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Statistics of the Performance of Time Reversal in a L ossy Reverberating Medium

Andrea Cozza
SUPELEC, Département de Recherche en Electromagnétisrue, Bliot-Curie, 91192 Gif-sur-Yvette, France.
(Dated: October 20, 2009)

It has been proposed [J. Derosny, Ph.D. Thesis, Université Rl, 2000] that the performance of time re-
versal at recreating a coherent pulse in a strongly revatingrmedium is directly proportional to the number
of resonant mode8&/ actively taking part at the transmission of energy. Thisigehere tested against ex-
perimental results, showing that as soon as losses are itatkeaccount, the quality of the focused pulse is a
sublinear function of\/, leading to a saturation phenomenon that was previouslgkmasviedged. This is here
proven to be caused by mutual coupling between lossy resamaates, thanks to a statistical modal description
of the transmission of signals through the medium. Closedtfrelationships are proposed for the first two
moments of the pulse signal-to-noise ratio, linking therthtooccupied bandwidth, the number of active modes
and the degree of resonance of the medium. These formulggoiad by experimental and numerical results,
prove that the performance of time reversal can be affecyed ftrong statistical dispersion. The proposed
analysis also predicts that time reversal is a self-avegagrocess when applied to a reverberating medium,
thus allowing the use of models developed in an ensemblexgedramework.

I. INTRODUCTION of the energy can leak out of the reverberating environment

leading to a small perturbation of its behaviour assiméabl
The interest of time-reversal techniques has been demofi? &N energy IOS.S' Coherently with this scenario, the me-
dia filling the cavity, as well as its boundary surface, wit b

strated in the fields of acoustics as well as electromagnetic ded as | troduci dissinati |
giving rise to a host of applications as diverse as pulsetegn regarded as ossy, Introducing power dissipation alongewav
propagation. Following this description, a cavity is cluaea

focusing in complex media [1], imaging techniques [2], and! T .
selective focusing [3]. Among these, one of the most Squpris|zed by an infinite but countable set of_resonances, aseub_at
ing features of time reversal is its ability to ensure th@sra to the eigenmodes of Helmholtz equation when the reflective-

mission of coherent pulses through reverberating medié][1, surface boundary conditions are enforced [5].

In the context of this paper, we will consider a reverberat- Typically, for a pulse transmitted within such a medium, the
ing medium as a generally inhomogeneous medium where th@gnal received would be dominated by a long non-coherent
propagaﬂon of e|ectr0magnetic or acoustic energy is gtwn tail, made up ofa Iarge number of echoes of the original pulse
constrained into a finite volume. This region of space can b&onversely, use of time-reversal techniques allows a pnédo
identified by an ideally closed surface imposing highly iefle nantly coherent transmission of the pulse. Applicatiorthisf

tive boundary conditions, a configuration often referredgo Property to electromagnetics range from new signal-fogmin
a cavity. The provision of a finite volume does not exclude theschemes for telecommunications in multipath channelsg6] t

existence of small apertures, through which a limited anhounthe generation of high-intensity local fields for devicefenzal
testing [7]. Although the basics for the physical interptien

of time-reversal in such context are known [4], there is no

available model allowing to predict the statistical bebavi

.~ medium pf this_technique_when used in a reverberating mediu_m, and
in particular how its performance depends on the relative po

sition of the receiver-transmitter pair within the systesed

Fig. 1). In particular, the analyses found in the literafio@is

just on the mean asymptotic performance, without giving any

hint of its statistical dispersion. Furthermore, to thetloésur

knowledge, these models assume the system to be lossless [4]

In this paper we fill this gap by proposing a study of the
performance of time reversal for more realistic scenaass,
sessing how the signal-to-noise ratio (SNR) of receivedgsil
evolves while changing, on the one hand, the positions of
the transducers and, on the other hand, the properties of the
FIG. 1: Synoptic of a generic communication system embedtted ~medium. This is done by studying the statistics of the per-
a reverberating environment. A pulg€t) is to be focused at the formance, in particular by proposing closed-form expi@ssi
receiver location by feeding the transmitter with ash hocsignal  for the first two moments of the SNR of the received pulse.
i(t) defined by means of time-reversal techniques. These results should allow predicting more thoroughly the

way time reversal behaves in a reverberating medium, espe-

cially thanks to the knowledge of the variance of the SNR: in-

deed, this is a fundamental piece of data for ensuring, withi
*andr ea. cozza@upel ec. fr a certain confidence margin, a given performance for any po-

reverberating

transducers Q)

® = ift)



sition of the receiver and transmitter. Moreover, by ackhow 1
edging the existence of non-negligible loss mechanisnes, th
proposed model predicts phenomena that were not previousl o.5-
highlighted, such as the fact that losses lead to a sataratio
of the SNR, because of the mutual coupling between resonar
modes through the tails of their frequency spectra. A major
point is the generality of these results, which are validsioy 0
system obeying to a modal resonant description, be it aicoust
or electromagnetic, while requiring a very limited numbér o ‘
simplifying assumptions. 20.75 20.8
The paper starts with the introduction of tools for asse&gsin
the quality of the received pulse, generalized to the case 0 g2
lossy media by applying novel definitions with respect to [4]
These tools are then applied for the analysis of experirhente 0.1
results obtained in an electromagnetic reverberation bleam
pointing out some of the previously recalled phenomena tha
have not yet been acknowledged. A theoretical analysishase g 1
on a modal description is then proposed in Section 111, legdi
to the first two statistical moments of the SNR; subsequently-0.2
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-
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we focus in Section IV on the asymptotic response, proving 17 18 19 20 21 22 23 24

