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It has been proposed [J. Derosny, Ph.D. Thesis, Université Paris VI, 2000] that the performance of time re-
versal at recreating a coherent pulse in a strongly reverberating medium is directly proportional to the number
of resonant modesM actively taking part at the transmission of energy. This idea is here tested against ex-
perimental results, showing that as soon as losses are takeninto account, the quality of the focused pulse is a
sublinear function ofM , leading to a saturation phenomenon that was previously unacknowledged. This is here
proven to be caused by mutual coupling between lossy resonant modes, thanks to a statistical modal description
of the transmission of signals through the medium. Closed-form relationships are proposed for the first two
moments of the pulse signal-to-noise ratio, linking them tothe occupied bandwidth, the number of active modes
and the degree of resonance of the medium. These formulae, supported by experimental and numerical results,
prove that the performance of time reversal can be affected by a strong statistical dispersion. The proposed
analysis also predicts that time reversal is a self-averaging process when applied to a reverberating medium,
thus allowing the use of models developed in an ensemble-average framework.

I. INTRODUCTION

The interest of time-reversal techniques has been demon-
strated in the fields of acoustics as well as electromagnetics,
giving rise to a host of applications as diverse as pulsed-energy
focusing in complex media [1], imaging techniques [2], and
selective focusing [3]. Among these, one of the most surpris-
ing features of time reversal is its ability to ensure the trans-
mission of coherent pulses through reverberating media [1,4].
In the context of this paper, we will consider a reverberat-
ing medium as a generally inhomogeneous medium where the
propagation of electromagnetic or acoustic energy is strongly
constrained into a finite volume. This region of space can be
identified by an ideally closed surface imposing highly reflec-
tive boundary conditions, a configuration often referred toas
a cavity. The provision of a finite volume does not exclude the
existence of small apertures, through which a limited amount
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FIG. 1: Synoptic of a generic communication system embeddedinto
a reverberating environment. A pulsey(t) is to be focused at the
receiver location by feeding the transmitter with anad hocsignal
i(t) defined by means of time-reversal techniques.
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of the energy can leak out of the reverberating environment
leading to a small perturbation of its behaviour assimilable
to an energy loss. Coherently with this scenario, the me-
dia filling the cavity, as well as its boundary surface, will be
regarded as lossy, introducing power dissipation along wave
propagation. Following this description, a cavity is character-
ized by an infinite but countable set of resonances, associated
to the eigenmodes of Helmholtz equation when the reflective-
surface boundary conditions are enforced [5].

Typically, for a pulse transmitted within such a medium, the
signal received would be dominated by a long non-coherent
tail, made up of a large number of echoes of the original pulse;
conversely, use of time-reversal techniques allows a predomi-
nantly coherent transmission of the pulse. Applications ofthis
property to electromagnetics range from new signal-forming
schemes for telecommunications in multipath channels [6] to
the generation of high-intensity local fields for device/material
testing [7]. Although the basics for the physical interpretation
of time-reversal in such context are known [4], there is no
available model allowing to predict the statistical behaviour
of this technique when used in a reverberating medium, and
in particular how its performance depends on the relative po-
sition of the receiver-transmitter pair within the system (see
Fig. 1). In particular, the analyses found in the literaturefocus
just on the mean asymptotic performance, without giving any
hint of its statistical dispersion. Furthermore, to the best of our
knowledge, these models assume the system to be lossless [4].

In this paper we fill this gap by proposing a study of the
performance of time reversal for more realistic scenarios,as-
sessing how the signal-to-noise ratio (SNR) of received pulses
evolves while changing, on the one hand, the positions of
the transducers and, on the other hand, the properties of the
medium. This is done by studying the statistics of the per-
formance, in particular by proposing closed-form expressions
for the first two moments of the SNR of the received pulse.
These results should allow predicting more thoroughly the
way time reversal behaves in a reverberating medium, espe-
cially thanks to the knowledge of the variance of the SNR: in-
deed, this is a fundamental piece of data for ensuring, within
a certain confidence margin, a given performance for any po-
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sition of the receiver and transmitter. Moreover, by acknowl-
edging the existence of non-negligible loss mechanisms, the
proposed model predicts phenomena that were not previously
highlighted, such as the fact that losses lead to a saturation
of the SNR, because of the mutual coupling between resonant
modes through the tails of their frequency spectra. A major
point is the generality of these results, which are valid forany
system obeying to a modal resonant description, be it acoustic
or electromagnetic, while requiring a very limited number of
simplifying assumptions.

The paper starts with the introduction of tools for assessing
the quality of the received pulse, generalized to the case of
lossy media by applying novel definitions with respect to [4].
These tools are then applied for the analysis of experimental
results obtained in an electromagnetic reverberation chamber,
pointing out some of the previously recalled phenomena that
have not yet been acknowledged. A theoretical analysis based
on a modal description is then proposed in Section III, leading
to the first two statistical moments of the SNR; subsequently,
we focus in Section IV on the asymptotic response, proving
that thanks to the self-averaging properties of time reversal,
its statistical description is asymptotically independent on the
actual realization of the reverberating medium, and entirely
describable through few global parameters. Numerical results,
as well as experimental ones are presented in Section V, vali-
dating the accuracy of the proposed analysis. Finally, a simple
heuristic interpretation of our findings is given in SectionVI,
providing a framework for intuitively understanding the rea-
sons for the saturation of the SNR.

