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On the Dispersive Nature of the Power Dissipated
into a Lossy Half-Space Close to a Radiating

Source
Andrea Cozza,Member, IEEE, and Benoît Derat,Member, IEEE

Abstract— In this paper, we study how the power dissipated
into a lossy medium excited by a nearby antenna is affected
by drifts in the electrical parameters of the lossy medium.
The statistical distribution of the sensitivity of the dissipated
power is determined by means of a spectral analysis of the
transmission of electromagnetic energy from air into the lossy
half-space. A clear link is drawn between the reactive content
of the field excited by the source and the dispersiveness of the
sensitivity. The case of a stratified structure is also addressed,
by defining a modification factor representing the alteration of
the transmissivity and of its sensitivity when a buffer layer is
introduced. All of the results provided point out that, in general,
the sensitivity of the total amount of power dissipated intothe
half-space cannot be predicted independently from a precise
knowledge of the source characteristics, unless under a paraxial
propagation approximation or in a far-field configuration.

Index Terms— Antennas, Lossy Media, Near Field, Plane-
Wave Spectrum, Sensitivity Analysis, Specific Absorption Rate,
Stratified Media.

I. I NTRODUCTION

In many practical configurations antennas stand near to
a lossy half-space; an example of historical importance is
that of radiating sources placed over a lossy soil [1]. Many
other applications involve a similar scenario: radio-frequency
hyperthermia [2] and Specific Absorption-Rate (SAR) assess-
ment [3] are but two examples. All of these configurations
share a common concern, that of being able to estimate the
amount of power that will be dissipated into the lossy medium.
In the context of the present discussion, we will refer to
the concept of Total Dissipate Power (TDP). Depending on
the actual application, the TDP needs to be maximized or
minimized, but all the same its value closely depends on the
electrical properties of the concerned medium, namely the
electric conductivityσ and the relative permittivityǫr. The
basic need of a proper estimation of these parameters thus
appears as a potential difficulty in the computation of the
TDP; hence, it is fundamental to investigate how the TDP
can be affected by a variation of the electrical parameters of
the medium, be that due to a drift in time or rather to an
uncertainty in their knowledge.

The primary aim of this paper is twofold: 1) to provide
a model capable of predicting the sensitivity of the TDP
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Fig. 1. The planar configuration used for the spectral analysis.

with respect to the lossy half-space characteristics for a given
source and 2) to prove that the TDP sensitivity is statistically
dispersed with respect to the characteristics of the source,
hence leading to a non-negligible uncertainty. In particular, in
the context of SAR assessment, available sensitivity analyses
are very limited in scope, addressing such canonic sources
as dipoles [4] and normally impinging plane waves, which
are not always representative of actual ones. Although the
proposed approach is based on a closed-form analysis, the
results presented here do not assume a far-field configuration
for the radiation source, which is a key point for their practical
use.

II. T RANSMISSION THROUGH DIELECTRIC INTERFACES

The scenario here considered is briefly depicted in Fig. 1. A
planar interfaceΣ0 separates two half-spaces, one containing
a radiating antenna and the other one a lossy homogeneous
dielectric. The first half-space is assumed to be air, but any
other non-magnetic medium could be considered, whereas
the second one is characterized by the electric parametersσ
and ǫr, which can be summed up by means of the complex
permittivity ǫ̃ = ǫr − jσ/(ωǫ0).

Rather than working in the space domain, it is convenient
to introduce a Plane-Wave Expansion (PWE), which allows
to represent the electric field distribution over a plane as a
superposition of plane waves or Plane-Wave Spectrum (PWS).
Considering the electric fieldE(R) over a plane, its PWS
Ê(K) is defined as [5]:

Ê(K, 0) =

∫

Σ0

E(R, 0)ejK·RdR , (1)

whereR = xx̂ + yŷ spans the entire field topography over
the planeΣ0 and K = kxx̂ + ky ŷ is the spectral variable;
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hereafter, capital hatted quantities will stand for PWSs. The
rationale for this approach is that in the spectral domain it
is much easier to represent the propagation of complex field
topographies through stratified media. The PWS over planes
at other distancesz at the right ofΣ0 can be easily computed
introducing the propagatorP (K, z) = exp(−jkzz):

Ê(K, z) = Ê(K, 0)P (K, z) , (2)

with kz =
√

k2 − ‖K‖2 as the longitudinal propagation
constant, andk the propagation constant for the considered
medium. The norms used throughout this work are to be
intended asL2 norms applied to complex vectors, unless
explicitly declared otherwise.