that thanks to the self-averaging properties of time ralers Time (us)

its statistical description is asymptotically indepericEmnthe (o)

actual realization of the reverberating medium, and etire

describable through few global parameters. Numericaltgsu

as well as experimental ones are presented in Section V, valf!G. 2: An example of a pulse transmitted through a revetirga

medium using time reversal, for the case(®f= 5000, M = 500,

Br = 100 MHz, central frequency 1 GHz: the region around the
peak of the pulse (a) and a wider perspective highlightirgrésid-
ual noise distribution (b). The dark trace is the originalspuo be
transmitted, whereas the light one is the signal actuatigived, af-
fected by residual noise. The thicker line represents theévalgnt
noisene(t).

dating the accuracy of the proposed analysis. Finally, pleim
heuristic interpretation of our findings is given in Sect\in
providing a framework for intuitively understanding theare
sons for the saturation of the SNR.

II. ONTHE QUALITY OF RECEIVED PULSES

A. Mathematical toolsfor quality assessment nant modes will be assumed to exist over this frequency range
with resonance frequencies given by the{skt}. In a general

In this Section we are concerned by the use of time-revers ay, a transfer functiod (f) ir_1_a reverberating medi“”.‘ can
techniques for transmitting a coherent pulse to a given re2® €xpressed as a superposition of these modes, weighted by

ceiver placed in a reverberating medium. Hereafter, this wi COMPlex coefficientsy, = oy, + j5 [5], i.e.,

be supposed to be reciprocal. The configuration we deal with M

is depicted in Fig. 1: two transducers are placed within the _

medium, one acting as a transmitter and the other one as a re- A(f) = ; wHowlf) o felfufd @)
ceiver. Definingh(t) as the impulse response between the two B

transducers, it was shown in [4] that by transmitting th@alg The responsey ( f) of thek-th mode will be assumed, with
i(t) = x(—t) » h(—t), the received signaj(t) will be a fair  no loss of generality, to be a Lorentzian function. By consid
replica ofz(—t), even in a strongly reverberating medium. ering the main effect of losses to lead to a small perturbatio
Due to this feature, time reversal has been proposed as a way these functions, one can write [5]:

of communicating through complex media, and in particular

multipath channels, whose characteristics are well reptesl 12/Qx

by reverberating media [8]. An example of pulse received for Pr(f) = fRA+3/2Q)? = 12 )
this setup is shown in Fig. 2, whergt) is a cardinal sinus

modulating an harmonic carrier. Indeed, it appears that thevhere Q. is the quality factor associated to tleth mode,
received signal is almost undistinguishable from the aayi which thus has a-3 dB bandwidthB,; , = fi/Qr. The
one around its peak region, whereas it is affected by a strong modal weights{~; } are functions of the transmitter and re-

modification over the signal tails. ceiver positions and of the spatial field distribution assied
In the following, we will consider the pulse(t) to have a  to each resonant mode.
spectral content comprised in the frequency rdrfgefs], i.e., In order to simplify the notations in the following analysis

with a frequency bandwidt®, = f, — f; centered around we will consider the reference signal to be-t), so that the
the frequencyf. = (f1 + f2)/2. Atotal number ofM reso-  received one is rather linked tgt). For the same reason, we
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will avoid delaying the time-reversed pulse, and consider a Equation (9) thus measures how much the coherent part of
non-causal description, as this does not affect the finaltees the transmitted pulse stands out of the residual noise. Now,
Bearing these definitions in mind, the fitness of the focusedhe use of the rms value is consistent only in the case of a loss

pulse can be assessed by computing the compaitent= less system, as done in [4], since in this ca&g would have
pz(t) that is coherent with respect idt), leading to an infinite energy but a finite non-zero average power. Con-
versely, for the case of a lossy system,s would be equal to
y(t) = px(t) +n(t) (3)  zero, since the noise has finite energy; as a matter of fagt, th

) ) ) ) ) time-constant characterizing the decay of a mode with tuali
wheren(t) is the residual noise due to the distortion of thefactoer is 7w = Qu/(7fr) = 1/(mBary). We will as-

pulse introduced by the non-flat transfer functid(/) of the  syme that all the modes involved have the same bandwidth,
medium, withH (f) the Fourier transform oh(t). Residual  gnq a5 a consequence the same time-constant,, vk; this
n(t) being orthogonalta(t) by definition,p can be computed assumption is valid as long @8/ f. is sufficiently smaller

as than one, i.e., for configurations that cannot yet be reghrde
fa as wide-band, though not strictly narrow-band. Under such
X|H|>X*df conditions,n(t) will also obey to a time-decay with constant
p= (Y, X) _Jh @ T therefore, we introduce the equivalent noise signat):
(X, X) L ’
/f1 | X[ df ne(t) = noe ™ft/Q (11)

having applied Parseval equality, wheXd f) and Y (f) are where( is the average quality faqtor, gnd by imposing the
the Fourier spectra of the respective time-domain sigiidde. ~ Same overall energy for the two noise signals, we get
brackets stand for the projection operator. It is intengsto Exrf
notice that because of the quadratic form in the previous re- ng = N e
sult, p € R™, so that the sign of the peak of the received pulse Q
will always be unchanged. Defining the eneffyy of a spec-
trumG(f) as