II. ON THE QUALITY OF RECEIVED PULSES

A. Mathematical tools for quality assessment

In this Section we are concerned by the use of time-reversal
techniques for transmitting a coherent pulse to a given re-
ceiver placed in a reverberating medium. Hereafter, this will
be supposed to be reciprocal. The configuration we deal with
is depicted in Fig. 1: two transducers are placed within the
medium, one acting as a transmitter and the other one as a re-
ceiver. Definingh(t) as the impulse response between the two
transducers, it was shown in [4] that by transmitting the signal
i(t) = x(−t) ⋆ h(−t), the received signaly(t) will be a fair
replica of x(−t), even in a strongly reverberating medium.
Due to this feature, time reversal has been proposed as a way
of communicating through complex media, and in particular
multipath channels, whose characteristics are well represented
by reverberating media [8]. An example of pulse received for
this setup is shown in Fig. 2, wherex(t) is a cardinal sinus
modulating an harmonic carrier. Indeed, it appears that the
received signal is almost undistinguishable from the original
one around its peak region, whereas it is affected by a stronger
modification over the signal tails.

In the following, we will consider the pulsex(t) to have a
spectral content comprised in the frequency range[f1, f2], i.e.,
with a frequency bandwidthBT = f2 − f1 centered around
the frequencyfc = (f1 + f2)/2. A total number ofM reso-
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FIG. 2: An example of a pulse transmitted through a reverberating
medium using time reversal, for the case ofQ = 5000, M = 500,
BT = 100 MHz, central frequency 1 GHz: the region around the
peak of the pulse (a) and a wider perspective highlighting the resid-
ual noise distribution (b). The dark trace is the original pulse to be
transmitted, whereas the light one is the signal actually received, af-
fected by residual noise. The thicker line represents the equivalent
noisene(t).

nant modes will be assumed to exist over this frequency range,
with resonance frequencies given by the set{fk}. In a general
way, a transfer functionH(f) in a reverberating medium can
be expressed as a superposition of these modes, weighted by
complex coefficientsγk = αk + jβk [5], i.e.,

H(f) =

M
∑

k=1

γk(f)φk(f) , f ∈ [f1, f2] . (1)

The responseφk(f) of thek-th mode will be assumed, with
no loss of generality, to be a Lorentzian function. By consid-
ering the main effect of losses to lead to a small perturbation
of these functions, one can write [5]:

φk(f) =
f2

k/Qk

f2
k (1 + j/2Qk)2 − f2

, (2)

whereQk is the quality factor associated to thek-th mode,
which thus has a−3 dB bandwidthBM,k = fk/Qk. The
modal weights{γk} are functions of the transmitter and re-
ceiver positions and of the spatial field distribution associated
to each resonant mode.

In order to simplify the notations in the following analysis,
we will consider the reference signal to bex(−t), so that the
received one is rather linked tox(t). For the same reason, we
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will avoid delaying the time-reversed pulse, and consider a
non-causal description, as this does not affect the final results.
Bearing these definitions in mind, the fitness of the focused
pulse can be assessed by computing the components(t) =
ρx(t) that is coherent with respect tox(t), leading to

y(t) = ρx(t) + n(t) , (3)

wheren(t) is the residual noise due to the distortion of the
pulse introduced by the non-flat transfer functionH(f) of the
medium, withH(f) the Fourier transform ofh(t). Residual
n(t) being orthogonal tox(t) by definition,ρ can be computed
as

ρ =
〈Y, X〉
〈X, X〉 =

∫ f2

f1

X |H |2X⋆df

∫ f2

f1

|X |2df

, (4)

having applied Parseval equality, whereX(f) andY (f) are
the Fourier spectra of the respective time-domain signals.The
brackets stand for the projection operator. It is interesting to
notice that because of the quadratic form in the previous re-
sult,ρ ∈ R

+, so that the sign of the peak of the received pulse
will always be unchanged. Defining the energyEG of a spec-
trumG(f) as

EG = 2

∫ f2

f1

|G(f)|2df , (5)

the energyES of the coherent part is thus given by

ES = ρ2EX = 2ρ2

∫ f2

f1

|X |2df , (6)

whereas the energyEN of the residual noise is

EN = 2

∫ f2

f1

|X |2|H |4df − ES , (7)

so that we can introduce the energy SNRΛ as

Λ =
ES

EN
. (8)

While the energy ratioΛ will be extensively used in the rest of
the paper, the ability of time reversal in transmitting coherent
pulses is better assessed by means of the peak SNRΛp as
defined as follows [4]:

Λp =
s2(0)

n2
rms

, (9)

having assumed that the peak of the received pulse occurs in
t = 0. The quantitynrms is the root-mean-square (rms) value
of n(t):

n2
rms = lim

T→∞

1

T

∫ T/2

−T/2

n2(t)dt . (10)

Equation (9) thus measures how much the coherent part of
the transmitted pulse stands out of the residual noise. Now,
the use of the rms value is consistent only in the case of a loss-
less system, as done in [4], since in this casen(t) would have
an infinite energy but a finite non-zero average power. Con-
versely, for the case of a lossy system,nrms would be equal to
zero, since the noise has finite energy; as a matter of fact, the
time-constant characterizing the decay of a mode with quality
factor Qk is τk = Qk/(πfk) = 1/(πBM,k). We will as-
sume that all the modes involved have the same bandwidth,
and as a consequence the same time-constantτ = τk, ∀k; this
assumption is valid as long asBT /fc is sufficiently smaller
than one, i.e., for configurations that cannot yet be regarded
as wide-band, though not strictly narrow-band. Under such
conditions,n(t) will also obey to a time-decay with constant
τ ; therefore, we introduce the equivalent noise signalne(t):

ne(t) = n0e
−πfct/Q , (11)

whereQ is the average quality factor, and by imposing the
same overall energy for the two noise signals, we get

n2
0 =

ENπfc

Q
. (12)

