . . τ -→ T i [τ -→ . . .] T i ω
=⇒, for every i ≥ 0.

A labeled version of the π-calculus

In order to deal with the notion of fairness of actions [START_REF] Costa | A Fair Calculus of Communicating Systems[END_REF], we first need to introduce a labeling method. Consider the following term:

P = ā | !a.ā | ā.
Notice that every maximal computation from P is always of the form

P τ -→ P τ -→ P τ -→ . . .
However, without labels we would not be able to distinguish fair computations from unfair ones, since we do not know which ā synchronizes with !a.ā and makes progress at each step. So, we need to be able to refer unambiguously to individual actions and to monitor them along any computation.

4.1.

The idea behind the labeling method. A 'reasonable' labeling method, independently from the choice of the labels domain, has to provide unicity (e.g. no label occurs more than once in a labeled term), disappearance (e.g. a label disappears only when the corresponding action is performed) and persistence (e.g. once a label disappears, it does not appear in the computation anymore).

The labeling method can be more or less informative, in the sense that the degree of information about the structure of terms (static information) and about the computation history (dynamic information) can vary. For our purpose we find useful to adopt a labeling method which is rather informative and keeps separate the static and dynamic aspects. Definition 4.1. (Ground Labeled P) We define P e gr as the language generated by the following grammar:

E ::= 0 µ s,n .E (νx)E E | E ! s,n P
where s ∈ {0, 1} * , n ∈ N, P ∈ P and the prefix µ is of the form x(y) or xy.

Obviously, P e gr also contains labeled terms in which the labels do not respect the structure and/or the execution order. To avoid this problem, we restrict the labeled language to those terms which are well-formed. The well-formedness predicate wf (•) (Table 4), allows us to obtain a well-defined labeling method; it is defined by using a binary relation ℜ over sets of labels, which checks the absence of label conflicts in the parallel composition, and a labeling function L s,n (•), where s ∈ {0, 1} * and n ∈ N, which allows us to avoid label conflicts in the prefix composition.

First, we define ℜ: if L 0 and L 1 are sets of labels, L 0 ℜ L 1 holds if and only if for every s 0 , n 0 ∈ L 0 and s 1 , n 1 ∈ L 1 , the first elements of the labels, s 0 and s 1 , are not related w.r.t. the usual prefix relation between strings. Formally: Definition 4.2.

1. Given two strings s 0 , s 1 ∈ {0, 1} * , we write s 0 ⊑ s 1 if and only if s 0 is a prefix of s 1 , i.e. s 1 = s 0 α for some α ∈ {0, 1} * ; 2. Given L 0 , L 1 ⊆ ({0, 1} * × N), we write

L 0 ℜ L 1 if and only if ∀ s 0 , n 0 ∈ L 0 . ∀ s 1 , n 1 ∈ L 1 . s 0 ⊑ s 1 and s 1 ⊑ s 0 .
Remark 4.3. From Definition 4.2, it follows immediately that

L 0 ℜ L 1 implies ∀ s 0 , n 0 ∈ L 0 . ∀ s 1 , n 1 ∈ L 1 . s 0 , n 0 = s 1 , n 1 .
Then, the labeling function L s,n (•) is defined following inductively the P terms operational structure. Definition 4.4. Let P ∈ P. Define L s,n (P), where s, n ∈ ({0, 1} * × N), as in Table 2.

L s,n (0) = 0 L s,n (µ.P) = µ s,n .L s,n+1 (P) L s,n (P 0 | P 1) = L s0,n (P 0) | L s1,n (P 1)
L s,n ((νx)P) = (νx)L s,n (P)

L s,n (!P) = ! s,n P Table 2: Labeling function L s,n (.).

We will use the relation ℜ in combination with the function top(•), defined in Table 3, which gives the top-level label set of a labeled term. In the same table we define also the function lab(•), which returns the whole set of labels, and which will be useful later. 4 defines formally the well-formedness predicate wf (•). Note that we use ℜ to check the lack of conflict, between labels in parallel components, at the top-level only. This constraint will turn out to be sufficient. In fact, in Lemma A.6 in the appendix it is proved that

E = 0 : top(E) = ∅ lab(E) = ∅ E = µ s,n .E ′ : top(E) = { s, n } lab(E) = { s, n } ∪ lab(E ′) E = (νx)E ′ : top(E) = top(E ′) lab(E) = lab(E ′) E = E 0 |E 1 : top(E) = top(E 0) ∪ top(E 1) lab(E) = lab(E 0) ∪ lab(E 1) E =! s,n P : top(E) = { s, n } lab(E) = { s, n }
top(E 0) ℜ top(E 1) implies lab(E 0) ℜ lab(E 1). Nil wf (0) Pref µ.P ∈ P wf (L s,n (µ.P)) Par wf (E 0), wf (E 1), top(E 0) ℜ top(E 1)
wf

(E 0 | E 1) Res wf (E)
wf ((νx)E)

Rep P ∈ P wf (! s,n P) Table 4: Well formed terms.

Now we are ready to define the set of labeled P-calculus terms, denoting it by P e .

Definition 4.6. The labeled P-calculus, denoted by P e , is the set {E ∈ P e gr | wf (E)} It would be possible to defined well-formed terms without explicitly relying on the labeling function: for example, defining an ordering relation between labels to characterize well-formedness of prefixing. However, our aim is to keep separated static and dynamic informations. More in detail, P e contains all the well-formed processes of the form 'L s,n (P)' (Lemma A.4). However, the operational semantics of P e , introduced in the following, does not preserve the 'L s,n (P)' format: for this reason, the wf (.) predicate is defined in order to ensure the closure of P e w.r.t In our approach, the labeling of S is the term

x(y) 0,0 .((νz)(z(k) 00,1 .0 | zh 01,1 .0)) | a(u) 1,0 .0.
4.2. Some properties of the labeled π-calculus. The operational semantics of P e is similar to the one in Table 1; we simply ignore labels in order to derive a transition. The only rule that needs attention is the one for processes in the scope of the replication operator, since the unfolding generates new parallel processes and we must ensure unicity, disappearance and persistence of labels. We use the dynamic labeling described in Table 5.