(12)

The equivalent noise..(t) behaves as a smoothed version
of the actual noise:(¢), maintaining the same overall time-
2 decay, and thus the same average instantaneous power con-
Ea = 2/ |G(f)Pdf (5) tent. The example shown in Fig. 2 illustrates this approéch.
fi is now possible to define the peak SNR by considering the
. . ivalent instant i t the si I K i
the energ\s of the coherent part is thus given by teciug/a ent Instantaneous noise energy at the signal peak in
f2 9
gs=pex =27 [ PXPAs ©) A =20 _Q
| P n2(0) ch

€

; (13)

whereas the energijy of the residual noise is wherey = 22(0)/Ex is a factor related to the shapeft).

o This simple relationship between the two SNR definitions al-
En = 2/ |X|2|H|4df - & (7) lows focusing on the energy SNR, which is much simpler to
fi compute in the frequency domain.

Thanks to these definitions, it is possible to predict the per
formance of time-reversal transmission for any puilgg, just

Es by knowing the transfer functioH ( ). Most remarkably, this
=z (8)  just requires having access to the absolute values of the spe

N tra X (f) andH (f).

so that we can introduce the energy SNRs
A

While the energy ratid. will be extensively used in the rest of
the paper, the ability of time reversal in transmitting c@ms ) _ S _
pulses is better assessed by means of the peak SN&s B. Experimental investigationsin areverberation chamber
defined as follows [4]:
) In general, the pulse SNR will depend on the relative posi-
_57(0) tion of the transmitter and the receiver within the system; i
A, 3 9 . ) . e
Nims order to exploit the time-reversal technique for real-ifgli-
cations, it is of paramount importance to be able to ensuate th
having assumed that the peak of the received pulse occurs figiven minimum SNR be respected for any transducers posi
t = 0. The quantityn,s is the root-mean-square (rms) value tion, at least with respect to a certain confidence margin. In

of n(t): order to assess the variability of the SNR, we carried out ex-
/2 perimental tests, by considering an electromagnetic bever
2 oy 1 2 ation chamber, with a fixed antenna acting as the transmitter
Nipms = lim — n*(t)dt . (10) : . .
T—oo T J_1)s and a linearly polarized electro-optical sensor (conrckte



an optical fiber) as a receiver. This last choice was imposed ¢, (GHz) Br (MHz) meanA stdA mean\, Q M,

by the fact that a receiving antenna being moved insid_e the 100 037 0074 187 322
chamber would have changed its fundamental characteistic 0.5 3900
. . . 200 0.30 0.051 300 644
modifying the set{ f} and{~,}, and as thus impairing the 100 075 012 272 1287
validity of any comparison. The very weak interaction en- 1.0 ' : 5700
sured by the optical sensor means that it can be regarded as an 200 0.72 0.080 130 2574
almost ideal electric-field probe, minimizing the modificat 15 100 091 014 243 ., 2896
of the quantity being measured. 200 0.90 0.10 481 5792
A total of 100 randomly chosen positions and orientations 20 100 096 013 192 ..., 5149
of the receiver were considered, measuring the respective ' 200 095 012 380 10297
transfer functions over six frequency ranges, centereceat f ) 100 102 013 187 ., 8045
quencies from).5 GHz to 3 GHz, by steps 06.5 GHz. For o 7
. . 200 1.00 0.10 365 16090
each central frequency, two bandwidtBs were considered, 100 102 014 188 11584
namely 100 MHz and 200 MHz. 3.0 ’ ' 8700
200 098 0.10 358 23169

We assumed, for the sake of simpliciy(t) to have a flat
spectrum over the frequency rangg, f»]; this would be the

case, e.g., for cardinal sinus pulses. The energy SNR W.a‘IsABLEI: Statistical moments of the energy SN\Rand average peak

compute_d b_y means Of.(8)'. leading to the_ empirical s_taJF'St"SNRAp, as computed from the experimental data presented in Fig. 3.
cal distributions shown in Fig. 3, and the first two stataltic ¢ approximate number of modad,, was computed by means
moments OfA resumed n Ta.ble I, tOgetheI‘ W|th the a.Verageof Weyl’s formula (14)’ whereas the average qua“ty fa@)was
peak SNRA,,. These results point to three important facts: 1)directly estimated from the time constant of the residuaewo(t).
while the average energy SNR increases with the frequency,

its progression slows down at the same time, converging on

an asymptotic value close to one, 2) the actual valud &f  similar statistical properties along its three Cartesiampgo-
strongly dispersed, depending on the position of the receiv nents [10].

and, 3) an increasing bandwidth has apparently little eiac ~ These results point out that apart from being able to ex-
the average energy SNR, whereas its dispersion decreases. djain the limitations of time reversal, it is of paramountim
the best of our knowledge, these conclusions have never begrtance to have a model predicting the statistical dispers

discussed before, and no theoretical framework is availablgf the SNR. These are indeed the basic motivations of this
for interpreting them. paper.