The equivalent noisene(t) behaves as a smoothed version
of the actual noisen(t), maintaining the same overall time-
decay, and thus the same average instantaneous power con-
tent. The example shown in Fig. 2 illustrates this approach.It
is now possible to define the peak SNR by considering the
equivalent instantaneous noise energy at the signal peak in
t = 0,

Λp =
s2(0)

n2
e(0)

=
Q

πfc
χΛ , (13)

whereχ = x2(0)/EX is a factor related to the shape ofx(t).
This simple relationship between the two SNR definitions al-
lows focusing on the energy SNR, which is much simpler to
compute in the frequency domain.

Thanks to these definitions, it is possible to predict the per-
formance of time-reversal transmission for any pulsex(t), just
by knowing the transfer functionH(f). Most remarkably, this
just requires having access to the absolute values of the spec-
traX(f) andH(f).

B. Experimental investigations in a reverberation chamber

In general, the pulse SNR will depend on the relative posi-
tion of the transmitter and the receiver within the system; in
order to exploit the time-reversal technique for real-lifeappli-
cations, it is of paramount importance to be able to ensure that
a given minimum SNR be respected for any transducers posi-
tion, at least with respect to a certain confidence margin. In
order to assess the variability of the SNR, we carried out ex-
perimental tests, by considering an electromagnetic reverber-
ation chamber, with a fixed antenna acting as the transmitter
and a linearly polarized electro-optical sensor (connected to
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an optical fiber) as a receiver. This last choice was imposed
by the fact that a receiving antenna being moved inside the
chamber would have changed its fundamental characteristics,
modifying the sets{fk} and{γk}, and as thus impairing the
validity of any comparison. The very weak interaction en-
sured by the optical sensor means that it can be regarded as an
almost ideal electric-field probe, minimizing the modification
of the quantity being measured.

A total of 100 randomly chosen positions and orientations
of the receiver were considered, measuring the respective
transfer functions over six frequency ranges, centered at fre-
quencies from0.5 GHz to3 GHz, by steps of0.5 GHz. For
each central frequency, two bandwidthsBT were considered,
namely 100 MHz and 200 MHz.

We assumed, for the sake of simplicity,x(t) to have a flat
spectrum over the frequency range[f1, f2]; this would be the
case, e.g., for cardinal sinus pulses. The energy SNR was
computed by means of (8), leading to the empirical statisti-
cal distributions shown in Fig. 3, and the first two statistical
moments ofΛ resumed in Table I, together with the average
peak SNRΛp. These results point to three important facts: 1)
while the average energy SNR increases with the frequency,
its progression slows down at the same time, converging on
an asymptotic value close to one, 2) the actual value ofΛ is
strongly dispersed, depending on the position of the receiver
and, 3) an increasing bandwidth has apparently little effect on
the average energy SNR, whereas its dispersion decreases. To
the best of our knowledge, these conclusions have never been
discussed before, and no theoretical framework is available
for interpreting them.

The only available model is the one proposed in [4] for a
lossless configuration. It predicts a direct proportionality be-
tween the number of modesM and the average peak SNR
Λp. In order to apply this model to our experimental results,
we estimated the numberMw of resonant modes existing in
the chamber for a given frequency range through Weyl’s for-
mula [9]

Mw(fc) ≃
8πV

c3
f2

c BT

(

1 +
B2

T

12f2
c

)

, (14)

whereV is the volume of the reverberation chamber andc is
the speed of light in the medium filling it. Results obtained for
the case of Supelec’s chamber (V = 3.08 × 1.84 × 2.44 m3)
are shown in Table I. By comparingMw to the averageΛp,
it is clear that their relationship is more complex, and charac-
terized by a form of saturation of the performance, since even
for large increases inMw, Λp is barely affected.

The reasons for such a peculiar behaviour are to be sought
in the existence of loss mechanisms in actual reverberation
chambers; we will show in the next Section that this leads to
mutual couplings between resonant modes, and ultimately to
a saturation of the performance.

Concerning the statistical dispersion discussed in points2)
and 3), it has never been addressed before. It is worthwhile
noticing that the orientation of the probe has little effecton
the dispersion, since the cavity was over-moded for all the
frequency ranges, apart forfc = 0.5 GHz. For such configu-
rations, the field is statistically isotropic, and it presents very

fc (GHz) BT (MHz) meanΛ stdΛ meanΛp Q Mw

0.5
100 0.37 0.074 187

3900
322

200 0.30 0.051 300 644

1.0
100 0.75 0.12 272

5700
1287

200 0.72 0.080 130 2574

1.5
100 0.91 0.14 243

6300
2896

200 0.90 0.10 481 5792

2.0
100 0.96 0.13 192

6300
5149

200 0.95 0.12 380 10297

2.5
100 1.02 0.13 187

7200
8045

200 1.00 0.10 365 16090

3.0
100 1.02 0.14 188

8700
11584

200 0.98 0.10 358 23169

TABLE I: Statistical moments of the energy SNRΛ and average peak
SNRΛp, as computed from the experimental data presented in Fig. 3.
The approximate number of modesMw was computed by means
of Weyl’s formula (14), whereas the average quality factorQ was
directly estimated from the time constant of the residual noisen(t).

similar statistical properties along its three Cartesian compo-
nents [10].