Rep P µ -→ P ′ ! s,n P µ -→ L s0,n+1 (P ′) | ! s1,n+1 P
2. (Disappearance) If E µ -→ E ′ then ∃ s, n ∈ lab(E). s, n ∈ lab(E ′); 3. (Persistence) ∀k ≥ 1. E 0 µ 0 -→ E 1 µ 1 -→ E 2 µ 2 -→ . . . µ k-1 -→ E k , if s, n ∈ lab(E 0)∩lab(E k) then s, n ∈ lab(E i) for any i ∈ [1..(k -1)].
Proof. (1) By induction on the structure of E.

-E = 0: then lab(0) = ∅.

-E = L s,n (µ.P ′): then lab(E) = { s, n } ∪ lab(L s,n+1 (P ′)). By Lemma A.4, wf (L s,n+1 (P ′)), i.e. L s,n+1 (P ′) ∈ P e and, by induction hypothesis, for every s ′ , n ′ ∈ lab(L s,n+1 (P ′)), s ′ , n ′ does not occur more than once in lab(L s,n+1

(P ′)). By Lemma A.3, ∀ s ′ , n ′ ∈ lab(L s,n+1 (P ′)). s ⊑ s ′ and n + 1 ≤ n ′ . Hence s, n ∈ lab(L s,n+1 (P ′)). -E = (E 0 | E 1)
: by definition, ∀i ∈ {0, 1}. wf (E i) holds, implying E i ∈ P e , and lab(E) = i lab(E i). By induction hypothesis, for every i ∈ {0, 1} and every s i , n i ∈ lab(E i), s i , n i does not occur more than once in lab(E i). By Lemma A.6, top(E 0) ℜ top(E 1) implies lab(E 0) ℜ lab(E 1), i.e. ∀ s 0 , n 0 ∈ lab(E 0). ∀ s 1 , n 1 ∈ lab(E 1). s 0 , n 0 = s 1 , n 1 . Hence, for every i ∈ {0, 1} and every s i , n i ∈ lab(E i), s i , n i does not occur more than once in lab(E).

-Cases E = (νx)E ′ and E =! s,n P can be proved similarly.

(2) By Remark 4.5 and Lemma A.8, it suffices to prove that -Rule Input/Output: E = L s,n (µ.P) µ -→ E ′ = L s,n+1 (P ′) (either P ′ = P or P ′ = P {z/y}). top(L s,n (µ.P)) = { s, n } and, by Lemma A.3 on L s,n+1 (P ′), ∀ r ′ , m ′ ∈ top(L s,n+1 (P ′)) ⊆ lab(L s,n+1 (P ′)). s ⊑ r ′ and n + 1 ≤ m ′ . Hence s, n ∈ top(E) and s, n ∈ top(L s,n+1 (P ′)).

E µ -→ E ′ implies ∃ s, n ∈ top(E). s, n ∈ top(E ′).
-Rule Par:

E = (E 0 | E 1) µ -→ (E ′ 0 | E 1), where bn(µ) ∩ f n(E 1) = ∅ and E 0 µ -→ E ′ 0 . By induction hypothesis, ∃ r 0 , m 0 ∈ top(E 0). r 0 , m 0 ∈ top(E ′ 0). Since top(E 0) ℜ top(E 1) holds, then { r 0 , m 0 }ℜtop(E 1), i.e. r 0 , m 0 ∈ top(E 1). We conclude that r 0 , m 0 ∈ top(E ′ 0 | E 1). -Rule Com: E = (E 0 | E 1) τ -→ (E ′ 0 | E ′ 1)
, where

E 0 xy -→ E ′ 0 and E 1 xy -→ E ′ 1 . By induction hypothesis, ∃ r 0 , m 0 ∈ top(E 0). r 0 , m 0 ∈ top(E ′ 0) and ∃ r 1 , m 1 ∈ top(E 1). r 1 , m 1 ∈ top(E ′ 1). Consider r 0 , m 0 (case r 1 , m 1 is symmetric). Since wf (E 0 | E 1), then we have top(E 0) ℜ top(E 1). This implies { r 0 , m 0 }ℜtop(E 1). By item (3) of Lemma A.5 on E 1 xy -→ E ′ 1 , ∀ r ′ 1 , m ′ 1 ∈ top(E ′ 1). ∃ r ′ , m ′ ∈ top(E 1). r ′ ⊑ r ′ 1 and m ′ ≤ m ′ 1 . By Lemma A.2, it follows that { r 0 , m 0 } ℜ top(E ′ 1)
, and therefore r 0 , m 0 ∈ top(E ′ 1). We can conclude that r 0 , m 0 ∈ top(E 0 | E 1) and

r 0 , m 0 ∈ top(E ′ 0) ∪ top(E ′ 1) = top(E ′ 0 | E ′ 1
). -Rule Open/Res/Close/Rep: These cases can be proved similarly.

(3) In [START_REF] Costa | Weak and Strong Fairness in CCS[END_REF] (Lemma 8.8), the analogous property is only proved for k = 2. However, the general case cannot be obtained by induction, since the reasoning for the case k = 2 does not contain the essential elements to prove the inductive step. Differently from [START_REF] Costa | Weak and Strong Fairness in CCS[END_REF], we prove the property in the general case. We proceed as follows.

By contradiction, let i ∈ [1..(k -1)] be the least index such that s, n ∈ lab(E i) and let j ∈ [(i + 1)..k] be the least index such that s, n ∈ lab(E j). By the minimality of i, we can apply Lemma A.7 and we obtain that s, n ∈ top(E i-1). By item (2) of Lemma A.5 on E j , ∃ r j , m j ∈ top(E j). r j ⊑ s and m j ≤ n. By item (3) of Lemma A.5 on

E c µc -→ E c+1 for any c ∈ [(i -1)..(j -1)], ∃ r c , m c ∈ top(E c). r c ⊑ r c+1 and m c ≤ m c+1 . It follows that ∃ r i-1 , m i-1 ∈ top(E i-1). r i-1 ⊑ s and m i-1 ≤ n.
-In the case r i-1 , m i-1 and s, n are distinct labels: we contradict item (1) of Lemma A.5. -In the case r i-1 , m i-1 = s, n : it follows that ∀c ∈ ((i -1).. Remark 4.9. The disappearance property states that a label disappears when the corresponding action is performed. On the other hand, the persistence ensures a complete disappearance of a label, once the corresponding action is performed. In fact, it is clear that the following situation

∃E 0 µ 0 -→ E 1 µ 1 -→ ... µ k-1 -→ E k . ∃h ∈ [1..(k -1)]. s, n ∈ lab(E 0) ∩ lab(E k) but s, n ∈ lab(E h) would contradict item (3).
As expected, the labeled language is a conservative extension of the unlabeled one. To prove the statement, we have to formally define the P process that is obtained by deleting all the labels appearing within a labeled term. Definition 4.10. Let E ∈ P e . Define U nl(E) as the P process obtained by removing all the labels in E. It can be defined by induction as in Table 6.