The PWE formalism can be defined just over the tangential
components of the vectors involved; for this reason, we will
decompose the electric field PWS as

Ê = Ê
‖ + Êz ẑ , (3)

having defined the tangential part of the PWS asÊ
‖ =

Êxx̂ + Êy ŷ. The overall PWSÊ can be derived by recalling
that Gauss law in a homogeneous medium in absence of local
sources reads ask · Ê = 0, i.e.,

Êz = −K · Ê‖

kz
, (4)

where k = K + kz ẑ is the propagation vector for a plane
wave. Thus, (3) can be recast as

Ê =







1 0
0 1

−kx

kz
−ky

kz






Ê

‖ = TÊ
‖ . (5)

Let us now consider the interfaceΣ0: for each plane wave
impinging from the left side, there will be a transmitted plane
wave. Imposing the continuity of the tangential componentsof
the electric field through the air-dielectric interface, the PWS
Ê

‖
inc(K) of the incident electric field overΣ−

0 (i.e., on the air
side) and the PWŜE‖

tx(K) of the field overΣ+
0 (on the right

side) are related by [5]:

Ê
‖
tx(K) = Π0(K)Ê

‖
inc(K) , (6)

whereΠ0(K) is the spectral transmission operator for a planar
interface, as recalled in Appendix I. Hereafter, theR andK-
dependency of, respectively, the spatial and spectral functions
will be omitted most of the time for the sake of simplicity.

The TDP is related to the transmitted field by

TDP = σ

∫

Ω

‖Etx(R, z)‖2dV , (7)

where Ω is the volume occupied by the lossy half-space.
Thanks to Parseval theorem (as applied overΣ+

0 ), we can state
that

TDP = σ

∫ ‖Êtx‖2

−2Im {kz}
dK . (8)

We will now introduce the only two major assumptions used
throughout this work: 1) the spatial bandwidthkBW of the
electric field PWS, satisfies the conditionkBW . k0|χ|, where
χ =

√
ǫ̃ is the dielectric contrast of the lossy medium and 2)

the medium can be described as a lossy dielectric, i.e.,σ ≪
ωǫ0ǫr. The first requirement is necessary so that the propagator
modulus|P (K, z)| be almost flat over the entire bandwidth of
the source PWS, allowing the approximationkz ≃ k0χ; the
second assumption is needed in order to simplify the final
results, although closed-form expressions could be given even
in a more general case. Under such conditions, (8) becomes

TDP ≃
√

ǫr

ζ

∫

‖Êtx‖2dK =

√
ǫr

ζ
E . (9)

whereζ is the free-space wave impedance, and having defined
as in signal analysis thesignal energy E = ‖Etx(R)‖2

L2 as the
square of theL2 norm of the field distribution overΣ+

0 .
A major issue in this approach is that whenever the dielectric

interface is in the near-field region of the source, coupling
mechanisms will likely ensue. For a given distanced between
the source and the half-space, the field impinging on the
dielectric interface may differ from the one that would be mea-
sured at the same distance in a free-space configuration. These
phenomena notwithstanding, the approach here proposed can
also be applied to near-field configurations, without any loss
of generality. Indeed, the coupling between one source and
a passive scatterer can be regarded as given by an infinite
series of separate interactions. This can be referred to as the
multiple-interaction paradigm, and it has been applied, among
other scenarios, in the definition of probe-correction models
for near-field measurement techniques [6].