These results point out that apart from being able to ex-
plain the limitations of time reversal, it is of paramount im-
portance to have a model predicting the statistical dispersion
of the SNR. These are indeed the basic motivations of this
paper.

III. STATISTICAL MOMENTS OF Λ

As often done in statistical descriptions, the parameters of
the model will need to be regarded as random variables. This
approach is not just dictated by mathematics, but it comes with
physical meaning. In particular, the resonance frequencies
{fk} are indeed distributed over the bandwidthBT in a way
that is hardly predictable, unless in canonical configurations.
For the associated modal weights{γk}, since describing the
projection of the transducer characteristic response overthe
modal topographies, a modification in the position of the re-
ceiver or the transmitter leads to a modification of the{γk}, so
that a random position of the transducers implies a random set
of modal weights. Moreover, the fact that the modal topogra-
phies, as well the excitation of the transducers are, in gen-
eral, sign-changing functions, implies that the{αk} and{βk}
should be treated as zero-mean random variables, and they
will be assumed to be independent and identical distributed
(iid). No further assumption will be necessary about the type
of distributions.

In order to simplify the model, theφk(f) will be assumed
to be frequency-shifted replica, with approximately the same
bandwidthBM = fk/Qk, ∀k. This also implies that all the
modal responsesφk(f) have the same energyEφ. In principle,
this assumption holds only when relatively narrow bands are
considered, although the results shown in Section V prove that



5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

Λ

f
c
 = 0.5 GHz

f
c
 = 1.0 GHz

f
c
 = 1.5 GHz

f
c
 = 2.0 GHz

f
c
 = 2.5 GHz

f
c
 = 3.0 GHz

(a)

(b)

(c)

(d)

(e)

(f)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

Λ

(g)

(h)

(i)

(j)

(k)

(l)

FIG. 3: Frequencies of occurrence for the energy SNRΛ as computed from experimental data measured over a bandwidth BT = 100 MHz
(left column) andBT = 200 MHz (right column), centered around the frequenciesfc = {0.5, 1, 1.5, 2, 2.5, 3} GHz (top to bottom). Each
histogram was obtained from a population of 100 sample transfer functions as measured between a fixed transmitter antenna and a moving
electro-optical probe.

this is not necessarily the case.

It is important to understand the physical role of the follow-
ing statistical analysis, which aims at accounting for the im-
pact of the random position of the transducers on the received
pulse SNR. Indeed, equation (1), when coupled with equa-
tions (6)-(8), leads to the definition ofΛ as a random function,
depending on the probability density functions (pdfs) of{γk}
and{fk}.

We start our analysis by considering a specific configu-
ration for the reverberating medium, i.e., for a given set of
known deterministic{fk}, whereas the{γk} will be regarded
as random variables. This scenario corresponds to the case
of a single realization for the medium, while the positions of

the transducers are let free to change, so that all the statistical
moments will be conditional to the set{fk}. The ensemble
behaviour of the SNR considering random{fk} will be stud-
ied in Section IV.

In order to simplify our analysis, but with no loss of gener-
ality in the conclusions, we will assume the modulus ofX(f)
to be directly proportional to the characteristic functionof the
interval [f1, f2], leading toχ = 2BT . This choice corre-
sponds, e.g., to a cardinal sine excitation in the time-domain,
modulating an harmonic carrier of frequencyfc, as for the ex-
ample shown in Fig. 2. Attention should be paid to the fact
that the definitions of the SNR actually depends just on the
modulus ofX(f), so that an infinite number of pulse shapes
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sharing the same spectral occupation would be characterized
by the same SNR.

Following this assumption, (8) can be recast as

Λ =

(

∫ f2

f1

|H |2df

)2

BT

∫ f2

f1

|H |4df −
(

∫ f2

f1

|H |2df

)2
. (15)

ThusΛ is entirely defined by the properties of the random
function|H(f)|2 over the frequency-range[f1, f2]. In order to
study the statistical properties ofΛ, we introduce the auxiliary
random variablesWi ∈ R

+, as defined as

Wi =

∫ f2

f1

|H |2idf , (16)

yielding

Λ =
W 2

1

BT W2 − W 2
1

. (17)

The rationale for introducing these auxiliary variables is
that the statistical moments ofΛ cannot be expressed as a di-
rect function of the{γk} and{fk} moments. Nevertheless,
the moments ofWi can be linked more easily to those of{γk}
and{fk}; an estimation of the moments ofΛ can then be given
by linearizing (17) around theWi ensemble averages [11]. For
the sake of simplicity, the following convention is introduced:

W i = E[Wi|{fk}] . (18)

Applying this approach to the average ofΛ conditional to a
given realization{fk} yields

E[Λ|{fk}] ≃
W

2

1

BT W 2 − W
2

1

. (19)

In the same way, the conditional varianceσ2
Λ|{fk}

can be ap-
proximated as

σ2
Λ|{fk}

= E[Λ2|{fk}] − E[Λ|{fk}]2 ≃ J
T
ΣJ , (20)

where Σ is the covariance matrix of the random vector
[W1, W2]

T. The column vectorJ is the Jacobian ofΛ as com-
puted with respect toW1 andW2, evaluated at(W 1, W 2):

J = BT
W 1

(

BT W 2 − W
2

1

)2

[

2W2

−W1

]