U nl(0) = 0 U nl(µ s,n .E) = µ.U nl(E) U nl(E 0 | E 1) = U nl(E 0) | U nl(E 1) U nl((νx)E) = (νx)U nl(E) U nl(! s,n P) = !P Table 6: Function U nl(•).
The conservative property of the labeled extension is expressed by the following lemma, which can be proved by induction on the depth of

E µ -→ E ′ (item (1)) and U nl(E) µ -→ P ′ (item (2)).
Proposition 4.11. Let E ∈ P e .

1.

E µ -→ E ′ implies U nl(E) µ -→ U nl(E ′); 2. U nl(E) µ -→ P ′ implies ∃E ′ ∈ P e . E µ -→ E ′ and U nl(E ′) = P ′ .

Strong and weak fairness of actions

The labeling method proposed in the previous section can be extended in a natural way over the observers, adding B ::= ω.B in the grammar of P e gr , ω.o ω -→ o in the operational semantics and extending the functions L s,n , top(•), lab(•), U nl(•) and the predicate wf (•) as shown in Table 7. No label is associated to ω since we do not need to distinguish ω occurrences 2 .

In the following, O e (ranged over by ρ, ρ ′ , ..) denotes the set of labeled observers and E e denotes the set of labeled experiments over P e , as expected.

The definition of live label is crucial in the notion of fairness. Given a labeled experiment S ∈ E e , a live label is a label associated to a top-level action which can immediately be performed, i.e. an input/output prefix able to synchronize. Table 8 defines the live labels of a labeled experiment S ∈ E e , according to the labeling method proposed in Section 4. Informally, Table 8 is a rephrasing of operational rules: even if live labels cannot be directly defined in term of transitions, deductions of live predicate mime the proof for a derivation. As a consequence, ω is not live, since a complementary action (ω) does not exist. Given a labeled experiment S, the set of S live labels is denoted by Ll(S).

2 E ω -→ whenever an arbitrary occurrence of ω is at the top level in E.

(L s,n /U nl) L s,n (ω.o) = U nl(L s,n (ω.o)) = ω.o (top/lab) top(ω.o) = lab(ω.o) = ∅ (wf) ω.o ∈ O wf (ω.o)
Ll(S) = { s, n ∈ ({0, 1} * × N) | live(s, n , τ, S)}
is the set of live labels associated to initial τ -→ from S.

If S τ -→, then Ll(S) = ∅. Since top(S) is defined as the set of labels appearing at the top of S, it follows immediately by the definition of live actions that Ll(S) ⊆ top(S). For simplicity, labels will be denoted in the following by v, v 1 , v 2 , . . . ∈ ({0, 1} * × N).

We can now formally define the strong and weak notions of fairness. Intuitively, a weak-fair computation is a maximal computation such that no label becomes live and then stays live forever. Definition 5.2. (Weak-fair Computations) Given S ∈ E e , a weak-fair computation from S is a maximal computation,

S = S 0 τ -→ S 1 τ -→ S 2 τ -→ . . . τ -→ S i [τ -→ . . .]
where ∀v ∈ ({0, 1} * × N). ∀i ≥ 0. ∃j ≥ i. v ∈ Ll(S j).

A strong-fair computation is a maximal computation such that no label is live infinitely often. Formally, strong fairness imposes that for every label there is some point beyond which it is never live.

S = S 0 τ -→ S 1 τ -→ S 2 τ -→ . . . τ -→ S i [τ -→ . . .]
where ∀v ∈ ({0, 1} * × N). ∃i ≥ 0. ∀j ≥ i. v ∈ Ll(S j).

Note that every finite computation is strong-fair (resp. weak-fair), because there is no transition τ -→ from the end state, which implies that there are no live labels.

C S = S 0 τ -→ S 1 0 τ -→ .. τ -→ S n 0 0 τ -→ S 1 [τ -→ S 1 1 τ -→ .. τ -→ S n 1 1 τ -→ S 2 τ -→ . . .]
where ∀i ≥ 0. Ll(S i) ∩ Ll(S i+1) = ∅ and ∀j ≥ i. Ll(S i) ∩ Ll(S j) = ∅. Suppose, by contradiction, that C is not strong-fair: then there exists a label v such that ∀i ≥ 0. ∃j ≥ i. v ∈ Ll(S), where either S = S j or S = S k j , contradicting the hypothesis on C. (2) The positive result is trivial: by definition, a strong-fair computation is a special case of weak-fair computation. To prove the negative result, let

S = E | ρ, where E = ! v 0 1 a|(νb)(bv 0 2 |! v 0 3 b . (ā| b)) and ρ = a v 4
.ω: it is not difficult to check that there exists a maximal computation from S, along which a v 4 is never performed. The maximal computation C we consider is the following one (we omit 0 term by convenience):

E | ρ = S 0 τ -→ S 1 τ -→ S 2 τ -→ . . . τ -→ S i τ -→ where ∀j ≥ 0. Q(v j 2 , v j 3) = (νb)(bv j 2 | ! v j 3 b.(ā | b))
and

S 0 =! v 0 1 a | Q(v 0 2 , v 0 3) | a v 4 .ω . . . S 1 =! v 0 1 a | āv 1 5 | Q(v 1 2 , v 1 3) | a v 4 .ω S i =! v i 1 a | Q(v i-1 2 , v i-1 3) | a v 4 .ω S 2 =! v 2 1 a | Q(v 1 2 , v 1 3) | a v 4 .ω S i+1 =! v i 1 a | āv i+1 5 | Q(v i+1 2 , v i+1 3) | a v 4 .ω S 3 =! v 2 1 a | āv 3 5 | Q 2 (v 3 2 , v 3 3) | a v 4 .ω S i+2 =! v i+2 1 a | Q(v i+1 2 , v i+1 3) | a v 4 .ω S 4 =! v 4 1 a | Q(v 3 2 , v 3 3) | a v 4 .ω . . . Notice that, in C, we have v 4 ∈ Ll(S 0), v 4 ∈ Ll(S 1), v 4 ∈ Ll(S 2), v 4 ∈ Ll(S 3), . . . , v 4 ∈ Ll(S i), v 4 ∈ Ll(S i+1), v 4 ∈ Ll(S i+2
), . . . and so on. Moreover for every v ∈ Ll(S j), where v = v 4 , there exists k > j such that v ∈ Ll(S k). I.e., C is weak-fair but it is not strong-fair.

