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Asymptotic distribution of circularity coefficients

estimate of complex random variables
Jean Pierre Delmas and Habti Abeida

Abstract

In this correspondence we mainly consider the asymptotic distribution of the estimator of circularity

coefficients of scalar and multidimensional complex random variables (RV). A particular attention is paid to

rectilinear RV. After deriving new properties of the circularity coefficients, the maximum likelihood estimate

of the circularity coefficients in the Gaussian case and asymptotic distribution of this estimate for arbitrary

distributions are given. Finally, an illustrative example is presented in order to strengthen the obtained theoretical

results.

Keywords: Circular/noncircular, proper/improper, rectilinear signal, coherence matrix, canonical correlations,

circularity spectrum, circularity coefficients.

I. INTRODUCTION

Many papers (see, e.g., [1], [2], [3]) show that significant performance gains can be achieved by the second-

order algorithms exploiting the statistical information contained in the complementary covariance [4] matrix

R′
z = E(zzT ) provided it is non-zero (also termed as relation matrix in [5] and pseudo covariance matrix in

[6]) in addition to that contained in the standard covariance matrix Rz = E(zzH). Signals such that R′
z ̸= O,

referred to as improper [4] or second-order non-circular [5], [6], occur in many signal processing applications.

Particularly many digital modulations of practical interest, such as BPSK, M-ASK, OQPSK MSK and GMSK

contain improper processes. But these signals have received a resurgence of interest. To assess detection or

estimation performance of algorithms adapted to improper signals, the circularity spectrum, whose elements

are referred to as circularity coefficients in [6] and fruitfully interpreted as canonical correlations between z

and z∗ simultaneously and independently introduced in [7], has been introduced. These parameters have been

studied from different points of view. They allow one to specify conditions for identifiability, separability and

uniqueness in complex-valued independent component analysis in [6]. They are used to design a generalized
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likelihood ratio test (GLRT) for impropriety in [7] through a specific measure for the degree of impropriety.

Different measures of this degree of impropriety has been proposed in [8], where upper and lower bounds have

been derived. Finally, it has been proved in [9] that two RVs with identical covariance matrix Rz = E(zzH)

and identical circularity coefficients can behave differently in second-order estimation and detection. Note that

the results of this paper have already been partially presented in [10].

The aim of this correspondence is twofold. First, it aims in Section II to complement previously available

theoretical results by introducing the non-circularity phase for scalar complex RV and attempts to extend it

to multidimensional complex RVs with particular attention paid to rectilinear complex RVs. Second, since

the knowledge of the circularity coefficients are generally crucial for using specific second-order algorithms

dedicated to improper signals (e.g., in direction of arrival estimation, the specific algorithms [11], [12] dedicated

to rectilinear sources fails when they are used for quasi rectilinear sources), the maximum likelihood (ML)

estimate of the circularity coefficients in the Gaussian case and asymptotic distribution of this estimate for

arbitrary distributions useful in practice for deriving confidence intervals are considered in Section III. We note

that ML estimates have also been considered in [7]. However, the problem addressed was not the ML estimate

of the circularity coefficients, but rather the GLRT for impropriety of complex signals where only the ML

estimates of Rz and R′
z are needed to derive the GLRT.

II. RECTILINEAR COMPLEX RANDOM VARIABLE

A. Scalar complex random variable

Let z = x + iy denote a zero-mean second-order scalar complex RV with variance σ2
z

def
= E(|z|2) and

complementary variance E(z2). The circularity coefficient ρ of z that is real-valued, non-negative and bounded

above by 1 (see e.g., [6, lemma 4]) is defined by

ρe2iϕ
def
=

E(z2)

E(|z|2)
, (1)

where ϕ ∈ [0, π) is referred to as the non-circularity phase of z in [13]. We note that this non-circularity phase

has been introduced as a crucial parameter to study the statistical performance of MUSIC-like algorithms for

estimating DOA of narrowband complex non-circular sources in [13] and then to characterize the resolution of

closely spaced sources in [14].