. (21)

A higher-order estimate ofΛ could be given, but the re-
sulting expression would be quite unwieldy without deliver-
ing considerable improvement in the final accuracy. For the

same reason, we just consider the first two moments ofW1

andW2. Thanks to the following expansion

|H(f)|2 =

M
∑

k=1

|γk|2|φk(f)|2 +

+ 2

M
∑

k=1

M
∑

m=k+1

Re {γkγ⋆
mφk(f)φ⋆

m(f)} (22)

and assuming the{γk} to be independent from the{fk}, while
recalling the hypothesis of all the modes having the same en-
ergyEφ, as defined in (5), we can write

E[W1|{fk}] = 2Mµ2Eφ (23)

E[W2|{fk}] = 2M(µ2
2 + µ4)E|φ|2 +

+ 16µ2
2

M
∑

k=1

M
∑

m=k+1

Eφkφm
(24)

having introduced the momentsµi

µi = E[αi
k] = E[βi

k] . (25)

Equation (24) differs from (23) in a fundamental aspect,
i.e., the presence of the mutual energiesEφkφm

shared be-
tween each couple of modes of the system. This term can
be shown to be the source of the limitations of the SNR as
the modal densityM/BT increases enough to lead to non-
negligible interactions between the modes.

The same type of analysis was carried out for the elements
Σij = E[(Wi − E[Wi])(Wj − E[Wj ])] of the covariance ma-
trix, but this led to too complex expressions, especially for
Σ22. We would rather propose approximate results, where the
mutual-energy terms are neglected:

Σ ≃ 4Mν , (26)

having defined the elements ofν as

ν11 = E2
φ(µ4 − µ2

2) (27)

ν12 = EφE|φ|2(µ2µ4 + µ6 − 2µ3
2) (28)

ν22 = E2
|φ|2(µ8 + 4µ2µ6 + µ2

4 − 2µ4
2 − 4µ2

2µ4) (29)

It is worth noting that although interactions between modes
have been neglected inΣ, the Jacobian in (21) takes them into
account. It will be shown in Section V that when applied as
an input to (20), these expressions provide a good estimate of
the variance ofΛ, and as thus they are a useful tool in stat-
ing the uncertainty that affects time-reversal performances in
a reverberating medium.

IV. AVERAGE ASYMPTOTIC PERFORMANCE

The formulae presented in the previous Section were de-
rived considering a given deterministic set of resonant fre-
quencies{fk}, and as thus (19) and (20) depends, in principle,
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on the actual realization of{fk}. In fact, this dependence sub-
sists only in the mutual energiesEφkφm

in (24).
In this Section, we consider the performance of time-

reversal when averaged over all the realizations of{fk}, hence
related to its general trend rather than for a specific configu-
ration, proving that under certain conditions, the statistics of
a single realization are well approximated by the simpler en-
semble statistics.

To this end, let us consider the ensemble average ofΛ with
respect to the random set{fk}; thanks to the linearization of
Λ, it will suffice to carry out this averaging over theWi, lead-
ing to:

E[W1] = 2Mµ2Eφ (30)

E[W2] = 2M(µ2
2 + µ4)E|φ|2 +

+ 8µ2
2M(M − 1)E[Eφkφm

] . (31)

The double sum in (24) is thus simplified by introducing the
average mutual energyE[Eφkφm

]. The result in (24) and (31)
would then be identical if the following condition were satis-
fied:

2

M(M − 1)

M
∑

k=1

M
∑

m=k+1

Eφkφm
≃ E[Eφkφm

] . (32)

This requirement corresponds to assuming the system to be
ergodic, approximating the ensemble average over all the re-
alizations with the average carried out over the set of mutual
energies within a single realization. The strong law of large
numbers [12] states that, if the system is ergodic, the left hand
of (32) converges in probability to the ensemble average of
the mutual energy; therefore, for a sufficiently high numberof
active modesM one gets

E[Λ|{fk}] ≃ E[Λ] . (33)

This phenomenon, often referred to as self-averaging, had al-
ready been experimentally highlighted in [13], although ina
different context, as one of the most interesting features of
time reversal, and it implies that its performance in transmit-
ting coherent pulses in a reverberating medium is asymptoti-
cally independent from the actual realization of the set of the
resonance frequencies{fk}, underpinning the robustness of
this technique.

An example highlighting this property is given in Fig. 4,
where empirical pdfs are shown for 10 different realizations
{fk}, for three values ofM , namely 50, 100 and 200, with
fc = 2 GHz, BT = 200 MHz andQ = 1000. For each re-
alization of{fk}, ten thousand sets of modal weights{γk}
were considered. It appears that indeed the pdfs converge
toward the ensemble average asM increases, even for such
small values ofM .

We can now write

E[Λ] =
2ME2

φ

BT

[

(1 + µ4/µ2
2)E|φ|2 + 4(M − 1)E[Eφkφm

]
]

− 2ME2
φ

.