Comparing 'fair'-testing semantics

In this section we consider the addition of the requirement of fairness in the definition of the must-testing and investigate the resulting semantic relations. In particular, we compare the different notions of fairness (the notions we introduce and the existing notion of fairtesting semantics), and the must-testing semantics.

Let us start by observing that P must o implies P fair o, but not vice versa: it suffices to consider the process P =

E | ρ = S 0 τ -→ S 1 τ -→ . . . τ -→ S i [τ -→ . . .] ∃i ≥ 0 such that S i ω -→.
The following result states the relation between weak-fair must-testing and strong-fair must-testing. It is the case that weak-fair must-testing implies strong-fair must-testing, but not vice versa. In fact, any strong-fair computation is also weak-fair. To prove the negative result, we consider an experiment with weak-fair computation in which the label prefixing ω becomes live, loses its liveness, becomes live again, etc., without being performed: this computation is weak-fair by definition and unsuccessful. Notice that this label should be always performed in a strong-fair computation, determining the success of it. Proposition 6.2. ∀E ∈ P e . ∀ρ ∈ O e . E wfmust ρ implies E sfmust ρ, but not vice versa.

Proof. For the positive part, suppose, by contradiction, that there exists a strong-fair computation

C E | ρ = S 0 τ -→ S 1 τ -→ . . . τ -→ S i [τ -→ . . .]
such that ∀i ≥ 0. S i ω -→. Since a strong-fair computation is weak-fair too, then C is weakfair. It follows that E wfmust ρ, thus contradicting the hypothesis.

We now prove the negative result. Consider again

E =! v 0 1 a | Q(v 0 2 , v 0 3) and ρ = a v 4 .ω, where Q(v j 2 , v j 3) = (νb)(bv j 2 |! v j 3 b.(ā | b))
. Notice that the computation proposed in the proof of item (2) of Theorem 5.4, where

v 4 ∈ Ll(S 0), v 4 ∈ Ll(S 1), v 4 ∈ Ll(S 2), v 4 ∈ Ll(S 3), .., v 4 ∈ Ll(S j), v 4 ∈ Ll(S j+1), v 4 ∈ Ll(S j+2
) etc., is unsuccessful: in fact, v 4 loses its liveness even if a v 4 is not performed. In such a case ∀j ≥ 0. S j ω -→. It follows that E wfmust ρ. To prove that E sfmust ρ holds, it suffices to notice that for every j ≥ 0 and every

v j 2 , v j 3 ∈ ({0, 1} * × N), a. Q(v j 2 , v j 3) τ -→ āv j+1 5 |Q 2 (v j+1 2 , v j+1 3), i.e. Q(v j 2 , v j 3) can perform infinite τ -→ sequences; b. for every T ∈ E e , every τ -→ from (Q(v j 2 , v j 3) | T)
does not follow from a synchronization (either Rule Com or Close) between Q(v j 2 , v j 3) and T ; c. for every maximal computation

C ′ from E | ρ E | ρ = S 0 τ -→ S 1 τ -→ . . . τ -→ S i [τ -→ . . .]
there always exists

S 1 =! v 0 1 a | āv 1 5 | Q(v 1 2 , v 1 3) | a v 4 .ω. d. v 4 ∈ Ll(S 0), v 4 ∈ Ll(S 1
) and v 4 ∈ Ll(S j+1) whenever there exists k ≥ (j + 1) such that āv k 5 is a top-level parallel component of S j+1 .

By definition of Q(v j 2 , v j 3), there exist infinitely many indexes k such that āv k 5 is a toplevel parallel component of S j+1 ; it follows that v 4 can be live infinitely often. But this is not possible if C ′ is a strong-fair computation: in fact, by definition, v 4 will lose its liveness forever, i.e. a v 4 will be performed. In such a case there will be i ≥ 2 in C ′ such that S i ω -→. (2) Immediate consequence of item (1) and Proposition 6.2.

Fair-testing and 'fair'-testing semantics

In [START_REF] Rensink | Fair Testing, Information and Computation[END_REF] it is shown that fair-testing semantics on finite state systems corresponds to some (strong) notion of fairness. However, this result does not hold in general. We will show that strong-fair must-testing (and hence weak-fair must-testing) does not suffice to characterize fair-testing.

The reason behind the negative result relies on the fact that we can construct a term for which there exist experiments being successful under fair-testing and performing maximal unsuccessful computations which are strong fair. 1. E sfmust ρ implies U nl(E) fair U nl(ρ), but not vice versa;

2. E wfmust ρ implies U nl(E) fair U nl(ρ), but not vice versa.

Proof.

(1) For the positive result, suppose, by contradiction, there exists a maximal com-

putation from U nl(E) | U nl(ρ) U nl(E) | U nl(ρ) = T 0 τ -→ T 1 τ -→ . . . τ -→ T i [τ -→ . . .]
and there exists i ≥ 0 such that T i ω =⇒, i.e. for each T ′ such that T i ε =⇒ T ′ , we have T ′ ω -→. It follows that for every maximal computation from T i of the form

T i = T ′ 0 τ -→ T ′ 1 τ -→ . . .
E | ρ = S 0 τ -→ S 1 τ -→ . . . τ -→ S i [τ -→ . . .]
where for every k ≥ 0 we have T k = U nl(S k). Then there exists i ≥ 0 such that S i ω =⇒, i.e. for each S ′ such that S i ε =⇒ S ′ , we have S ′ ω -→. It follows that for any maximal computation from

S i S i = S ′ 0 τ -→ S ′ 1 τ -→ . . . τ -→ S ′ j [τ -→ . . .] S ′ j ω
-→ for every j. Hence for every strong-fair computation from S i (which always exists, by Theorem 5.4)

S i = S ′ 0 τ -→ S ′ 1 τ -→ . . . τ -→ S ′ j [τ -→ . . .] S ′ j ω
-→ for every j. It follows that, given a strong-fair computation from S i