If ρ = 0, z is referred to as proper in [15], [4] or circular to the second-order in [5], [6] and if ρ = 1, z is

referred to as rectilinear in [16] (because in this case z = |z|eiϕ and z lies in one line of C) or most improper

in [9]. If ρco
def
= E(xy)

σxσy
with σx

def
=
√

E(x2) and σy
def
=
√

E(y2), denotes the correlation coefficient between the

real x and imaginary y parts of z, the following relations between ρ and ρco are proved in the Appendix1

1Note that there is a typo in the third property of Result 1 of [10].
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Result 1: The circularity coefficient ρ of a scalar complex non degenerate (σx ̸= 0 and σy ̸= 0) RV z and

the correlation coefficient ρco between its real x and imaginary y parts are related by the following relations

• ρ = 1 ⇔ ρco = ±1,

• ρ = 0 ⇒ ρco = 0, the converse is false because ρco = 0 does not imply σx = σy,

• ρ ≥ |ρco| and ρ = |ρco| when σx = σy.

To interpret the non-circularity phase ϕ of z, the following result is proved in the Appendix:

Result 2: For a non-circular scalar complex RV z, the orthogonal regression line of the couple (x, y) has a

direction given by the non-circularity phase ϕ and the mean square orthogonal distance to this line is given2

by

E(d2) =
σ2
z

2
(1− ρ). (2)

Consequently, the larger ρ is, the smaller the mean square distance of (x, y) to the orthogonal regression line

will be and this distance is zero if and only if z is rectilinear along this orthogonal regression line whose

direction is given by the non-circularity phase ϕ.

B. Multidimensional complex random variable

Consider now a full K-dimensional zero-mean second-order complex RV z = x+iy (i.e., with Rz nonsingu-

lar). The canonical correlations between z and z∗ i.e., the circularity coefficients of z, denoted by (ρk)k=1,...,K

has been defined in [6] and [7] as the singular values of the coherence matrix3 M = R
−1/2
z R′

zR
−T/2
z associated

with z and z∗, that arranged in decreasing order satisfy 1 = ρ1 = ... = ρr > ρr+1 ≥ ... ≥ ρK ≥ 0 where r

denotes the number of circularity coefficients equal to 1.

To attempt to extend the notion of non-circularity phase introduced in the scalar case, we first interpret the

specific case r = K introduced in [9] and referred to as most improper complex RVs z. Using [9, rel. (12)] and

([7, rel. (18)(19)] with K = I), it is straightforward to prove the following equivalences using the definitions

z̃
def
= [zT , zH ]T , w def

= [xT ,yT ]T , Rz̃
def
= E(z̃z̃H) and Rw

def
= E(wwT )

(i) the circularity spectrum is maximum, i.e., ρ1 = ρ2 = ... = ρK = 1

(ii) rank(Rz̃) = K (i.e., z̃ belongs to a K-dimensional subspace of C2K),

(iii) rank(Rw) = K (i.e., w belongs to a K-dimensional subspace of R2K),

(iv) there exists a square root R1/2
z of Rz such that R′

z = R
1/2
z R

∗/2
z ,

(v) there exist square roots R
1/2
x and R

1/2
y of Rx and Ry respectively, such that Rx,y = R

1/2
x R

1/2
y .

2Note that the expression
(σ2

x+σ2
y)−

√
(σ2

x+σ2
y)

2−4σ2
xσ2

y(1−ρ2co)

2
of this distance as a function of the correlation coefficient ρco given

by the minimum eigenvalue of Rw is much involved.
3Note that the coherence matrix M depends on the specific square root R

1/2
z of Rz , unique only if it is imposed to be positive

definite Hermitian, in contrast to the circularity coefficients (ρ1, ..., ρK) which are always unique [6, th.2].
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By analogy with the scalar case, we propose to call rectilinear such complex multidimensional RVs z whose

circularity spectrum is maximum. Note that if the components (z1, ...., zK) of z are all rectilinear, there are K

linear relations yk = tan(ϕzk)xk, (k = 1, ..,K) between the components of w, consequently rank(Rw) = K

and z is rectilinear4. But the converse is not true: if z is rectilinear, its components (zk)k=1,..,K need not have

maximum circularity coefficients ρzk . For example, let z = (z1, z2)
T where z1 is circular and z2 = x2 + iy2

with x2 = ax1 and y2 = y1. z is rectilinear because w belongs to a 2-dimensional subspace of R4 but the

circularity coefficients of z1 and z2 are ρz1 = 0 and ρz2 =
|a2−1|
a2+1 .

