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Abstract—This paper presents two correction 
methods for vertical deformations of the 
receiving array belonging to HFSWR on buoys. 
The method inspired from Schelkunoff’s 
representation is more robust to the 
deformation’s uncertainty problem.   

 

I.  INTRODUCTION 

The concept of the Economic Exclusive Zone (EEZ) finds 
roots from the United Nations Convention regulations on the 
sea [1]. The EEZ is spread on a maximum of 200 nautical 
miles (370km) from the coasts. In this area, the state has 
sovereign rights that extend from the waters above the seabed 
and the seabed in the subsoil. The rights apply to the 
exploration and the exploitation of the zone for economic and 
military purposes, such as the production of energy from 
water, sea currents, winds, oceanographic parameters and 
target detection. High Frequency Surface Wave Radar 
(HFSWR) is one of the optimum solutions in order to monitor 
the EEZ. It uses a particular mode of propagation, the surface 
wave mode that propagates at the interface between the air and 
the sea. It is therefore possible to produce systems for 
permanent coverage with ranges of a few hundred kilometers. 
However, the receiving array requires a large space to have a 
good azimuthally resolution. This large space may not be 
provided by most countries that are already limiting the 
number of antennas in the receiving array. Thus, placing the 
antennas of the receiving array on independent buoys on the 
sea surface is the proposed solution in this paper as the 
available space is not limited. Unfortunately, this alternative 
solution also generates new problems.  
The receiving array consists of N antenna elements. Each of 
them is supported by a floating buoy on the sea surface. The 
global radiation pattern of the receiving array results from a 
combination of all the element radiations. The main concern is 
the effect of the sea motion: each independent buoy (thus, each 
antenna) has its own movement, on the sea surface. As a 
result, the initial array arrangement will be modified 
continuously resulting in a continuous deformation of the 
global radiation pattern, Fig. 1. In this paper, the vertical 

deformation of the receiving array, its consequence on the 
mutual coupling and the associated perturbation in the 
radiation pattern are studied. We discuss and compare the 
corresponding correction methods and we prove the robustness 
of a correction method inspired from Schelkunoff’s 
representation.   
 

 
Figure 1. Deformation of the studied array.  

 

 

II. VERTICAL DEFORMATION 

A. Coupling definition 

In a vertical displacement [2], there is no physical 
deformation in the observation plane (xOy), so the main 
disturbances come from the modification of the mutual 
coupling in the array when dipoles move vertically. Although 
these disturbances are usually small, they can be corrected 
easily. In an array of dipoles, mutual coupling takes place 
between elements. Using the conventions presented in Fig. 2, 
this mutual coupling is defined by the ��� matrix. For 
instance: 

 
Figure 2. Representation of the studied array. 
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Let � � ���, ��, … , ���� be the currents in the antenna ports 
that produce the desired radiation pattern. The impressed 

voltages �� � � ��,  ��, … ,  ��!
�

 can be defined as:  
 

�� � "��� # �$�%&�    (2) 
 

where �$  is the source impedance, ��� is the impedance 
matrix (representing coupling) and �% is the identity matrix. 

B. Consequence of the vertical deformation on the mutual 
coupling 

In this subsection we will study the consequence of the 
vertically displaced antennas supported by floating buoys on 
the mutual coupling over the array. We begin by defining the 
current expression and the positions of the elements. Let ∆ � 
be the vertical displacement of antenna k with respect to 
antenna 1, Fig. 3. 

 

 
Figure 3. Parallel dipoles. 

 
Instead of studying the evolution of ���, we prefer to 
consider the evolution of the electric current’s magnitude at 
the middle of the dipole. For clarity, we adopt a normalized 
representation of the currents. The reference value �()* is the 
current on the central dipole of a uniform array with uniform 
excitation. The normalized currents are defined as: 
 

�� � +,
+-./

    (3) 

 
where �� is the actual current on dipole n. 
The antennas positions are defined as follows: 
 

 01� � 0�    (4) 
 21� � 2�    (5) 

 3̃� � 3� # "26� 7 1&∆ 9:;   (6) 
 
where ∆ 9:; � 0.25? is the maximum vertical deformation 
taken in our case, ( 01�,  21�, 3̃�) and (0�, 2�, 3�) are 
respectively the coordinates of antenna n in the deformed and 
uniform array. R = � 6�, … , 6� � is a random vector with each 
6� defined as a uniform variable in [0, 1]. Then we consider 
the mutual coupling between N dipoles having a length equal 
to λ/2. The typical inter element spacing we use is λ/2 so the 
mutual impedance cannot be neglected [3]. The investigation 
is based on an array of 10 elements. The deformation effect on 
the radiation pattern is shown in Fig. 4.  

 
Figure 4. Vertical deformation effect on the radiation pattern. 

 
An increase in the side lobe levels can be noticed for the 
deformed array radiation pattern when compared to the 
uniform array radiation pattern. Two correction methods are 
then proposed to compensate for the deformation. A direct one 
is based on the good knowledge of the coupling matrix hence 
the exact positions of the elements. The latter is based on 
Schelkunoff's representation which does not consider the exact 
positions of the elements. Instead it considers the coupling 
matrix which is directly related to the vertical displacement 
between the elements.  
 