S i = S ′′ 0 τ -→ S ′′ 1 τ -→ . . . τ -→ S ′′ j [τ -→ . . .]
where S ′′ j ω -→ for every j, the following maximal computation We now prove the negative part. As explained before, it suffices to consider

E | ρ = S 0 τ -→ S 1 τ -→ . . . τ -→ S i = S ′ 0 τ -→ S ′′ 1 τ -→ . . . τ -→ S ′′ j [τ -→ . . .]
E = cv 0 1 | ! v 0 2 c.((νb)(b | b.c | b.ā))
and ρ = a v 3 .ω. Clearly, U nl(E) fair U nl(ρ), but there exists the following maximal computation

E | ρ = cv 0 1 | ! v 0 2 c.((νb)(b | b.c | b.ā)) | a v 3 .ω τ -→ (νb)(bv 1 4 | b v 1 5 .c v 1 6 | b v 1 7 .ā v 1 8) | ! v 1 2 c.((νb)(b | b.c | b.ā)) | a v 3 .ω τ -→ (νb)(b v 1 7 .ā v 1 8) | cv 1 6 | ! v 1 2 c.((νb)(b | b.c | b.ā)) | a v 3 .ω τ -→ . . . τ -→ i∈[1..k] (νb)(b v i 7 .ā v i 8) | cv k 6 | ! v k 2 c.((νb)(b | b.c | b.ā)) | a v 3 .ω τ -→ . . . τ -→
where no term has ω enabled. Notice that ω is always prefixed in a v 3 .ω and v 3 is always disabled since every occurrence of āv i 8 is prefixed in a deadlock term (νb)(b v i

7

.ā v i

8

). Hence this computation is strong-fair.

(2) The positive part is an immediate consequence of item (1) and Proposition 6.2. As for the negative part, observe that the counterexample in the proof of item (1) is a counterexample here too, because the computation considered is also weak-fair.

Previous result establishes that the notion of weak-and strong-fair must-testing differ from the notion of fair-testing in literature. A natural question is, then, which notion is more suitable than the other in given situations. As shown by the counterexample in the proof of previous theorem, the difference is with respect to computations that are fair but unsuccessful, and they offer at every state the possibility of being successful. These computations are considered acceptable by the notion of fair-testing, but not by our notion, and in our opinion, they should not be.

Example 7.2. We illustrate the difference with the well-known example of the dining philosophers. We can specify the system in our language in the following way. The system, DP, is composed by three forks f0 , f1 , f2 and three philosophers P 0 , P 1 , P 2 , in parallel:

DP def = f0 | P 0 | f1 | P 1 | f2 | P 2
Each philosopher replicates the following activity: first, he chooses whether to start with the left fork (if available) or with the right fork (if available). For the choice we use the input-guarded choice construct, represented here by the operator +. It is well-known that this kind of choice can be expressed in the asynchronous π-calculus, and therefore also in the language that we consider here, by a translation that preserves must semantics [START_REF] Nestmann | Decoding choice encodings[END_REF].

P i def = ! (L i + R i)
Under the left choice the philosopher takes the left fork, then chooses whether to take the right fork (if available) or to give up. In the first case, he takes the fork, eats, and then releases both forks. In the second case, he releases the left fork. This behavior can be represented as follows (where ⊕ denotes summation modulo 3):

L i def = f i .(f i⊕1 .eat.(fi | fi+1) + τ. fi)
The behavior under the right choice is analogous:

R i def = f i⊕1 .(f i .eat.(fi⊕1 | fi) + τ. fi⊕1)
Let us consider the observer which detects whether one philosopher succeeds to eat:

o def = eat . ω
We can see that

DP fair o

In fact, in every computation either a philosopher succeeds in taking both forks, and in that case he eats and the observer is satisfied, or there is always the possibility that one fork becomes available and can be taken by a philosopher who has already another fork. On the other hand, the computation in which each philosopher in turn takes the right fork, releases it, then take the second fork, releases it, then take the right fork . . . etc. is strongly fair, and unsuccessful. Hence we have

DP sfmust o

The answer given by our semantics is consistent with the view in Distributed Computing, where fairness and progress (a generalization of success -in this case, the fact that someone will eventually eat) are distinct concepts, and the Dining Cryptographers are considered an example of the fact that the first (fairness) does not imply the latter (progress).

The difference between fair-testing and both weak-and strong-fair must-testing relies on the fact that the former is based on properties of the transition tree and the latter are based on the notion of fairness.

We will prove in fact that no notion based only on the transition tree can characterize strong-fair must-and weak-fair must-testing. To this purpose, let us recall the definition of (strong) bisimulation. Definition 7.3. (Bisimulation) A bisimulation is a binary relation R satisfying the following: P R Q implies that:

1. P µ -→ P ′ then ∃Q ′ : Q µ -→ Q ′ ∧ P ′ R Q ′ ; 2. Q µ -→ Q ′ then ∃P ′ : P µ -→ P ′ ∧ P ′ R Q ′ .
Bisimilarity ∼ is the largest bisimulation R such that P R Q.

We recall that bisimilarity is a congruence. We now prove that sfmust and wfmust cannot be characterized by a notion that, like fair-testing, relies on the transition tree only.

Theorem 7.4. ∃E, F ∈ P e . U nl(E) ∼ U nl(F) but E ≈ sat F , where sat ∈ {wfmust, sfmust}. Proof. Let E = (νc)(c w 0 0 | ! w 0 1 c.(c | ā)) | (νc)(c w 0 2 | ! w 0 3 c.c) and F =! v 0 0 ((νb)(b | b | b.ā)) | (νc)(c v 0 1 | ! v 0 2 c.c
). E and F are neither sfmust nor wfmust equivalent, since the observer ρ = a v 3 .ω distinguishes E and F w.r.t. both sfmust and wfmust. In fact, every strong-fair (respectively, weak-fair) computation from E | ρ forces the synchronization between cw 0 0 and ! w).

However U nl(E) ∼ U nl(F), implying that (U nl(E) | U nl(ρ)) ∼ (U nl(F) | U nl(ρ)), for any observer ρ.

Conclusion and future work

We have designed a labeled version of the π-calculus, we have defined weak and strong fairness, and we have introduced the natural (weak and strong) fair versions of testing semantics. We have compared the various notions and proved that neither weak nor strong fairness correspond to fair-testing, and we have investigated the reason of this failure.