To extend to the multidimensional case, the non-circularity phase ϕ defined in the scalar case by (1), we

propose a definition based on the K-dimensional orthogonal regression subspace of (x1, ..., xK , y1, ..., yK)

which is the support of w for a maximum circularity spectrum. The canonical angles (ϕ1, ϕ2, .., ϕK2) between

this subspace and each of the K hyperspaces (yk = 0)k=1,...,K of R2K satisfy this aim. However, two

questions remain open. First, how to extend the expression (2) of the mean square orthogonal distance to

this K-dimensional orthogonal regression subspace given in Result 2? Second, can on prove that the parameter

(ρ,ϕ,Rz) with ϕ
def
= (ϕ1, ϕ2, .., ϕK2)T makes up a one to one parametrization of (Rz,R

′
z)?

III. ASYMPTOTIC DISTRIBUTION OF THE CIRCULARITY SPECTRUM ESTIMATE

Let us consider the estimation of the circularity spectrum ρ from T independent identically distributed

realizations (zt)t=1,..,T . The scalar and multidimensional cases are distinguished for the ease of the reader

although the derivation mainly follows the same lines.

A. Scalar complex random variable

In the scalar-valued case, the following result is proved in the Appendix.

Result 3: When zt is Gaussian distributed, the maximum likelihood (ML) estimate (ρ̂T , ϕ̂T ) of (ρ, ϕ) is

given by
(

|
∑T

t=1 z
2
t |∑T

t=1 |zt|2
, 12Arg(

∑T
t=1 z

2
t∑T

t=1 |zt|2
)
)

. Furthermore, when zt is arbitrarily distributed with ρ < 1, the sequence
√
T (ρ̂T − ρ) converges in distribution to the zero-mean Gaussian distribution of variance

cρ = 1− 2ρ2 + ρ4 + ρ2κ+
κ

2
+

ρ2ℜ(κ′)
2

− 2ρ2ℜ(κ′′) if cρ ̸= 0, (3)

where κ, κ′ and κ′′ are the normalized-like cumulants Cum(z,z,z∗,z∗)
(E(|z|2))2 , Cum(z,z,z,z)

(E(z2))2 and Cum(z,z,z,z∗)
E(|z|2)E(z2) respectively

which are invariant to any rotation of the distribution of z.

Note that the variance cρ of the asymptotic distribution of ρ̂T is a decreasing function 1 − 2ρ2 + ρ4 of ρ

when zt is Gaussian distributed (κ = κ′ = κ′′ = 0). Furthermore, note that cρ ≤ 1−2ρ2+ρ4 is not valid for an

arbitrary distribution of z (in other words, the Gaussian case is not a worst case for the estimation of ρ). To be

4Note that the components (zk)k=1,..,K of z do not need to be uncorrelated as it is usually assumed in DOA estimation of non-circular
sources (see e.g., [13], [11], [12]).
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convinced, consider z def
= reiα where r and α are respectively Bernoulli (p) and uniform on [0, 2π) independent

RVs. In this case, z is zero-mean and circular to the second-order (i.e., ρ = 0) and E(|z|4) = E(|z|2) = p.

Consequently κ = E(|z|4)−2(E(|z|2))2−|E(z2)|2
(E(|z|2))2 = 1

p − 2 and c0 = 1 + κ
2 = 1

2p > 1− 2ρ2 + ρ4|ρ=0 for p < 1
2 .

In the particular case of rectilinear RVs for which ρ = 1, we have zt = rte
iϕ with rt is a real-valued RV

and with ϕ fixed. Consequently, the circularity coefficient and the non-circularity phase are perfectly estimated,

i.e., ρ̂T = 1 and ϕ̂T = ϕ. Besides in this case, κ = κ′ = κ′′ are real-valued and we check from (3) that cρ = 0

for arbitrary distribution. Furthermore, note that it is possible that cρ = 0 with ρ < 1 (such a situation will be

illustrated in subsection III-C). In this case, the sequence T (ρ̂T −ρ) converges in distribution [20, Th.B, p. 124]

to a Hermitian form rHΩr, where r a two dimensional zero-mean complex Gaussian RV, whose distribution

is defined by the right hand side of (7), and where our first order analysis does not allow one to specify the

matrix Ω.