The only available model is the one proposed in [4] for a
lossless configuration. It predicts a direct proportidydie-
tween the number of mode® and the average peak SNR I1l. STATISTICAL MOMENTSOF A
A,. In order to apply this model to our experimental results,
we estimated the numbér, of resonant modes existing in

: ; _ As often done in statistical descriptions, the parameters o
:‘f;&;?g]mber for a given frequency range through Weyr's forthe model will need to be regarded as random variables. This

approach s not just dictated by mathematics, but it com#s wi

B2 physical meaning. In particular, the resonance frequencie
12f2) : (14) {fx} are indeed distributed over the bandwidif in a way

¢ that is hardly predictable, unless in canonical configoreti
whereV is the volume of the reverberation chamber anisl  For the associated modal weigHts; }, since describing the
the speed of light in the medium filling it. Results obtained f projection of the transducer characteristic response theer
the case of Supelec’s chamb&f & 3.08 x 1.84 x 2.44 m?) modal topographies, a modification in the position of the re-
are shown in Table I. By comparint/,, to the average\,,  ceiver or the transmitter leads to a modification of {hg}, so
it is clear that their relationship is more complex, and elear that a random position of the transducers implies a randéom se
terized by a form of saturation of the performance, sinceeve of modal weights. Moreover, the fact that the modal topogra-
for large increases i/, A, is barely affected. phies, as well the excitation of the transducers are, in gen-

The reasons for such a peculiar behaviour are to be soughtal, sign-changing functions, implies that tfe, } and{0; }
in the existence of loss mechanisms in actual reverberatioshould be treated as zero-mean random variables, and they
chambers; we will show in the next Section that this leads tawill be assumed to be independent and identical distributed
mutual couplings between resonant modes, and ultimately t6id). No further assumption will be necessary about thestyp
a saturation of the performance. of distributions.

Concerning the statistical dispersion discussed in p@nts  In order to simplify the model, they (/) will be assumed
and 3), it has never been addressed before. It is worthwhil® be frequency-shifted replica, with approximately thmea
noticing that the orientation of the probe has little effent bandwidthBy, = fi/Qk, Vk. This also implies that all the
the dispersion, since the cavity was over-moded for all thenodal responses; (f) have the same energy. In principle,
frequency ranges, apart fgr = 0.5 GHz. For such configu- this assumption holds only when relatively narrow bands are
rations, the field is statistically isotropic, and it presevery  considered, although the results shown in Section V praate th

&tV
My (fe) ~ C—3fc23T (1 +
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FIG. 3: Frequencies of occurrence for the energy SN& computed from experimental data measured over a bartd®idt= 100 MHz
(left column) andBr = 200 MHz (right column), centered around the frequendfes= {0.5,1,1.5,2,2.5, 3} GHz (top to bottom). Each
histogram was obtained from a population of 100 sample fearfisnctions as measured between a fixed transmitter amtand a moving
electro-optical probe.

this is not necessarily the case. the transducers are let free to change, so that all thetitatis
Itis important to understand the physical role of the foHow Moments will be conditional to the s¢ff.}. The ensemble
ing statistical analysis, which aims at accounting for e i Pehaviour of the SNR considering randgf).} will be stud-
pact of the random position of the transducers on the redeive/€d in Section IV.
pulse SNR. Indeed, equation (1), when coupled with equa- |n order to simplify our analysis, but with no loss of gener-
tions (6)-(8), leads to the definition dfas a random function,  ajity in the conclusions, we will assume the modulusiaf)
depending on the probability density functions (pdfsjof} 1o pe directly proportional to the characteristic functidrihe
and{ fx}. interval [f1, f2], leading toxy = 2Bs. This choice corre-
We start our analysis by considering a specific configusponds, e.g., to a cardinal sine excitation in the time-doma
ration for the reverberating medium, i.e., for a given set ofmodulating an harmonic carrier of frequengy as for the ex-
known deterministid fx }, whereas thé~, } will be regarded ample shown in Fig. 2. Attention should be paid to the fact
as random variables. This scenario corresponds to the ca#ieat the definitions of the SNR actually depends just on the
of a single realization for the medium, while the positiofis 0 modulus ofX ( f), so that an infinite number of pulse shapes



sharing the same spectral occupation would be charaaderizesame reason, we just consider the first two momentd’of
by the same SNR. andWW,. Thanks to the following expansion
Following this assumption, (8) can be recast as

M
HOP = IwlPlen(HI? +
k=1

. 2
(/j2|H|2df> M M
A f (15) + 2% > Re{mmmen(Hen ()} (22)
f2 f2 2 k=1m=k+1
477 2
br /1 I </J;1 1] df) and assuming thgy;, } to be independent from tHgf;. }, while

recalling the hypothesis of all the modes having the same en-

ThusA is entirely defined by the properties of the randomergy&s, as defined in (5), we can write
function| H (f)|? over the frequency-rangé, f>]. In orderto

study the statistical properties &f we introduce the auxiliary EWil{fx}] = 2Mp2&y (23)
random variabledV; € R™, as defined as EWo{fx}] = 2M (u3 + p1a)Epp2 +
fa M M
wi= [ |HPdar (16) + 16y D o, (24)
f1 k=1m=k+1
yielding having introduced the moments
2 wi =Elai] =E[B)] . (25)
A~ Wi ; (17) o] [Bx]
BTW2 - Wl

Equation (24) differs from (23) in a fundamental aspect,
i.e., the presence of the mutual energigs,,, shared be-
tween each couple of modes of the system. This term can
be shown to be the source of the limitations of the SNR as
' the modal density\// By increases enough to lead to non-
negligible interactions between the modes.