Our results are quite general, since they also hold for CCS, for the asynchronous πcalculus [START_REF] Boudol | Asynchrony and the π-calculus[END_REF] (it is easy to see that all proofs can be adapted immediately to these other calculi), to a π-calculus with choice operator (as explained in the introduction), and they do not depend on the labeling method (i.e. they hold for any labeling method for which unicity, disappearance and persistence hold).

As a future work, we plan to investigate on the existence of alternative characterizations of the fairness notions, allowing simple and finite representations of fair computations such as the use of regular expressions as in [START_REF] Corradini | Fairness of Actions in System Computations[END_REF][START_REF] Corradini | Fairness of Components in System Computations[END_REF]. It is also interesting to investigate the impact that these different notions of fairness may have on the encodings from the π-calculus into the asynchronous π-calculus [START_REF] Cacciagrano | Separation of Synchronous and Asynchronous Communication Via Testing[END_REF].

Another line of research that seems worth exploring is the the adaptation in our framework of the fairness notions of [START_REF] Kuiper | Fairness assumptions for CSP in a temporal logic framework[END_REF]. As we have mentioned in the introduction, it is possible to represent several forms of choice in the choiceless π-calculus using the parallel operator, and it would be interesting to see how the fairness notions of [START_REF] Kuiper | Fairness assumptions for CSP in a temporal logic framework[END_REF] relative to the choice operator get translated in our formalism.

Figure 1 :

 1 Figure 1: Tree-representation of labeled terms.

 Definition 3.1. (Observers) -Let ω ∈ N . ω denotes a special action used to report success. By convention fn(ω) = bn(ω) = ∅. -The set O (ranged over by o, o ′ , o ′′ , . . .) of observers is defined like P, where the grammar is extended with the production P ::= ω.P . -The operational semantics of P is extended to O by adding ω.P ω -→ P . Input x(y).P xz -→ P {z/y} Output xy.P xy νy)P ′ y ∈ n(µ)

Definition 3 . 4 .

 34 (Must-and Fair-Testing Semantics) Given a process P ∈ P and an observer o ∈ O, define:-P must o if and only if for every maximal computation from P | o

Example 4 . 7 .

 47 Consider again the term S = x(y).((νz)(z(k).0 | zh.0)) | a(u).0 of Example 1.1. In the approach of [10, 11], the labeling of S would give the term x(y) 1 .((νz) 11 (z(k) 1111 .0 11111 | 111 zh 1112 .0 11121)) | ε a(u) 2 .0 21 .

 In fact, s, n ∈ top(E) implies s, n ∈ lab(E) (by Remark 4.5), and s, n ∈ top(E ′) implies s, n ∈ lab(E ′) (by Lemma A.8). By induction on the depth of E µ -→ E ′ .

 (j -1)]. ∃ r c , m c ∈ top(E c). s ⊑ r c ⊑ s and n ≤ m c ≤ n, i.e. s = r c and n = m c , contradicting that s, n ∈ lab(E c).

Definition 5 . 3 .

 53 (Strong-fair Computations) Given S ∈ E e , a strong-fair computation from S is a maximal computation,

 Input x, y, z ∈ N live(s, n , xz, x(y) s,n .S) Output x, z ∈ N live(s, n , xz, xz s,n .S) Res live(s, n , µ, S) y ∈ n(µ) live(s, n , µ, (νy)S) Open live(s, n , xy, S) x = y live(s, n , x(y), (νy)S) Rep S µ -→ S ′ live(s, n , µ, ! s,n S) Par live(s, n , µ, S 0) bn(µ) ∩ f n(S 1) = ∅ live(s, n , µ, (S 0 | S 1)) Com live(s, n , xy, S 0), live(r, m , xy, S 1) live(s, n , τ, S 0 | S 1), live(r, m , τ, S 0 | S 1) Close live(s, n , xy, S 0), live(r, m , x(y), S 1), y ∈ f n(S 0) live(s, n , τ, (νy)(S 0 | S 1)), live(r, m , τ, (νy)(S 0 | S 1))

 (νb)(b | !b. b) | ā and the observer o = a.ω. Now, we define our notions of 'fair' must-testing. Definition 6.1. (Strong/Weak-fair Must Semantics) Let E ∈ P e and ρ ∈ O e . Define E sfmust ρ (E wfmust ρ) if and only if for every strong-fair (respectively, weak-fair) computation from (E | ρ)

Proposition 6 .-→ S 1 τ- 1 | ! v j 2 b 1 | ! v i 2 b 1 | ! v k 2 b

 61121212 3 shows the relation between strong-fair must-(respectively, weak-fair must-) testing semantics and must-testing. Proposition 6.3. ∀E ∈ P e . ∀ρ ∈ O e .1. U nl(E) must U nl(ρ) implies E wfmust ρ, but not vice versa;2. U nl(E) must U nl(ρ) implies E sfmust ρ, but not vice versa.Proof. (1) For the positive part, suppose there is a weak-fair computation fromE | ρ E | ρ = S 0 τ -→ . . . τ -→ S i [τ -→ . . .]such that ∀i ≥ 0. S i ω -→. Then there exists the following maximal computationU nl(E | ρ) = U nl(S 0) τ -→ U nl(S 1) τ -→ . . . τ -→ U nl(S i) [τ -→ . . .]where ∀i ≥ 0. U nl(S i) ω -→, i.e. U nl(E) must U nl(ρ).We now prove the negative part. Let E = (νb)(bv0 1 | ! v 0 2 b. b) | āv 3 and ρ = a v 4 .ω, we have U nl(E) must U nl(ρ).However, in every weak-fair computation from E | ρ E | ρ = S 0 τ there must exist j ≥ 0 such that S j+1 = (νb)(bv j . b) | ω ω -→ and ∀i ∈ [0..j]. S i = (νb)(bv i . b) | āv 3 | a v 4 .ω. It follows by the fact that ∀i ∈ [0..j]. v 4 ∈ Ll(S i) and there must exist k > i (k = j + 1) such that v 4 ∈ Ll(S k). It is possible only in the case a v 4 .ω synchronizes with āv 3 in S k-1 = (νb)(bv k . b) | āv 3 | a v 4 .ω.

Theorem 7 . 1 .