B. Multidimensional complex random variable

In the multidimensional-valued case, the following result is proved in the Appendix.

Result 4: When zt is Gaussian distributed, the ML estimate ρ̂T of ρ = (ρ1, ρ2, ..., ρK)T is given by the

vector containing the K singular values of the empirical coherence matrix MT = R
−1/2
z,T R′

z,TR
−T/2
z,T where

Rz,T
def
= 1

T

∑T
t=1 ztz

H
t and R′

z,T
def
= 1

T

∑T
t=1 ztz

T
t . Furthermore, when zt is arbitrarily distributed and when the

circularity spectrum ρ has distinct elements, the sequence
√
T (ρ̂T −ρ) converges in distribution to a zero-mean

Gaussian distribution that extends Result 3, whose covariance is given by

Cρ = 2ℜ(AρCMAH
ρ +AρC

′
MAT

ρ ), (4)

where5 Aρ = 1
2(U ◦ U)H with U∆UT is the singular value decomposition (SVD) of the coherence matrix

M and CM and C′
M are the two covariance matrices of the asymptotic distribution of the estimated coherence

matrix MT given by (12).

C. Illustrative example

Consider the baseband signal associated with a BPSK modulation. We assume no frequency offset, a sampling

at the symbol rate and an inter-symbol interference of P symbol, i.e.,

zt =

P∑
i=0

hist−i with st ∈ {−1,+1} equiprobable and (st)t=1,2,.. independent.

Naturally the sequence st is rectilinear, but zt is no longer rectilinear, except for hi = aih0, i = 1, .., P with

ai real valued. We note that according to the values of (hi)i=0,..,P , the circularity coefficient ρ of zt can take

arbitrary values in [0, 1]. For example, zt becomes circular for
∑P

i=0 h
2
i = 0.

5A ◦B denotes the Kharti-Rao matrix product (which is a column-wise Kronecker product, see e.g., [17]).
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Regarding the values of the asymptotic variance cρ given by (3), we note that contrary to the Gaussian

distribution, ρ does not fix cρ. In particular cρ = 0 and cρ = 1 − 2ρ2 + ρ4 can be obtained for (hi)i=0,..,P as

roots of polynomials in (hi, h
∗
i )i=0,..,P . For example, for P = 1, it is straightforward to prove that

(h0, h1) =

(√
1 + ρ

2
, i

√
1− ρ

2

)
and (h0, h1) =

(
1

4

√
ρ+ i

√
1− ρ2,

1

4

√
ρ− i

√
1− ρ2

)
gives cρ = 0 and cρ = 1 − 2ρ2 + ρ4 respectively, for arbitrary ρ ∈ [0, 1]. Furthermore, we note that extensive

numerical simulations show that cρ is bounded above by its value associated with a Gaussian distribution, i.e.,

cρ ≤ 1− 2ρ2 + ρ4. (5)

This property seems valid for arbitrary channel impulse response (hi)i=0,..,P , but we have not succeeded to

prove it.

Through 500 realizations of a Rayleigh channel, Fig.1 validates (5) and consequently shows that the

asymptotic accuracy of the estimate ρ̂T is always better for BPSK than for Gaussian symbols and arbitrary

value of ρ ∈ [0, 1].