The same type of analysis was carried out for the elements
¥;; = E[(W; — E[W;])(W; — E[W;])] of the covariance ma-
trix, but this led to too complex expressions, especially fo
— Y92. We would rather propose approximate results, where the

The rationale for introducing these auxiliary variables is
that the statistical moments d&f cannot be expressed as a di-
rect function of the{~;} and{f;} moments. Nevertheless
the moments ofV; can be linked more easily to those{of; }
and{ fx }; an estimation of the moments.&fcan then be given
by linearizing (17) around thé’; ensemble averages [11]. For
the sake of simplicity, the following convention is intraghd:

Wi =EWil{fi}] (18) mutual-energy terms are neglected:

Applying this approach to the average/otonditional to a S~ 4My (26)

given realizatior{ ;. } yields ’

) having defined the elements mfas
w
EA{fi}l » —— (19) = E2(uy — u?

BrWo — Wf Y1 5¢(M4 13) ) (27)
viz = Eg€jgp2(pafia + pe — 243) (28)
In the same way, the conditional varianf:%{fk} can be ap- Voy = 5|2¢|2(M8 + Aptopig + 113 — 2ph — 4pdps) (29)

proximated as
It is worth noting that although interactions between modes
oty = BIN{fi}] —E[A{fi}]? ~JTSJ , (20)  have been neglected B, the Jacobian in (21) takes them into
account. It will be shown in Section V that when applied as
where X is the covariance matrix of the random vector an input to (20), these expressions provide a good estinfiate o
[W1, Wa]T. The column vectod is the Jacobian of as com-  the variance ofp, and as thus they are a useful tool in stat-
puted with respect tdl; andWWs, evaluated ati 1, W): ing the uncertainty that affects time-reversal perfornesno
a reverberating medium.

W —
e ] e
(BTWQ_Wl) o IV. AVERAGE ASYMPTOTIC PERFORMANCE
A higher-order estimate of could be given, but the re- The formulae presented in the previous Section were de-

sulting expression would be quite unwieldy without deliver rived considering a given deterministic set of resonant fre
ing considerable improvement in the final accuracy. For theyuencieq fi}, and as thus (19) and (20) depends, in principle,



on the actual realization dff; }. In fact, this dependence sub-
sists only in the mutual energi€s, ., in (24).

In this Section, we consider the performance of time-
reversal when averaged over all the realizationsfg}, hence
related to its general trend rather than for a specific configu
ration, proving that under certain conditions, the stiassof
a single realization are well approximated by the simpler en
semble statistics.

To this end, let us consider the ensemble averagewith
respect to the random sgfy }; thanks to the linearization of
A, it will suffice to carry out this averaging over tig;, lead-
ing to:

= N w H
T

OO

E[W]
E[Ws]

2M sy (30)
2M (15 + p1a)Ej g2 +
+ 8usM(M — 1)E[Eg,4,.] - (31) 0

The double sum in (24) is thus simplified by introducing the

average mutual energy[€y, 4., ]. The result in (24) and (31) 2
would then be identical if the following condition were sati
fied: 15 1
9 M M 1t ,
————>" > Eoon 2 El€p0.] - (32)
MM =1) = .55, 0.5 |

This requirement corresponds to assuming the systemtob 0
ergodic, approximating the ensemble average over all the re 0
alizations with the average carried out over the set of mutua
energies within a single realization. The strong law of ¢arg
numbers [12] states that, if the system is ergodic, the kith
of (32) converges in probability to the ensemble average of
the mutual energy; therefore, for a sufficiently high numtfer FIG. 4: Empirical conditional pdfg(A[{ fi}) for @ = 1000, f. =

active modes\/ one gets 2 GHz andBr = 200 MHz, obtained for an increasing number of
active modes. The thicker curve stands for the ensemblageaf
E[A{fe}] ~E[A] . (33) each group of realizations.

This phenomenon, often referred to as self-averaging, had a
ready been experimentally highlighted in [13], althougtain fact, a closed-form expression can be givenEf,, .| by
different context, as one of the most interesting featufes oexchanging the order of integration:
time reversal, and it implies that its performance in traitsm
ting coherent pulses in a reverberating medium is asymptoti f2 f2
cally independent from the actual realization of the seheft  E[£4,4,.] = / </
resonance frequencidd} }, underpinning the robustness of ! f
this technique. . . . .
An example highlighting this property is given in Fig. 4, having expl_0|_ted the fact _that tr@’“} are iid random vari-
where empirical pdfs are shown for 10 different realization ables. Noticing that the inner !nt_egral does not depend on
{f+}, for three values ofiZ, namely 50, 100 and 200, with the actual frequency at which it is computed, as long as
fe = 2 GHz, By = 200 MHz and@ = 1000. For each re- Br > By, (35) becomes
alization of { f;.}, ten thousand sets of modal weigHtsg, } 2
were considered. It appears that indeed the pdfs converge E[E =B /f2 |61 (f)2p(fu)df (36)
toward the ensemble average /sincreases, even for such romi = 2T I FJJ PP RIET R ’
small values of\/. '
We can now write and by assuming a uniform distribution for thi¢; } over the
2M5§ bandwidthB, this yields