 71 ∀E ∈ P e . ∀ρ ∈ O e .

 every j. Since ω cannot synchronize, it does not disappear once it is at the top level of a term. It implies that ∀j ∈ [0..(i -1)]. T j ω -→. Now, consider the computation

 is strong-fair (by Lemma C.2), and ∀k ∈ [0..(i -1)]. S k ω -→, and ∀j ≥ 0. S ′′ j ω -→. It follows that E sfmust ρ, contradicting the hypothesis.

-→ āw 1 4 | 1 0|! w i-1 1 c 4 | 1 0| ! w i- 1 1c 4 .ā v 1 5) 4 .ā v k 5) | ! v k 0 (1 | ! v k 2 c 5 is prefixed in a deadlock term (νb)(b v i 4 .ā v i 5

 4114114545012545 0 1 c.(c | ā), i.e. the transition (νc)(c w 0 0 | ! w 0 1 c.(c | ā)) τ (νc)(c w 1 0 | ! w 1 1 c.(c | ā)) and it also forces the execution of āw 1 4 (or equivalently of āw i 4for some i ≥ 1 such that (νc)(c w i-(νc)(c w i-.(c | ā)) occurred in the computation). It follows that there exists a transition in which a v 3 is performed, implying that there exists a term which has ω enabled. This is not the case of the following strong-fair (and weak-fair) computation from F | ρ:F | ρ =! v 0 0 ((νb)(b | b | b.ā)) | (νc)(c v 0 1 | ! v 0 2 c.c) | a v 3 .ω ε =⇒ (νb)(b v 1 | ! v 1 0 ((νb)(b | b | b.ā)) | (νc)(c v 1 1 | ! v 1 2 c.c) | a v 3 .ω ε =⇒ (νb)(b v 1 4 .ā v 1 5) | (νb)(b v 2 4 .ā v 2 5) | ! v 2 0 ((νb)(b | b | b.ā)) | (νc)(c v 2 1 | ! v 2 2 c.c) | a v 3 .ω ε =⇒ . . . ε =⇒ i∈[1..k] (νb)(b v k (νb)(b | b| b.ā)) | (νc)(c v k .c) | a v 3 .ω ε =⇒ . . . ε =⇒where there are no terms with ω enabled. Notice that ω is always prefixed in a v 3 .ω and a v 3 is always disabled since every occurrence of āv i

µ-→ E ′ 0 .τ-→ S 1 τ 1 τ-

 011 Since wf (E 0 | E 1), then top(E 0) ℜ top(E 1). By induction, E 0 µ -→ E ′ 0 implies that wf (E ′ 0). By item (3) and Lemma A.2, top(E 0) ℜ top(E 1) implies top(E ′ 0) ℜ top(E 1). Hence wf (E ′ 0 | E 1). -Rule Com: E = (E 0 | E 1) τ -→ (E ′ 0 | E ′ 1), whereE 0 xy -→ E ′ 0 and E 1 xy -→ E ′ 1 . By induction hypothesis, E 0 xy -→ E ′ 0 implies that wf (E ′ 0); analogously, E 1 xy -→ E ′ 1 implies that Lemma C.2. Let S ∈ E e and S = S 0 -→ . . . τ -→ S i [τ -→ . . .] be a strong-fair computation from S. If ∃S ′ 0 , S ′ 1 , S ′ 2 , . . . , S ′ n ∈ E e such that S ′ = S ′ -fair computation from S ′ . Proof. Consider C = S ′ τ -→ S ′ . .],where ∀j ≥ 0. S ′ n+j ::= S j . Obviously C is a maximal computation from S ′ . To prove that C is also strong-fair, it suffices to prove that ∀v ∈ ({0,1} * × N). ∃h ≥ 0. ∀k ≥ h. v ∈ Ll(S ′ k). Since S ′ n τ -→ S ′ n+1 τ -→ . . . τ -→ S ′ n+i [τ -→ . . .] is a strong-fair computation from S ′ n , then ∀v ∈ ({0, 1} * × N). ∃h ≥ n. ∀k ≥ h. v ∈ Ll(S ′ k).Since n ≥ 0, ∀v ∈ ({0, 1} * × N). ∃h ≥ 0. ∀k ≥ h. v ∈ Ll(S ′ k). I.e., C is a strong-fair computation from S ′ .

 Given a process P and a test (observer) o, -P may o means that there exists a successful computation from P | o (where | is the parallel operator, and successful means that there is a state where the special action ω is enabled); -P must o means that every maximal computation from P | o is successful; -The preorder P ≤ sat Q means that for any test o, P sat o implies Q sat o, where sat denotes may or must ; -The equivalence P ≈ sat Q means P ≤ sat Q and Q ≤ sat P .

Table 1 :

 1 Early operational semantics for P terms.

Definition 3.2. (Experiments) The set of experiments over P is defined as E = { (P | o) | P ∈ P, o ∈ O} Definition 3.3. (Maximal Computations) Given P ∈ P and o ∈ O, a maximal computation from P | o is either an infinite sequence of the form

Table 3 :

 3

	Remark 4.5. From the definitions in Table 3, we have that
	∀E ∈ P e gr . top(E) ⊆ lab(E)
	Finally, Table

Function top(•) and lab(•).

Table 5 :

 5 Replication Rule in P e .

P e is trivially closed w.r.t. renaming, since a renaming does not change labels. It follows that the language is closed w.r.t.

τ -→.

Next result states the main properties which make our labeling method 'reasonable': Theorem 4.8. Let E ∈ P e . 1. (Unicity) No label s, n occurs more than once in E;

Table 7 :

 7 Labeling method extension over observers.

Definition 5.1. Let S ∈ E e , let s, n ∈ ({0, 1} * × N).

Table 8 :

 8 Live labels. Theorem 5.4. ∀S ∈ E e .1. there is always a strong-fair computation from S, and 2. every strong-fair computation from S is weak-fair, but not vice versa.

	Some useful results follow:	
	Proof. (1) We apply items of Lemma C.1. If S	τ -→, then the empty computation is strong-
	fair, since Ll(S) = ∅. Otherwise, there is a maximal computation

Acknowledgemnent

We wish to thank the anonymous reviewers for their valuable comments and suggestion which helped to improve the paper in a substantial way.

The work of Diletta Cacciagrano and Flavio Corradini has been supported by the Investment Funds for Basic Research (MIUR-FIRB) project Laboratory of Interdisciplinary Technologies in Bioinformatics (LITBIO) and by Halley Informatica. The work of Catuscia Palamidessi has been partially supported by the INRIA DREI Équipe Associée PRINTEMPS and by the INRIA ARC project ProNoBiS.