The basic idea is that the time-domain evolution of the
coupling is naturally represented through a series of simple
interactions, that can be divided into scattering, transmitting
and receiving events. The actual fieldÊ

‖
inc impinging over the

half-space is thus generally not the one that would be radiated
in a free-space configuration, e.g. in a far-field scenario,
but rather the superposition of all the multiple-interaction
contributions, i.e. the steady-state field including the actual
coupling. This approach is completely general, with the far-
field scenario as a special case.

III. SENSITIVITY ANALYSIS

We proceed by deriving a sensitivity model for the TDP, as
discussed in Section III-A.A; subsequently, this model will be
used in order to investigate how the TDP sensitivity is linked to
the PWS of the source (and ultimately to the field it radiates),
proving in Section III-B.B that for a given configuration the
sensitivity is, in general, not a deterministic value, but rather
a random variable.

A. Perturbation model

The sensitivity of the TDP to variations ofǫ̃ can be assessed
by applying a perturbation approach to the transmission equa-
tion (6). While a perturbation of̃ǫ has a direct impact on the
TDP, it will have a higher-order effect on the reflectivity of
the medium interface, as seen from free-space. In other words,
it will be hardly noticed by the source: it will be shown in
Section VI that this idea is viable, as long as the dielectric
contrast|χ| stays high. This conclusion is intuitively justified
by the fact that the fundamental quantity in source-half-space
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interactions is the dielectric contrast between the two media,
which is negligibly affected by the lossy medium perturbation;
this phenomenon was already pointed out in [7]. Therefore, it
will be assumed that the total incident electric fieldEinc(R)
fulfills the condition‖∂Einc/∂ǫ̃‖ ≪ ‖∂Etx/∂ǫ̃‖.

The second order Taylor expansion of (9) with respect to
the complex dielectric permittivitỹǫ reads:

δTDP

TDP
=

δE
E +

δ
√

ǫr√
ǫr

+
δ2E
2E +

δ2√ǫr

2
√

ǫr
+

δ
√

ǫr√
ǫr

δE
E . (10)

with:

δ
√

ǫr√
ǫr

=
1

2

δǫr

ǫr
(11)

δ2√ǫr√
ǫr

= − 1

4ǫr

δǫr

ǫr
(12)

The TDP sensitivity depends onδE/E andδǫr/ǫr sensitivity
terms; since the latter are trivial, we will focus our analysis
on the former. Moreover, in the subsequent statistical analysis
of the sensitivity,δǫr/ǫr introduces a mere offset, without
accounting for the statistical dispersion of the TDP sensitivity.

We will detail here the proposed analysis method for the
first-order termδE/E , the second-order being derived fun-
damentally in the same way. Knowing that the first-order
differential of the norm of a complex vectorv is related to
the differential of a complex variablep by

d‖v(p)‖2 = 2Re

{

v
H ∂v

∂p
dp

}

, (13)

where the apexH stands for the Hermitian transpose, we can
write:

δE = 2Re

{

δǫ̃

∫

Ê
H
tx

∂Êtx

∂ǫ̃
dK

}

. (14)

Using (5) and (6), together with the hypothesis of a weakly
sensitive source, the following quadratic form is obtained:

δE = 2Re

{

δǫ̃

∫

Ê
‖H
tx D1Ê

‖
txdK

}

, (15)

having defined matrixD1 as follows:

D1 = T
H
D

′
1 (16)

D
′
1 =

∂T

∂ǫ̃
+ T

∂Π0

∂ǫ̃
Π

−1
0 . (17)

A great part of the results dealing with the sensitivity willbe
expressed as functions of the transmitted PWS. The rationale
for this choice is that the PWS ofEtx is more regular
than the one in air, so that its envelope is more easily
described and reproduced. This is important for the subsequent
statistical analysis. Moreover, the mathematical analysis is also
simplified thanks to this formalism, since the properties ofthe
different operators are more readily applicable. In any case, the
results are not affected by this choice, since the PWSÊinc and
Êtx are biunivocally related through the transmission operator.