Br [(1+ pa/13)€52 + 4(M — 1)E[E4,4,.]] — 2ME2 &2
' (34) El€si6,] = B—i : 37)
It is clear that the behaviour di[A] could be easily pre-
dicted should the three energy terms be known. As a matter of The two remaining energie; and &, can also be ex-

2
|¢k(f)|2p(fk)dfk> df , (39

1

E[A] =




pressed in closed-form as 3 :
Q R =12
7T k 7T -
s = fr= ~ —B 38 -
Pk fk2 Qi"‘l 5 M ( ) 2 s
TQRQE+5) 7 1t
& = fp———5"—— ~ —B) 39
w2 k4 (Qi—’—l)?) 4 M ( )
. . 0 : :
so that (34) can be restated in a simpler form 0 0.5 1 @ 15 2 25
a
M 6
E[A] = . (40)
1 )L
M+ ( +M4/M2)27TBM
HenceE[A] is linearly dependent of/ at low modal den-
sity levels, whereas it converges to an asymptotic value fol
an higherM. Thus, in lossy reverberating media, the poten-
tial gain obtained by increasing the number of active modes 00 05 1 15
(i.e., increasing the central frequengy) is put in jeopardy (®)
by the coupling existing between lossy resonant modes, witt 15 ' ' '
E[A] converging to a fixed value. Interestingly, this asymp- Q =20000

totic value is simply equal to one. The physical significance 10t
of this result will be given a simplified explanation in Sec-
tion VI.

Equation (40) is remarkably simple, and it shows that a
handful of global parameters is sufficient for an accuraée pr
diction of the quality of the received pulse. It is worth not- 0 02 04 06 08 1 12 14
ing that the central frequency does not appear explicity, a (c)
a consequence of the identical-mode assumption. These r¢ 39 : : : : :
sults also point to the fact that the most fundamental gtyanti Q = 40000
for understanding the phenomena behind pulse focusing in 20
reverberating medium B/ By, . This quantity will be here-
after referred to a®V,, for reasons that will be made clear in
Section VI, yielding

M/N, 0 . .
E[A] = . (41) 0 0.2 0.4 0.6 0.8 1 1.2
M/Ng + (1 + pa/pi3)/ (2) A
This reformulation states that the average performance-is e (@

tirely predicted by means of the rati//Ns;. As soon as

M = N, the marginal gain brought by the availability of

new modes is increasingly reduced, leading to a saturation f FIG. 5: Empirical pdfs for the energy SNR, depending on

higher)M. the number)M of active modes and the quality fact6y of the
medium. The six curves presented in each picture correspmnd
M = {100, 250, 500, 1000, 2500, 5000}, respectively, from left to

V. MODEL VALIDATION right.

In order to check the accuracy of the proposed description, ) o
we considered numerical simulations, by synthesizingeand are drawn accordingly to normally distributegl and;.; the
realizations of transfer functions, thanks to (1). Theorati €nergy SNR for the transfer functions thus obtained areesubs
nale for this approach is the possibility to closely montter ~ quently computed thanks to (8). Contrary to the assumpfion o
number of modes/, their quality factor, and so on. Indeed, @ constaniy/Qy, the¢(f) were assumed to have a constant
as recalled later in this Section, experimental validatiare ~ quality factor@Q = @, Vk. Therefore, the modal responses
impaired by the impossibility to assess the exact number ofx(/f) Will not be identical as assumed in the model deriva-
modes taking part to the transmission. tion.

Thanks to the fact that (40) is not directly dependent on the The first tests aimed at showing how the energy SNR is dis-
central frequencyf., but rather on the bandwidthB; and  tributed as\ and N = By /By, vary, and is more of a qual-
By, the validation can be carried out at any valuef,af We itative investigation. A bandwidti; of 50 MHz was cho-
set for f. = 2 GHz, with a varying bandwidttB; and sev- sen, while four values of) were tested, ranging from 5000
eral average quality factord. Random complex weightsg; to 40000. The number of modes varied from 100 to 5000.
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FIG. 6: Validation tests foFS[A]: numerical results obtained from FIG. 7: Validation tests for the standard deviation\offor the same

500 realizations (dots) and the values predicted by (40)d(Epes).
All the presented results were computed for= 2 GHz and for
Q={1000, 2000, 5000, 10000, 20000}, while the correspogd\,

are displayed.

configurations as in Fig. 6. The dashed lines corresponcetediues
predicted by (20), but considering ensemble-averddgdwhereas
the thick solid ones highlight the model results up to thesedocal
maximum, forM < M,.