Appendix A. A labeled version of the π-calculus

This appendix section contains intermediate results and proofs of the statements omitted in Section 4. Several proofs follow the same lines as the corresponding results in [START_REF] Costa | Weak and Strong Fairness in CCS[END_REF].

Lemma A.1. Let r 0 , r 1 , s ∈ {0, 1} * . r 0 ⊑ s and r 1 ⊑ s. Then either r 0 ⊑ r 1 or r 1 ⊑ r 0 .

Proof. For i ∈ {0, 1}, r i ⊑ s implies s = r i α i for some α i ∈ {0, 1} * . Then r 0 α 0 = s = r 1 α 1 . Let |r i | the length of r i . If |r 0 | ≤ |r 1 |, then r 0 ⊑ r 1 . Otherwise, r 1 ⊑ r 0 .

Lemma A.2. Let r 0 , m 0 , r 1 , m 1 , r ′ 0 , m ′ 0 , r ′ 1 , m ′ 1 ∈ ({0, 1} * × N). r 0 ⊑ r ′ 0 , r 1 ⊑ r ′ 1 and { r 0 , m 0 }ℜ{ r 1 , m 1 }. Then { r ′ 0 , m ′ 0 }ℜ{ r ′ 1 , m ′ 1 }. Proof. For i ∈ {0, 1}, r i ⊑ r ′ i implies r ′ i = r i α i for some α i ∈ {0, 1} * . By contradiction, suppose r ′ 0 ⊑ r ′ 1 (the other case is similar). Then r 0 α 0 ⊑ r 1 α 1 . Let |r i | the length of r i . In the case

Lemma A. [START_REF] Boudol | Asynchrony and the π-calculus[END_REF]. Let E = L r,m (P), for some P ∈ P. ∀ s, n ∈ lab(E). r ⊑ s and m ≤ n.

Proof. By induction on the structure of P .

-

-Case E = L r,m ((νx)P) can be proved similarly.

Lemma A.4. ∀P ∈ P. ∀ r, m ∈ ({0, 1} * × N). wf (L r,m (P)).

Proof. By induction on the structure of P .

-P = 0, µ.P ′ , !P ′ : these cases are trivial.

-

and by Lemma A.3 on top(L ri,m (P i)) we have that ∀ s i , n i ∈ top(L ri,m (P i)). ri ⊑ s i and m ≤ n i (i ∈ {0, 1}). Hence top(L r0,m (P 0)) ℜ top(L r1,m (P 1)). -P = (νx)P ′ : L r,m (P) = (νx)L r,m (P ′), where wf (L r,m (P ′)). Hence wf (L r,m (P)).

Lemma A. [START_REF] Brinksma | A theory for the Derivation of Tests[END_REF]. Let E ∈ P e .

1. For any distinct r, m , r ′ , m ′ ∈ top(E). { r, m }ℜ{ r ′ , m ′ };

Proof. (1) By induction on the structure of E.

-

(2) By induction on the structure of E.

-E = 0: top(0) = ∅ and lab(0

(3) By induction on the depth of

, where

). -Rule Open/Res/Close: These cases can be proved similarly.

-Rule Rep: ! s,n P µ -→ L s0,n+1 (P) | ! s1,n+1 P . Then we have top(! s,n P) = { s, n } and top(L s0,n+1 (P)|! s1,n+1 P) = top(L s0,n+1 (P)) ∪ { s1, n + 1 }. By Lemma A.3 on L s0,n+1 (P), we have that ∀ r ′ , m ′ ∈ top(L s0,n+1 (P)) ⊆ lab(L s0,n+1 (P)). s0 ⊑ r ′ and n + 1 ≤ m ′ . It follows that s, n is such that s ⊑ s1 and n < n + 1, as well as s ⊑ s0 ⊑ r ′ and n < n + 1 ≤ m ′ for any r ′ , m ′ ∈ top(L s0,n+1 (P)).

(4) We prove that wf (E ′) holds, by induction on the depth of E µ -→ E ′ .

-Rule Input/Output: E = L s,n (µ.P) µ -→ E ′ = L s,n+1 (P ′) (either P ′ = P or P ′ = P {z/y}). By Lemma A.4, wf (L s,n+1 (P ′)).

-Rule Par:

). -Rule Open/Res/Close: These cases can be proved similarly.

-Rule Rep: It suffices to recall that top(L s0,n+1 (P ′)|! s1,n+1 P ′) = { s1, n + 1 } ∪ top(L s0,n+1 (P ′)) and to apply Lemma A.3 on L s0,n+1 (P ′).

Lemma A. [START_REF] Brinksma | Applications of Fair Testing[END_REF].

Proof. By induction on the depth of E

and therefore s, n ∈ top(E).

-Rule Par:

), we have s, n ∈ lab(E ′ 0), s, n ∈ lab(E 1), and therefore s, n ∈ lab(E 0). By induction, s, n ∈ top(E 0) and therefore s, n

, where

, we have that either s, n ∈ lab(E 0) or s, n ∈ lab(E 1). Let us consider the first case (the other one is analogous). Since

, we have that s, n ∈ lab(E ′ 0). The rest is the same as in the case of Par.

-Rules Open/Res: Immediate, by induction.

-Rule Close: Similar to the case of Com.

-Rule Rep: Proof. We recall that ∀S ∈ E e . Ll(S) ⊆ top(S) ⊆ lab(S). Items (1) and (2) are trivial. Consider item (3). S ′ is the term obtained from S by performing the action labeled by v: by Theorem 4.8 , v ∈ lab(S ′) and for every S ′′ such that S ′ ε =⇒ S ′′ , v ∈ lab(S ′′) holds. Hence v ∈ Ll(S ′) and for every S ′′ such that S ′ ε =⇒ S ′′ , v ∈ Ll(S ′′) holds. To prove item (4) it suffices to apply the previous item, where µ = τ . The term S ′ is obtained from S by performing any v ∈ Ll(S) and such that for every v ∈ Ll(S) and every S ′′ such that S ′ ε =⇒ S ′′ either v ∈ lab(S ′) (following that v ∈ lab(S ′′)) or v ∈ Ll(S ′′) and v ∈ lab(S ′). In both cases, Ll(S) ∩ Ll(S ′) = ∅ and Ll(S) ∩ Ll(S ′′) = ∅. Since Ll(S) is finite, such S ′ exists.