(34)
It is clear that the behaviour ofE[Λ] could be easily pre-

dicted should the three energy terms be known. As a matter of
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FIG. 4: Empirical conditional pdfsp(Λ|{fk}) for Q = 1000, fc =
2 GHz andBT = 200 MHz, obtained for an increasing number of
active modes. The thicker curve stands for the ensemble average of
each group of realizations.

fact, a closed-form expression can be given forE[Eφkφm
] by

exchanging the order of integration:

E[Eφkφm
] =

∫ f2

f1

(

∫ f2

f1

|φk(f)|2p(fk)dfk

)2

df , (35)

having exploited the fact that the{fk} are iid random vari-
ables. Noticing that the inner integral does not depend on
the actual frequencyf at which it is computed, as long as
BT ≫ BM , (35) becomes

E[Eφkφm
] = BT

(

∫ f2

f1

|φk(fc)|2p(fk)dfk

)2

, (36)

and by assuming a uniform distribution for the{fk} over the
bandwidthBT , this yields

E[Eφkφm
] =

E2
φ

BT
. (37)

The two remaining energiesEφ andE|φ|2 can also be ex-
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pressed in closed-form as

Eφk
= fk

π

2

Qk

Q2
k + 1

≃ π

2
BM (38)

E|φk|2 = fk
π

4

Q3
k(Q2

k + 5)

(Q2
k + 1)3

≃ π

4
BM , (39)

so that (34) can be restated in a simpler form

E[Λ] =
M

M + (1 + µ4/µ2
2)

BT

2πBM

. (40)

HenceE[Λ] is linearly dependent onM at low modal den-
sity levels, whereas it converges to an asymptotic value for
an higherM . Thus, in lossy reverberating media, the poten-
tial gain obtained by increasing the number of active modes
(i.e., increasing the central frequencyfc) is put in jeopardy
by the coupling existing between lossy resonant modes, with
E[Λ] converging to a fixed value. Interestingly, this asymp-
totic value is simply equal to one. The physical significance
of this result will be given a simplified explanation in Sec-
tion VI.

Equation (40) is remarkably simple, and it shows that a
handful of global parameters is sufficient for an accurate pre-
diction of the quality of the received pulse. It is worth not-
ing that the central frequency does not appear explicitly, as
a consequence of the identical-mode assumption. These re-
sults also point to the fact that the most fundamental quantity
for understanding the phenomena behind pulse focusing in a
reverberating medium isBT /BM . This quantity will be here-
after referred to asNs, for reasons that will be made clear in
Section VI, yielding

E[Λ] =
M/Ns

M/Ns + (1 + µ4/µ2
2)/(2π)

. (41)

This reformulation states that the average performance is en-
tirely predicted by means of the ratioM/Ns. As soon as
M & Ns the marginal gain brought by the availability of
new modes is increasingly reduced, leading to a saturation for
higherM .

V. MODEL VALIDATION

In order to check the accuracy of the proposed description,
we considered numerical simulations, by synthesizing random
realizations of transfer functions, thanks to (1). The ratio-
nale for this approach is the possibility to closely monitorthe
number of modesM , their quality factor, and so on. Indeed,
as recalled later in this Section, experimental validations are
impaired by the impossibility to assess the exact number of
modes taking part to the transmission.

Thanks to the fact that (40) is not directly dependent on the
central frequencyfc, but rather on the bandwidthsBT and
BM , the validation can be carried out at any value offc. We
set forfc = 2 GHz, with a varying bandwidthBT and sev-
eral average quality factorsQ. Random complex weightsγk

0 0.5 1 1.5 2 2.5
0
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3

0 0.5 1 1.5
0
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15
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s
 = 1000

Q = 5000
N
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 = 125

(a)

(c)

(b)

(d)

FIG. 5: Empirical pdfs for the energy SNRΛ, depending on
the numberM of active modes and the quality factorQ of the
medium. The six curves presented in each picture correspondto
M = {100, 250, 500, 1000, 2500, 5000}, respectively, from left to
right.

are drawn accordingly to normally distributedαk andβk; the
energy SNR for the transfer functions thus obtained are subse-
quently computed thanks to (8). Contrary to the assumption of
a constantfk/Qk, theφk(f) were assumed to have a constant
quality factorQ = Qk, ∀k. Therefore, the modal responses
φk(f) will not be identical as assumed in the model deriva-
tion.

The first tests aimed at showing how the energy SNR is dis-
tributed asM andNs = BT /BM vary, and is more of a qual-
itative investigation. A bandwidthBT of 50 MHz was cho-
sen, while four values ofQ were tested, ranging from 5000
to 40000. The number of modes varied from 100 to 5000.
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FIG. 6: Validation tests forE[Λ]: numerical results obtained from
500 realizations (dots) and the values predicted by (40) (solid lines).
All the presented results were computed forfc = 2 GHz and for
Q={1000, 2000, 5000, 10000, 20000}, while the corresponding Ns

are displayed.

For each set of global parameters ten thousand realizations
were generated, in order to establish empirical pdfs; theseare
shown in Fig. 5, and illustrate quite clearly that: 1) increasing
losses tend to saturate the energy SNR faster, asM increases,
2) decreasing losses slow the saturation down, but reduce the
average energy SNR, as the length of the residual-noise tails
increases and so does the noise energy, and 3) the SNR expe-
riences a standard deviation that is far from negligible when
compared to the average value, although, asQ increases, the
dispersion appears to decrease. The trend in the simulated
pdfs recalls that of the experimental ones shown in Fig. 3.

Even though the energy SNRΛ decreases withQ, the peak
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FIG. 7: Validation tests for the standard deviation ofΛ, for the same
configurations as in Fig. 6. The dashed lines correspond to the values
predicted by (20), but considering ensemble-averagedWi, whereas
the thick solid ones highlight the model results up to the curve local
maximum, forM < Mσ.