All the derivatives involving the transmission matrices are
reported in Appendix I. It is sensible to define the operator

S : C2×2 → C, hereafter referred to as the sensitivity operator:

S(A) =

∫

Ê
‖H
tx A Ê

‖
txdK

∫

∥

∥

∥
TÊ

‖
tx

∥

∥

∥

2

dK

. (18)

Therefore, we can now provide the following fundamental
result:

δE
E = 2Re {S(D1)δǫ̃} . (19)

This formulation has the advantage of pointing out the fact
that the sensitivity is of course dependent on the PWS of the
excitation, but that in fact its behavior is controlled by a kernel,
modeled through the matrixD1, that is common to every
source. In other words,D1 represents the transfer function
between the PWS of the impinging wave and the sensitivity
that its components will experience while being transmitted
into the lossy medium.

The development applied to the linear term can also be
applied to the quadratic term in (10), the only difference
being that it is now necessary to consider the second-order
differential of the norm of a vectorv:

d2‖v‖2 = 2

∥

∥

∥

∥

∂v

∂p
dp

∥

∥

∥

∥

2

+ 2Re

{

v
H ∂2

v

∂p2
(dp)2

}

, (20)

hence

δ2E
2E = Re

{

(δǫ̃)2S(D2)
}

+ |δǫ̃|2S(D3) , (21)

having introduced the following matrices:

D2 = T
H

(

∂2
T

∂ǫ̃2
+ T

∂2
Π0

∂ǫ̃2
Π

−1
0 +

+ 2
∂T

∂ǫ̃

∂Π0

∂ǫ̃
Π

−1
0

)

(22)

D3 = D
′H
1 D

′
1 . (23)

The model thus derived allows computing the TDP sensi-
tivity for a given source, just requiring as an input the PWS
of the field impinging on the lossy half-space. An interesting
by-product of the proposed analysis is that the frequency
dependency of the TDP sensitivity is dominated by the term
δǫ̃ = δǫr − jδσ/(ωǫ0), as seen in (19) and (21). The fact
that this term contains a1/f associated to the electrical
conductivity term means that any model approximating it
through a polynomial expansion is bound to need high-order
terms. This is actually the case, as proved by the choice made
in [4], where a third-order frequency polynomial had been
necessary. The proposed representation, being derived from a
physical analysis, thus leads to a more effective definitionof
the sensitivity.

B. Statistical analysis

The previous results can be used for investigating the
following problem: how does the TDP sensitivity depend on
the PWS of the source? We will here describe the PWSÊ

‖
tx

as a stationary random process and study how the energy
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Fig. 2. Eigenvalues of the Hermitian and skew-Hermitian parts of operator
D1 associated to the linear sensitivity term, at 0.9 GHz (solidline), 2.5 GHz
(dash line) and 6 GHz (dotted line). The results here shown regard the cut
ky = 0.

sensitivity δE/E is statistically distributed as a consequence
of the randomness of the source PWS.

This problem can be solved easily by means of (18), since
all the quantities involved can be computed directly without
any need of actual simulations or measurements. Nevertheless,
(18) requires to impose a certain PWS distribution; it is
possible to prove that the sensitivity actually depends just
on the envelope of the PWS, since (18) involves quadratic
expressions [8] (see Appendix II). For this reason, the energy-
normalized spectrum envelopew(K) will be considered, as
defined by:

w(K) =
‖Ê‖

tx‖2

∫

‖Ê‖
tx‖2dK

. (24)

In the context of a statistical analysis, the sensitivity oper-
ator defined in (18) can be evaluated directly; the focus will
be put on studying the first two statistical moments of the
sensitivity for a given PWS energy-density spectrum〈w(K)〉.
Since all the quantities in (19) and (21) are deterministic but
for the sensitivity operator, the statistical analysis will focus
on this last term.