Fig.2 represents the asymptotic theoretical variance and empirical MSE of the estimate ρ̂T , as a function

of T independent observations zt after decimating the original sequence zt by a factor of P + 1, where P

is the memory of the simulated channel impulse response, for BPSK and Gaussian symbols for P = 1 and

ρ = 0.7. More precisely for Gaussian symbols, (h0, h1) = (0.921, 0.387i) with cρ = 0.260 and for BPSK

symbols (h0, h1) = (0.710, 0.492 + 0.502i), (h0, h1) = (0.887, 0.225 + 0.402i) and (h0, h1) = (0.921, 0.387i)

are associated with cρ = 0.260, cρ = 0.084 and cρ = 0 respectively. We see that the domain of validity of our

asymptotic analysis for cp ̸= 0 is very large (T > 100). Furthermore, we see that for cp = 0, the empirical

MSE varies in 1/T 2 in contrast to cp ̸= 0, for which the asymptotic theoretical variance is cρ/T .
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APPENDIX

Proof of Result 1

From the following expression of the circularity coefficient:

ρ =

√√√√(σx

σy
− σy

σx
)2

(σx

σy
+ σy

σx
)2

+ 4ρ2co
1

(σx

σy
+ σy

σx
)2
,

the first two bullets are straightforwardly proved.

For the third one, ρ2 = 1− 4(1−ρ2
co)

(σx
σy

+
σy

σx
)2

≥ ρ2co because σx

σy
+ σy

σx
≥ 2.

Proof of Result 2

The orthogonal regression line (see e.g., [18]) of the couple (x, y) is given by the line orthogonal to

the eigenvector u associated with the minimum eigenvalue λ of the covariance matrix Rw of w
def
= [x, y]T

and the mean square orthogonal distance E(d2) to this line is given by λ. To solve easily this problem, it

is convenient to work with the augmented vector z̃
def
= [z, z∗]T whose covariance matrix Rz̃ is related to

Rw by Rw = 1
2T

HRz̃T using z̃ =
√
2Tw, where T is the unitary matrix 1√

2

 1 i

1 −i

. Because the

minimum eigenvalue and the associated unit eigenvector of Rz̃ = σ2
z

 1 ρe2iϕ

ρe−2iϕ 1

 are λ = σ2
z(1 − ρ)

and u = i√
2
[eiϕ,−e−iϕ]T , the minimum eigenvalue and the associated unit eigenvector of Rw are 1

2λ and

THu = [− sinϕ, cosϕ]T⊥[cosϕ, sinϕ]T .

Proof of Result 3

When zt is Gaussian distributed, the log-likelihood function associated with (zt)t=1,..,T can be classically

written after dropping the constants as

L(ρ, ϕ, σ2
z) = −T

2

(
ln[Det(Rz̃)] + Tr(R−1

z̃ Rz̃,T )
)

(6)

with Rz̃,T
def
= 1

T

∑T
t=1 z̃tz̃

H
t , where the parameter (ρ, ϕ, σ2

z) is embedded in the covariance matrix Rz̃ . Due to the

structure

 (×) (⋄)

(⋄)∗ (×)∗

 of Rz̃ , the ML estimation of Rz̃ becomes a constrained optimization problem which

is not standard. But maximizing the log-likelihood (6) without any constraint on the Hermitian matrix Rz̃ reduces

to a standard maximization problem, whose solution is Rz̃,T . Because Rz̃,T =

 1
T

∑T
t=1 |zt|2

1
T

∑T
t=1 z

2
t

1
T

∑T
t=1 z

∗
t
2 1

T

∑T
t=1 |zt|2


is also structured as

 (×) (⋄)

(⋄)∗ (×)∗

, Rz̃,T is the ML estimate of Rz̃ . Using the invariance property of the

ML estimate implies that the ML estimate of (ρ, ϕ) is given by
(

|
∑T

t=1 z
2
t |∑T

t=1 |zt|2
, 12Arg(

∑T
t=1 z

2
t∑T

t=1 |zt|2
)
)

.