SNR Λp increases monotonically, since the relationship be-
tweenΛ andQ is actually sublinear. This fact is to be ex-
pected intuitively, and it also confirms the trend predictedby
the model proposed in [4], since

lim
Q→∞

E[Λp] = M , (42)

again, in the case of a cardinal-sinus pulse and gaussian statis-
tics for the modal weights.

Quantitative validations were then carried out by consider-
ingfc = 2 GHz,Q = {1000, 2500, 5000, 10000, 20000}, and
a varying bandwidthBT = {200, 400, 600} MHz. The num-
ber of modes spanned the values 100 to 5000, and a population



10

of 500 random realizations{γk} per configuration was con-
sidered, each configuration representing just a single realiza-
tion of {fk}. The results thus obtained for the average value
and the standard deviation ofΛ are shown in Fig. 6 and Fig. 7,
respectively. Fig. 6 shows that the average value is predicted
within a few percent points as long asNs & 200. Indeed, (40)
is unable to predict any energy SNR greater than one; this is
actually not due to a bad estimate of the moments of the aux-
iliary variablesWi, which are indeed precisely estimated in
all of the considered tests, since (30) and (31) do not involve
any approximation. This rather points directly to the condi-
tions that are necessary for applying the linearization in (9),
implying that it is necessary for the conditionNs & 200 to be
fulfilled. We investigated the possibility of including theHes-
sian term in the expansion (19), but we dropped this option,
since it brought no tangible improvement, thus implying that
the SNR as a non linear function ofWi would require terms
higher than quadratic ones.

The standard deviation depicts a rather different scenario.
Expression (20) neglects any modal interaction in the covari-
ance matrixΣ, but it includes them through the use ofW i.
For this reason, (20) is expected to underperform as soon as
the modal interactions get more important, i.e., as the modal
densityM/BT increases. The results in Fig. 7 support these
ideas, showing that (20) is a very good estimate of the standard
deviation, as long as it has not yet attained its maximum value
σmax. After this point, (20) is no more a valid estimate, but the
actual standard deviation gets to a plateau fairly approximated
by σmax. In general, this value needs to be computed numer-
ically, but for the case of modal weights distributed as Gaus-
sian random variables, the number of modesMσ for which
the standard deviation reaches its maximum value can be ap-
proximated by

Mσ ≃ 6

π
Ns . (43)

Knowledge of the saturation point allows extending the valid-
ity of (20) over the entire range of values ofM , i.e.,

σ2
Λ ≃

{

(JT
ΣJ)(M) M ≤ Mσ

1.7π
Ns

M > Mσ
. (44)

Therefore, the maximum standard deviation goes like1/
√

Ns,
whereas it is inversely proportional toNs for M ≪ Mσ. The
former conclusion explains the behaviour previously high-
lighted, with the standard deviation decreasing whenBT

and/orQ increase.
These numerical validations prove the effectiveness of the

asymptotic models, even for a relatively low number of modes
and with no ensemble averaging in{fk}. This implies that the
ergodic assumption formulated in the previous Section does
indeed hold. The greatest limitation in the proposed modelsis
the need for (9) to be well approximated by its tangent plane
over the range of values spanned by theWi, requiringNs &
200.

The last validation is a tentative experimental one. As re-
called at the beginning of this Section, the exact number of
modes excited in a reverberating system is usually not known.

Therefore a direct validation is not feasible; nevertheless, it
is current practice in electrical engineering to assumed that a
linearly polarized antenna placed in an electrically largerever-
berating chamber will excite most of the modes existing over
the frequency range of emission of the antenna. As a conse-
quence, Weyl’s formula is often used as a reference. Hence,
we computed the moments of the energy SNR predicted by
our model, considering a number of modes equal to three frac-
tions of the estimateMw given by Weyl’s formula (14).

The results are resumed in Table II, together with the quan-
tity Ns: the range of variation of the SNR is very well iden-
tified, both for the average value and the standard deviation,
and the experimental results are consistently approached when
considering a number of modes close to0.9Mw. Furthermore,
as expected from the numerical validation, as soon asNs de-
creases towards 200 the experimental averageΛ goes beyond
one; in this case, the model will underestimate the statistical
moments.

The fact that considering the same fraction ofMw over
the six frequencies leads to good results, strongly reduces
the odds that this accuracy be a random result; we thus con-
sider that 90 % of the available modes were indeed effec-
tively excited. The only exception is forfc = 0.5 GHz and
BT = 200 MHz; in fact, the transmitting antenna had a cut-off
frequency around 450 MHz, so that of the 200 MHz pulse to
be received, it actually transmitted only three-quarters of the
signal spectrum, hence exciting roughly three-quarters ofthe
available modes. By taking into account this fact, the actual
number of modes to be considered is rather3/4 · 0.9Mw ≃
2/3Mw: indeed, the results agree.

Overall, it appears that the average ofΛ is hardly affected
by an increase inBT . Actually, this is predictable, since both
Ns andMw are linearly dependent onBT , so that (41) is not
modified. Conversely, the peak SNR will increase proportion-
ally to BT . At the same time, the standard deviation is sensi-
tive to an increasingBT . This was predicted in (44), and the
reduction of a factor1/

√
2 subsequent to a doublingBT is in-

deed well confirmed by the experimental results. These find-
ings are of the utmost importance should time-reversal tech-
niques be used for pulse transmission.

VI. AN HEURISTIC INTERPRETATION

We will here try to give an interpretation of the reported
phenomena from a more physical, yet approximate, point of
view. To this end, let us recall that the maximum value at-
tained by the peak SNRΛp, as long asNs & 200, is simply
given byNs/(2π). It is thus not dependent on the actual num-
ber of modesM , but rather to a, usually, much lower quantity.