In particular, the following approximation holds (see Ap-
pendix II) as long as the spatial bandwidthkBW of the
normalized energy-density spectrum〈w(K)〉 of the average
source is smaller thank0|χ|:

〈S(A)〉 ≃
∫

[

λ̄H(K) + λ̄S(K)
]

〈w(K)〉dK , (25)

where λ̄H and λ̄S are the arithmetic means of, respectively,
the eigenvalues of the Hermitian and the skew-Hermitian parts
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of matrix A, where this last stands for any of the derivative
operatorsDi. This result is noteworthy, since it states that the
average of the sensitivity over all the possible sources depends
exclusively on the properties of the lossy medium and the
average spectral content of the source.

The dispersion of the TDP sensitivity around its average can
be assessed by studying the eigenvalues of the three derivative
operatorsDi. Indeed:

∫

min λHwdK ≤ S(AH) ≤
∫

maxλHwdK (26)
∫

min λSwdK ≤ S(AS) ≤
∫

maxλSwdK , (27)

so that, the distance between the eigenvalue pairs is a direct
measure of the dispersive nature of the sensitivity.

In order to test these ideas, we will hereafter consider a
planar SAR assessment configuration as a practical applica-
tion, since it is an interesting example of high-contrast lossy
configuration; the nominal electrical parameters of the lossy
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Freq. (GHz) ǫr σ (S/m) |χ|

0.9 41.5 0.97 6.77
2.5 39.2 1.8 6.42
6 36.2 4.45 6.23

TABLE I

THE ELECTRICAL CHARACTERISTICS OF TISSUE-EQUIVALENT LIQUIDS

FOR SAR ASSESSMENT CONFIGURATIONS, AS SET IN [9].

medium are thus imposed by international standards, such
as [9], and are reported in Table I.

Therefore, the associated eigenvalues are shown in Fig. 2
and 3, as computed for the three half-space configurations of
Table I. The spectral variable was normalized with respect to
the free-space wave-numberk0. MatricesD1 andD2 were ex-
panded into their Hermitian and skew-Hermitian components,
as explained in Appendix II, whereasD3 is already Hermitian.

Figures 2 and 3 show that each pair of eigenvalues coincides
around the originK = 0, i.e., for normal paraxial incidence.
The L2-integrable discontinuities aroundk0 are due to the
branch singularity in the spectrum of Green’s function [10];
a similar behavior is present aroundk0|χ|, fundamentally
due to the same phenomena, but mitigated by losses. Con-
versely, it can be noticed that the distance between each pair
of eigenvalues widens with the time and space frequency.
This trend gets much stronger when getting beyondk0, i.e.,
when considering reactive components of the source PWS.
More specifically, the skew-Hermitian components present an
increased distance with respect to the purely Hermitian ones
for a givenK. Looking at (19), the skew-Hermitian component
operates over the variations in the conductivityσ: this means
that the reactive components of the source PWS will be
affected in a more variable way in response to variations
of the conductivity than equal-strength modifications of the
permittivity. These simple conclusions already show that the
sensitivity will present an higher degree of variability for near-
field sources, richer in reactive energy, than far-field ones,
where no reactive component is available; this is coherent with
the common-sense perception that the TDP sensitivity is not
dispersed for a far-field configuration.

In order to assess these findings, the sensitivity operators
were studied in several ways: 1) equation (25) was used for
assessing the average sensitivity, 2) a deterministic estimate
was given assuming a paraxial propagation, thus considering
the approximationS(D)(K) ≃ S(D)(0); and finally 3) equa-
tion (18) was directly evaluated by considering a population of
ten thousand random realizations for the transmitted PWS. For
this last case, we considered a Gaussian energy-density spec-
trum with a−3 dB bandwidthkBW = k0, with a zero-mean
Gaussian distribution. This choice is justified in the context of
SAR assessment tests for telecommunications, where sources
are usually not highly directive. Table II shows the resultsof
this analysis. It turns out that the paraxial approximationis not
very effective when compared to (25); nevertheless, it allows
to introduce a very simple model for the average sensitivity, as