Deriving the asymptotic distribution of the empirical estimate ρ̂T when zt is arbitrarily distributed, relies on

May 22, 2016 DRAFT
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the standard central limit theorem6 applied to the independent identically distributed bidimensional complex

RVs

 rz,T

r′z,T

 with rz,T = 1
T

∑T
t=1 |z2t | and r′z,T = 1

T

∑T
t=1 z

2
t :

√
T

 rz,T − rz

r′z,T − r′z

 L→ NC

 0

0

 ,

 cr cr,r′

cr′,r cr′

 ,

 c′r c′r,r′

c′r′,r c′r′

 , (7)

where rz = E|z2t | = σ2
z , r′z = E(z2t ) = ρσ2

ze
i2ϕ and where

 cr cr,r′

cr′,r cr′

 and

 c′r c′r,r′

c′r′,r c′r′

 denote the

covariance and the complementary covariance matrices of the bidimensional RV (|z2t |, z2t )T . Using the identity

E(z1z2z3z4) = E(z1z2)E(z3z4) + E(z1z3)E(z2z4) + E(z1z4)E(z2z3) + Cum(z1, z2, z3, z4), (8)

we straightforwardly obtain cr cr,r′

cr′,r cr′

 = σ4
z

 1 + ρ2 + κ ρe−i2ϕ(2 + κ′′∗)

ρei2ϕ(2 + κ′′) 2 + κ

 (9)

 c′r c′r,r′

c′r′,r c′r′

 = σ4
z

 1 + ρ2 + κ ρei2ϕ(2 + κ′′)

ρei2ϕ(2 + κ′′) ρ2ei4ϕ(2 + κ′)

 . (10)

Then, considering the following mappings

(rz,T , r
′
z,T ) 7−→ mT =

r′z,T
rz,T

7−→ ρ̂T =
√

mTm∗
T ,

with their associated differentials

dm = − r′

r2
dr +

1

r
dr′ and dρ =

1

2ρ
(m∗dm+mdm∗) ,

the standard theorem of continuity (see e.g., [20, Th.A, p. 122]) on regular functions of asymptotically Gaussian

statistics applies. Consequently, we obtain the following convergence in distribution with m = r′z
rz

= ρei2ϕ

√
T (mT −m)

L→ NC(0, cm, c′m),

where

cm =
(

− r′z
r2z

1
rz

) cr cr,r′

cr′,r cr′

 − r′∗z
r2z
1
rz

 , c′m =
(

− r′z
r2z

1
rz

) c′r c′r,r′

c′r′,r c′r′

 − r′z
r2z
1
rz

 (11)

6 L→ means the convergence in distribution when T → ∞, while NR(m,C) and NC(m,C,C′) denote Gaussian real and complex
distribution with mean, covariance and complementary covariance are m, C and C′ respectively.
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and
√
T (ρ̂T − ρ)

L→ NR(0, cρ),

where cρ = 1
4ρ2

(
m∗ m

) cm c′m

c′m
∗ cm

∗

 m

m∗

 = 1
2 (cm + ℜ(c′me−4iϕ)). Inserting (9) and (10) into

expressions (11) of cm and c′m, (3) follows thanks to simple algebraic manipulations.

When z is replaced with zeiα with α fixed, using the multilinearity of Cum(z1, z2, z3, z4), the normalized-

like cumulants κ, κ′ and κ′′ are invariant, so cp as well, whereas the non-circularity phase ϕ is replaced by

ϕ+ α.

Proof of Result 4

The proof follows the same steps that for Result 3. When zt is Gaussian distributed, the log-likelihood

function L(ρ,ϕ,Rz) has form (6) and consequently Rz̃,T is the ML estimate of Rz̃ . Using the SVD of the

coherence matrix [21, 4.4.4] M = U∆UT = R
−1/2
z R′

zR
−T/2
z , the invariance property of the ML implies that

the ML estimate of ρ is given by the Kth vector diag(∆T ) containing the K singular values of the empirical

coherence matrix MT = R
−1/2
z,T R′

z,TR
−T/2
z,T .

Deriving the asymptotic distribution of the empirical estimate ρ̂T when zt is arbitrarily distributed is based

on the following mapping

(Rz,T ,R
′
z,T ) 7−→ MT

def
= R

−1/2
z,T R′

z,TR
−T/2
z,T = UT∆TU

T
T 7−→ ρ̂T

def
= diag(∆T ).