Let us look atNs from a different perspective: knowing
thatBM is the average bandwidth of the frequency response
of each mode,Ns states the maximum number of modes that
could be placed one after the other over the bandwidthBT .
The energy SNR corresponding to this configuration is equal
to one, and it corresponds to the best efficiency time-reversal
can provide in concentrating energy in the coherent part rather
than in the residual noise.
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fc (GHz) BT (MHz) experiments mod.2Mw/3 mod.3Mw/4 mod.Mw Ns Mw/Ns

0.5
100 0.37 (0.074) 0.30 (0.082) 0.33 (0.083) 0.39 (0.083) 785

0.41
200 0.30 (0.051) 0.30 (0.058) 0.33 (0.058) 0.39 (0.058) 1570

1.0
100 0.75 (0.12) 0.70 (0.097) 0.73 (0.097) 0.78 (0.097) 570

2.3
200 0.72 (0.080) 0.70 (0.069) 0.73 (0.069) 0.78 (0.069) 1140

1.5
100 0.91 (0.14) 0.88 (0.11) 0.89 (0.11) 0.92 (0.11) 420

6.9
200 0.90 (0.095) 0.88 (0.080) 0.89 (0.080) 0.92 (0.080) 840

2.0
100 0.96 (0.13) 0.95 (0.013) 0.95 (0.13) 0.96 (0.13) 315

16
200 0.95 (0.010) 0.95 (0.092) 0.95 (0.092) 0.96 (0.092) 630

2.5
100 1.02 (0.13) 0.97 (0.14) 0.97 (0.14) 0.98 (0.14) 288

28
200 1.00 (0.12) 0.97 (0.097) 0.97 (0.097) 0.98 (0.097) 576

3.0
100 1.02 (0.14) 0.98 (0.14) 0.98 (0.14) 0.98 (0.14) 290

40
200 0.97 (0.10) 0.98 (0.096) 0.98 (0.096) 0.98 (0.096) 580

TABLE II: Experimental validation against the results presented in Table I: mean values are given directly, while standard deviations are in
parenthesis. The results computed by means of (40) and (20) were obtained considering a number of active modes equal to2Mw/3, 3Mw/4
andMw, due to the uncertainty on the actualM . The reliability of the estimates can be tested by checking the conditionNs & 200.
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FIG. 8: Comparison between the mean energy SNR, as predictedby
the modal approach (41) (solid line) and the slot occupancy descrip-
tion (46) (dashed line).

This fact can be used to give a simple intuitive interpreta-
tion, by introducing the idea of a numberNs of available slots,
to be occupied by the actual number of active modes. Al-
though simplistic, this vision of the spectrum as a quantified
space makes sense. Hence, each mode introduces a further de-
gree of freedom only if it can be allocated to a free slot; other-
wise, it will be lost, just leading to a different modal weight, as
a function depending on the weights of the modes previously
allocated to the same slot. Therefore, the performance of time
reversal is not related to the actual number of active modes,
but rather to the number of slots being used, which could thus
be regarded as an effective number of modes or degrees of
freedom, orMe, leading to an efficiency and, ultimately, to
an energy SNR equal toMe/Ns. The allocation of a mode to
a specific slot being a “rare” event, this random process can
be modelled by a Poisson law, with meanM/Ns. The mean

number of occupied slots, and thus the effective number of
modesMe, is thus simply given by

Me = Ns(1 − e−M/Ns) , (45)

and the related energy SNR

E[Λ] ≃ Me

Ns
= 1 − e−M/Ns , (46)

highlighting the dominant role of the quantityM/Ns, as pre-
viously shown in (41). We could thus dub the quantityM/Ns

as the modal slot occupancy: it defines completely the SNR
and is sufficient for predicting the performance of time rever-
sal in any configuration.

The validity of this reasoning is proven in Fig. 8. Indeed,
for a low number of modes (with respect toNs) the results
predicted by (41) and (46) correspond fairly well. For higher
slot occupancies, (46) saturates faster, since this model is in-
capable of acknowledging the partial superposition of two
modes, something that would just lead to a partial loss of a
degree of freedom. In spite of this over-simplification, this ap-
proach yields results consistent with those predicted by (41),
while providing a simple framework for understanding the
SNR saturation phenomenon.

VII. CONCLUSIONS

This paper has addressed the main phenomena underlying
the quality of pulses received by a transducer as transmitted
through a reverberating medium, when using time-reversal
techniques. The quality of the received pulse has been ana-
lyzed with respect to global parameters identifying the prop-
erties of the medium, according to a modal description. Hav-
ing included loss mechanisms, it was proven that the sharing
of energy between finite-bandwidth resonant modes is at the
origin of the limitations in the SNR of the received pulse. A
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statistical approach has led to general results based on very
few assumptions, mainly that of a sufficiently “wide-band”
configuration withBT /BM & 200: the developed model pre-
dicts correctly the first two statistical moments of the SNR,
acknowledging its non-negligible statistical dispersion. Al-
though mainly based on a mathematical approach, the physi-
cal meaning of these results were explained in plain terms by

introducing a simplified heuristic description, proving that the
SNR is in fact limited by the finite number of degrees of free-
dom available in a lossy reverberating system. These results
should be useful for both the design of experiments and the
interpretation of their results, and pertain to any type of wave
propagation problem in a reverberating environment.
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