D1H jD1S D2H jD2S D3

〈S〉 −94 38 3.6 −3.9 1.0

0.9 GHz
eq. (25) −94 41 3.6 −4.1 1.1
paraxial −88 38 3.3 −3.7 0.91
〈S2〉 9.2 3.8 0.36 0.38 0.10

〈S〉 −113 36 5.7 −4.2 1.4

2.5 GHz
eq. (25) −108 34 5.5 −4.0 1.3
paraxial −100 31 4.9 −3.4 1.1
〈S2〉 11.0 3.4 0.53 0.39 0.13

〈S〉 −113 39 −5.8 4.8 1.5

6.0 GHz
eq. (25) −114 40 −5.9 4.9 1.5
paraxial −106 36 −5.4 4.3 1.3
〈S2〉 11 3.9 0.58 0.47 0.14

TABLE II

SENSITIVITY OPERATORS FOR AGAUSSIAN-ENVELOPEPWS,WITH

BANDWIDTH k0 . ALL THE RESULTS MUST BE MULTIPLIED BY A FACTOR

10−4 .

reported in Section VI. Much worse is the fact that the paraxial
approximation fails to acknowledge the intrinsic variability of
the sensitivity with respect to the source PWS; the sensitivity
is indeed collapsed into a deterministic value, rather thana
statistical distribution.

Statistical distributions for the five operators are shown
in Fig. 4 for the same Gaussian PWS envelope, but for a
changing spectral bandwidthkBW, for a frequency of 6 GHz.
It appears that the casekBW = k0/2, i.e., with very little
reactive components, is indeed well described by the paraxial
approximation; but as soon as the reactive content increases,
the sensitivity moves away and spreads. This trend is in
accordance with the results presented in Fig. 2 and 3 and the
previous considerations about the distance between the eigen-
values. It is therefore not possible to neglect the variability of
the sensitivity due to the source characteristics. The spread is
quantified in Table II forkBW = k0, showing that considering
a 95 % margin of confidence implies an uncertainty of±20 %
for the sensitivity, approximating the distributions as Gaussian
ones.

IV. I NCLUDING THE PRESENCE OF BUFFER LAYERS

In many practical cases the lossy dielectric may not face
directly the air half-space, but buffer layers of complex dielec-
tric permittivity ǫ̃si and thicknesssi are interposed between
the two half-spaces, fori ∈ [1, Nb] whereNb is the number
of buffer layers. Although the previous model was developed
under a half-space assumption, it can be promptly extended to
a stratified configuration; in the following discussion, we will
assume that all the media have negligible losses with respect
to the inner medium. Therefore, for the sake of computing the
TDP, the only important quantity is the PWŜE‖

tx of the field
transmitted into the lossy dielectric. This can be computed
directly in the case of a stratified structure, by cascading the
relationships reported in Appendix I. In order to simplify the
notations, hereafter all of the quantities related to the electric
field will refer to the tangential component.
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Fig. 4. Statistical distributions of the sensitivity operators for the Hermitian
and skew-Hermitian components of the three derivative matrices Di, as
computed for a Gaussian-distributed PWS with a Gaussian-envelope energy-
density function with−3 dB spatial bandwidthkBW/k0 equal to 0.5, 1 and
2. The working frequency is 6 GHz and the lossy medium is specified in
Table I.
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Fig. 5. A stratified configuration with a lossless buffer layer of thicknesss.

In this Section we first investigate how the presence of a
buffer layer affects the TDP, in particular by extending the
analysis of the role of the reactive energy of the source. Then,
we focus on the modification of the TDP sensitivity.

A. Impact on the TDP

The PWSÊtx of the field transmitted into the lossy medium
can be regarded as having been generated in a configuration
involving just two media, i.e., the right half-space made of
the lossy dielectric and the left one in air, as in the original
description. To this end, an equivalent source needs to be
introduced, much in the same way as for a Thevenin equivalent
circuit. For the case of a single additional layer as depicted in
Fig. 5, we can write:

Êtx = Π2R
−1

Π1e
−jkzss

Êinc , (28)

with
R = 1 + e−2jkzss

Γ1Γ2 . (29)

Matrices Γ1 and Γ2 are the reflection matrices at the two
dielectric interfaces, as given in Appendix I, whereaskz0 and
kzs are the longitudinal propagation constants for, respectively,
the free-space and the shell media.