Thus, the first step consists in deriving the asymptotic distribution of (Rz,T ,R
′
z,T ) given by the standard central

limit theorem:

√
T
(
vec(Rz,T ,R

′
z,T )− vec(Rz,R

′
z)
) L→ NC

0,

 CR CR,R′

CR′,R CR′

 ,

 C′
R C′

R,R′

C′
R′,R C′

R′

 ,

where the expressions of the different covariance matrices are deduced from identity (8). For example

(CR)i+(j−1)K,k+(l−1)K = E(zt,iz
∗
t,jz

∗
t,kzt,l)− E(zt,iz

∗
t,j)E(z

∗
t,kzt,l)

= E(zt,iz
∗
t,k)E(z

∗
t,jzt,l) + E(zt,izt,l)E(z

∗
t,jz

∗
t,k) + Cum(zt,i, z

∗
t,j , z

∗
t,k, zt,l)

which gives CR = R∗
z ⊗Rz +K(R′

z ⊗R′
z
∗) +Qz where (Qz)i+(j−1)K,k+(l−1)K = Cum(zt,i, z

∗
t,j , z

∗
t,k, zt,l)

and where ⊗ denotes the standard Kronecker product of matrices and K the vec-permutation matrix which

transforms vec(C) to vec(CT ) for any square matrix C. The other covariance matrices are deduced in the same
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way (see e.g., [3]) and are given by

CR′ = Rz ⊗Rz +K(Rz ⊗Rz) +Q′
z

C′
R = CRK

C′
R′ = R′

z ⊗R′
z +K(R′

z ⊗R′
z) +Q′′

z

CR,R′ = CH
R′,R = R′

z
∗ ⊗Rz +K(Rz ⊗R′

z
∗
) +Q′′′

z

C′
R,R′ = C′T

R′,R = R′
z ⊗R∗

z +K(R′
z ⊗R∗

z) +Q′′′′
z

where (Q′
z)i+(j−1)K,k+(l−1)K = Cum(zt,i, zt,j , z

∗
t,k, z

∗
t,l), (Q′′

z)i+(j−1)K,k+(l−1)K = Cum(zt,i, zt,j , zt,k, zt,l),

(Q′′′
z )i+(j−1)K,k+(l−1)K = Cum(zt,i, z

∗
t,j , z

∗
t,k, z

∗
t,l) and (Q′′′′

z )i+(j−1)K,k+(l−1)K = Cum(zt,i, z
∗
t,j , zt,k, zt,l).

With the differential of the mapping (Rz,T ,R
′
z,T ) 7−→ MT = R

−1/2
z,T R′

z,TR
−T/2
z,T

vec(dM) = −
(
(R−1/2

z R′T
z ⊗ I) + (I⊗R−1/2

z R′
z)
)(

(R−T/2
z ⊗ I) + (I⊗R−1/2

z )
)−1

(R−T
z ⊗R−1

z )vec(dRz)

+ (R−T/2
z ⊗R−1/2

z )vec(dR′
z)

def
= Arvec(d(Rz) +Ar′vec(dR

′
z),

we obtain the following convergence in distribution by the standard theorem of continuity (see e.g., [20, Th.A,

p. 122])
√
T (vec(MT )− vec(M))

L→ NC(0,CM ,C′
M ), (12)

where CM = ArCRA
H
r +ArCR,R′AH

r′ +Ar′CR′RA
H
r +Ar′CR′AH

r′ and C′
M = ArC

′
RA

T
r +ArC

′
R,R′AT

r′ +

Ar′C
′
R′RA

T
r +Ar′C

′
R′AT

r′ .

Finally, consider the mapping MT 7−→ ρ̂T = diag(∆T ). Noting that the eigenvalues of MTM
H
T are the

squares of the singular values of MT , the differential of the simple eigenvalues of MTM
H
T gives (see e.g.,

[22, th.8, ch.9])

d(ρ2k) = uH
k d(MMH)uk (13)

where uk denotes the left singular vector of M associated with the singular value ρk. Using MHuk = ρku
∗
k,

(13) gives dρk = 1
2

(
uH
k dMu∗

k + uT
k dM

Hu∗
k

)
, and more compactly

dρ =
1

2

(
(U ◦U)Hvec(dM) + (U ◦U)Tvec(dM∗)

) def
= Aρvec(dM) +A∗

ρvec(dM
∗).

Consequently, the covariance matrix of the asymptotic Gaussian distribution of ρ̂T is given by (4).
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