SNR A, increases monotonically, since the relationship be-

For each set of global parameters ten thousand realizatioRgeen A and Q is actually sublinear. This fact is to be ex-
were generated, in order to establish empirical pdfs; these pected intuitively, and it also confirms the trend predidtgd

shown in Fig. 5, and illustrate quite clearly that: 1) inwieg

losses tend to saturate the energy SNR fastev/ ascreases,

the model proposed in [4], since

2) decreasing losses slow the saturation down, but redece th lim E[A) =M (42)
average energy SNR, as the length of the residual-noise tail Qo0

increases and so does the noise energy, and 3) the SNR experain, in the case of a cardinal-sinus pulse and gausstis: sta
riences a standard deviation that is far from negligible whe tics for the modal weights.

compared to the average value, althoughQascreases, the

Quantitative validations were then carried out by consider

dispersion appears to decrease. The trend in the simulateﬁqg f. = 2 GHz,Q = {1000, 2500, 5000, 10000, 20000}, and

pdfs recalls that of the experimental ones shown in Fig. 3.
Even though the energy SNRdecreases withy), the peak

a varying bandwidtiB; = {200,400, 600} MHz. The num-
ber of modes spanned the values 100 to 5000, and a population
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of 500 random realization&y; } per configuration was con- Therefore a direct validation is not feasible; nevertheléts
sidered, each configuration representing just a singlé&eeal is current practice in electrical engineering to assumatah
tion of {fi}. The results thus obtained for the average valudinearly polarized antenna placed in an electrically lamyer-

and the standard deviation &fare shown in Fig. 6 and Fig. 7, berating chamber will excite most of the modes existing over
respectively. Fig. 6 shows that the average value is prdlict the frequency range of emission of the antenna. As a conse-
within a few percent points as long 45 2 200. Indeed, (40) quence, Weyl's formula is often used as a reference. Hence,
is unable to predict any energy SNR greater than one; this ime computed the moments of the energy SNR predicted by
actually not due to a bad estimate of the moments of the aueur model, considering a number of modes equal to three frac-
iliary variablesW;, which are indeed precisely estimated in tions of the estimaté/,, given by Weyl's formula (14).

all of the considered tests, since (30) and (31) do not ire/olv  The results are resumed in Table Il, together with the quan-
any approximation. This rather points directly to the cendi tity NV,: the range of variation of the SNR is very well iden-
tions that are necessary for applying the linearizatiorO) ( tified, both for the average value and the standard deviation
implying that it is necessary for the conditiofy = 200to be  and the experimental results are consistently approached w
fulfilled. We investigated the possibility of including thies-  considering a number of modes closét®M,,. Furthermore,
sian term in the expansion (19), but we dropped this optionas expected from the numerical validation, as sooiVade-
since it brought no tangible improvement, thus implyingt tha creases towards 200 the experimental averagees beyond

the SNR as a non linear function @f; would require terms one; in this case, the model will underestimate the steibti
higher than quadratic ones. moments.

The standard deviation depicts a rather different scenario The fact that considering the same fractiondf, over
Expression (20) neglects any modal interaction in the devar the six frequencies leads to good results, strongly reduces
ance matrix3, but it includes them through the use 13f;.  the odds that this accuracy be a random result; we thus con-
For this reason, (20) is expected to underperform as soon &sder that 90 % of the available modes were indeed effec-
the modal interactions get more important, i.e., as the modaively excited. The only exception is fof, = 0.5 GHz and
densityM /By increases. The results in Fig. 7 support theseB, = 200 MHz; in fact, the transmitting antenna had a cut-off
ideas, showing that (20) is a very good estimate of the standa frequency around 450 MHz, so that of the 200 MHz pulse to
deviation, as long as it has not yet attained its maximumevalube received, it actually transmitted only three-quartérhe
omax. After this point, (20) is no more a valid estimate, but the signal spectrum, hence exciting roughly three-quartetsef
actual standard deviation gets to a plateau fairly appretéch  available modes. By taking into account this fact, the dctua
by omax- IN general, this value needs to be computed numermumber of modes to be considered is rathét - 0.9M,, ~
ically, but for the case of modal weights distributed as Gaus2/3M,,: indeed, the results agree.

sian random variables, the number of modés for which Overall, it appears that the average/ofs hardly affected
the standard deviation reaches its maximum value can be apy an increase iB7. Actually, this is predictable, since both
proximated by N, andM,, are linearly dependent aBiy, so that (41) is not
6 modified. Conversely, the peak SNR will increase propottion
M, ~ —Ng . (43) ally to By. At the same time, the standard deviation is sensi-
™

tive to an increasingr. This was predicted in (44), and the
Knowledge of the saturation point allows extending thedsali reduction of a factot /v/2 subsequent to a doublirfgy is in-

ity of (20) over the entire range of valuesf, i.e., deed well confirmed by the experimental results. These find-
ings are of the utmost importance should time-reversaktech
9 JTZI)(M) M <M, niques be used for pulse transmission.
Op = 1]\’;71' M > Ma’ . (44)

Therefore, the maximum standard deviation goeslijkg' N, VI. AN HEURISTIC INTERPRETATION

whereas it is inversely proportional 16, for M < M,. The
former conclusion explains the behaviour previously high- We will here try to give an interpretation of the reported
lighted, with the standard deviation decreasing wHen  phenomena from a more physical, yet approximate, point of
and/orQ increase. view. To this end, let us recall that the maximum value at-
These numerical validations prove the effectiveness of théained by the peak SNR,,, as long asV, 2 200, is simply
asymptotic models, even for a relatively low number of modesgiven by N, /(2). Itis thus not dependent on the actual num-
and with no ensemble averagingd{ifi. }. This implies thatthe ber of modes\/, but rather to a, usually, much lower quantity.
ergodic assumption formulated in the previous Section does Let us look atN, from a different perspective: knowing
indeed hold. The greatest limitation in the proposed madels that B, is the average bandwidth of the frequency response
the need for (9) to be well approximated by its tangent planef each mode)V, states the maximum number of modes that
over the range of values spanned by Wg requiring N, 2 could be placed one after the other over the bandwigith
200. The energy SNR corresponding to this configuration is equal
The last validation is a tentative experimental one. As reto one, and it corresponds to the best efficiency time-ravers
called at the beginning of this Section, the exact number o€an provide in concentrating energy in the coherent parerat

modes excited in a reverberating system is usually not knowrthan in the residual noise.
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fe (GHz) Br (MHz) experiments mo2M,, /3 mod.3M,, /4 mod. My Ns My/Ns
100 0.37(0.074) 0.30(0.082) 0.33(0.083) 0.39(0.083) 785 ,,