III.  DIRECT CORRECTION METHOD 

This method can be used correctly only when the positions 
of the elements are exactly known in the deformed array. 
When this condition is satisfied, we show that a judicious 
modification of the voltage coefficients can be used to 
compensate for the displacements. The cases, with and without 
correction, were studied on a 10-antenna array [4]. To correct 
the deformed radiation pattern, we compute the excitation 
vector  �� for a given current vector I (usually it corresponds to 
the uniform array current vector) using equation (2). The result 
is shown in Fig. 5. 

 

 
Figure 5. Radiation pattern of 10-antenna array with vertical deformation and 

with uniform weights, with and without correction with a ∆ 9:; � 0.25?. 
 
As can be seen, the correction procedure results in a 
significant decrease of the side-lobe levels (SLL). When 
applying this correction method, the mutual coupling ��� is 
supposed to be perfectly known. This is not a realistic 



approach as the perfect knowledge of  ZAB implies a perfect 
knowledge of the positions of the antennas.  
In the next section, we propose a more robust method that is 
less affected by the imperfect knowledge of  ZAB.  
 

IV.  CORRECTION METHOD INSPIRED FROM SCHELKUNOFF’S 

REPRESENTATION 

Schelkunoff’s representation consists in plotting the roots 
of the associated polynomial on a unit circle. We remind that 
the associated polynomial is the z-transformation of the 
antenna array factor. 

C"3& � ∑ ��3��E�
�E�   (7) 

 
Here FG is the GHIcoefficient of the current vector I: 
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This equation shows that when the coupling matrix JKL is 
altered because of erroneous values, the complex 
FG coefficients are modified, modifying the associated 
polynomial resulting in a displacement of the roots which are 
represented on the unit circle in the complex plane in Fig. 6  
[5]. A zero on the unit circle corresponds to a null in the 
antenna pattern. The placement of these zeros determines the 
antenna’s response.  
From this representation a new improved correction method is 
proposed. This new correction method consists in identifying 
the roots which represent the nulls of the radiation pattern 
whose positions have been significantly modified (the nulls of 
the deformed array) and move them back to their initial 
positions as for the uniform array case as it is shown in Fig. 6 
where roots 1, 4, 5 and 8 have to be moved back on the unit 
circle. 
 

 
Figure 6. Example of roots displacement. 

 

If we go deeper into technical details, Fig. 7 shows the steps 
taken to decide which roots have to be displaced from their 
erroneous positions to their initial positions. 
 

Figure 7. Roots displacement. 

For instance, by not knowing the exact location of the 
antennas, thus the mutual impedance matrix, we define 
∆���as a matrix of errors which can be added to ���: 
 

�N�� � ��� # ∆���        (9) 
where ZNAB is the error matrix. 
 
Each coefficient of the error matrix is a real random number. 
We assume a uniform distribution. The maximum error 
corresponds to 11% of the maximum coupling coefficient for 
the considered configuration when the elements are separated 
by λ/2 and ∆ � � 0.  
This method is developed and represented in Fig. 8 by 
showing the roots of the polynomial for a uniform array and 
when the correction method is applied to the same array, 
vertically deformed, with an imperfect knowledge of the 
mutual coupling matrix. The simulation is realized 
for ∆ 9:; � 0.25?.  

 
Figure 8. Representing roots positions of the associated polynomial. 

 
The small circles placed on the unit circle represent the roots 
of the uniform array. The small dots represent the roots of the 
deformed array and finally after applying this correction 
method, triangles represent the displaced roots of the deformed 
array. We can notice that the displaced roots are so close to the 
uniform array roots. Two exceptions can be seen at point A 
and B where no root displacement is made. This is due to the 
measured distance from the deformed to the initial positions of 
the roots (uniform array), which did not exceed the threshold 
value. Further explanation can be interpreted by plotting the 
corresponding radiation patterns in Fig. 9. 



Figure 9. Radiation patterns with the new correction method. 
 
Fig. 9 shows that large increases of Side Lobe Levels appear 
when the coupling matrix used for correction is imperfectly 
known. After applying the new correction method inspired 
from Schelkunoff’s representation, an improvement of the 
results is noticed where the increases of SLL are limited 
drastically, compensating for errors in  �P��. This method is 
adapted for different deformations, whereas it would not have 
been possible with the direct correction method alone. 
Moreover, this new correction method inspired from 
Schelkunoff’s representation has a double utility: 

 

1) It permits to quantify the errors in �N��  to know if the 
correction method can be applied. 

 
2) It permits to know the roots generating the disturbances 

when ��� is erroneous. 
 
 

V. CONCLUSION 

Two correction methods for a vertical deformation of 
HFSWR on buoys were introduced in this paper. The 
correction method inspired from Schelkunoff’s representation 
was proved to be more robust than the direct method. Further 
studies will take place in the future, and theoretical 
interpretations will be made when significant deformations are 
to be applied on the array.  
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