05 200  0.30(0.051) 0.30(0.058) 0.33(0.058) 0.39 (0.058) 1570
10 100 0.75(0.12) 0.70(0.097) 0.73(0.097) 0.78(0.097) 570,
200  0.72(0.080) 0.70(0.069) 0.73(0.069) 0.78 (0.069) 1140
r 100 091(0.14) 088(0.11) 089 (0.11) 092(0.11) 420,
200  0.90(0.095) 0.88(0.080) 0.89 (0.080) 0.92 (0.080) 840
’0 100 0.96(0.13) 095(0.013) 0.95(0.13) 0.96(0.13) 315,
200  0.95(0.010) 0.95(0.092) 0.95(0.092) 0.96 (0.092) 630
ot 100 1.02(013) 0.97(0.14) 097 (0.14) 098(0.14) 288,
200  1.00(0.12) 0.97(0.097) 0.97 (0.097) 0.98 (0.097) 576
30 100 1.02(014) 0.98(0.14) 098(0.14) 098(0.14) 290,

200  0.97 (0.10) 0.98(0.096) 0.98 (0.096) 0.98 (0.096) 580

TABLE II: Experimental validation against the results peted in Table I: mean values are given directly, while staddleviations are in
parenthesis. The results computed by means of (40) and @@) ebtained considering a number of active modes equAlg/3, 3Ms, /4
and M, due to the uncertainty on the actudl. The reliability of the estimates can be tested by checkiegconditionNs = 200.

1 number of occupied slots, and thus the effective number of
________________ modesi., is thus simply given by
08 T 1
M, = Ny(1 — e M/Ney | (45)
20-6’ ] and the related energy SNR
O .
L , M, _
04 E[A] ~ =& =1—¢ M/N: (46)
;', NS
0'2","' 1 highlighting the dominant role of the quantity /N, as pre-
viously shown in (41). We could thus dub the quanfify N
% 1 5 3 2 5 as the modal slot occupancy: it defines completely the SNR

M/N, and is sufficient for predicting the performance of time reve
sal in any configuration.
The validity of this reasoning is proven in Fig. 8. Indeed,

FIG. 8: Comparison between the mean energy SNR, as predigted for a low number of modes (with respect 14,) the results

the modal approach (41) (solid line) and the slot occuparsgip- predicted by (41) and (46) correspond fairly well. For highe
tion (46) (dashed line). slot occupancies, (46) saturates faster, since this mede! i

capable of acknowledging the partial superposition of two
modes, something that would just lead to a partial loss of a
degree of freedom. In spite of this over-simplificationstap-

This fact can be used to give a simple intuitive interpretafroach yields results consistent with those predicted &y, (4
tion, by introducing the idea of a numhaf, of available slots, ~ while providing a simple framework for understanding the
to be occupied by the actual number of active modes. AISNR saturation phenomenon.
though simplistic, this vision of the spectrum as a quartifie
space makes sense. Hence, each mode introduces a further de-
gree of freedom only if it can be allocated to a free slot; the VIl CONCLUSIONS
wise, it will be lost, just leading to a different modal wetghs
a function depending on the weights of the modes previously This paper has addressed the main phenomena underlying
allocated to the same slot. Therefore, the performancengf ti the quality of pulses received by a transducer as trangnitte
reversal is not related to the actual number of active modeshrough a reverberating medium, when using time-reversal
but rather to the number of slots being used, which could thutechniques. The quality of the received pulse has been ana-
be regarded as an effective number of modes or degrees byfzed with respect to global parameters identifying theppro
freedom, orM,, leading to an efficiency and, ultimately, to erties of the medium, according to a modal description. Hav-
an energy SNR equal tt/. /N,. The allocation of a mode to ing included loss mechanisms, it was proven that the sharing
a specific slot being a “rare” event, this random process canf energy between finite-bandwidth resonant modes is at the
be modelled by a Poisson law, with me&fy N,. The mean origin of the limitations in the SNR of the received pulse. A
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statistical approach has led to general results based gn veintroducing a simplified heuristic description, provingtithe

few assumptions, mainly that of a sufficiently “wide-band” SNR is in fact limited by the finite number of degrees of free-
configuration withB;/ By, 2 200: the developed model pre- dom available in a lossy reverberating system. These eesult
dicts correctly the first two statistical moments of the SNR,should be useful for both the design of experiments and the
acknowledging its non-negligible statistical dispersiofl- interpretation of their results, and pertain to any type afa
though mainly based on a mathematical approach, the physpropagation problem in a reverberating environment.

cal meaning of these results were explained in plain terms by
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