The PWS transmitted in the non-stratified configuration was
given by (6):

Êtx = Π0Êince
−jkz0s . (30)

By comparing (28) and (30), it is possible to define an
equivalent PWSÊeq impinging from the air side (with no
shell) as :

Êtx = Π0Êeqe
−jkz0s = Π0ΞÊince

−jkz0s , (31)

having introduced the correction matrixΞ

Ξ = Π
−1
0 Π2R

−1
Π1e

−j(kz2−kz0)s . (32)

Under a weakly-sensitive source assumption, the impact of the
shell on the TDP can be assessed by computing the ratio of the
signal energyEs for the shell configuration and the original
one E0, that are related to the definition of the TDP given
in (9), while expressing all the spectral quantities as functions
of the transmitted PWS:

TDPs

TDP0
=

Es

E0
=

‖Π0ΞΠ
−1
0 Etx,0‖2

L2

‖Etx,0‖2
L2

, (33)
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Fig. 6. The norm of matrixΞ for a 2 mm thick buffer withǫs = 4. The
inner lossy dielectric are tissue-equivalent liquids as described in Table I.

whereEtx,0 is the PWS transmitted with no shell present. The
previous expression can be bound as

Es

E0
≤
∫

‖Π0ΞΠ
−1
0 ‖2w(K)dK . (34)

This formulation can be usefully employed in assessing the
overall effect of a buffer layer on the TDP. Indeed, the matrix
Π0ΞΠ

−1
0 accounts for the modification of the transmissivity

of the PWS from the air side to the lossy medium in the
presence of a buffer layer; again, its effect is weighted by the
energy-normalized spectrumw(K).

The norm ofΞ is related to

‖Ξ‖ ≤ ‖Π1‖‖Π2‖‖R−1‖ ; (35)

the first two norms are bound to have a finite value, due to
their physical meaning: they account for the transmissivity. On
the other hand,‖R−1‖ may be unbounded, since it represents
standing-wave phenomena. This can lead to a strong increase
in the TDP as soon as a resonance can be physically instated
inside the shell region.

An example of the behavior of‖Π0ΞΠ
−1
0 ‖ is given in

Fig. 6, for the case of SAR tissue-equivalent liquids with
a shell 2 mm thick, with a relative permittivityǫs = 4.
These results clearly prove that the TDP is indeed modified
by the presence of the buffer, especially (as expected) at
those frequencies where its thickness is comparable with
the wavelength. These conclusions support and complete the
findings reported in [12], [13].

Fig. 6 shows that the shell affects the TDP in two ways: 1) in
the visible region (with respect to air), the shell operatesas an
impedance transformer, providing a better matching between
the wave-impedances in air and in the lossy dielectric; 2) in
the reactive region, it allows the transmission of more reactive
energy (‖K‖ > k0) if 1 < ǫs < ǫr, since it behaves as a
lens focusing PWS components towards the direction normal
to the dielectric interfaces. It is this last phenomenon that
gives the strongest contribution to the TDP modification. As
a consequence, modification of the reactive part may have a
non negligible effect on the topography of the electric field
inside the lossy medium.

As in the case treated in Section III-B.B, the impact of
a shell on the TDP depends on the reactive content of the
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Fig. 7. Statistical distributions of the modification factor Es/E0 for the TDP,
due to the presence of a dielectric shell for a 6 GHz SAR configuration.

impinging PWS. This same approach yields the results shown
in Fig. 7 : although the average modification of the TDP
is not strongly affected, the more reactive the source, the
more statistically dispersed is the TDP. It is fundamental to
bear in mind that the scenario here considered presents a
perfect knowledge of the electrical characteristics of thelossy
medium.

The effectiveness of the bound given in (34) is proven in
Table III, where for the 6 GHz configuration, withkBW =
k0, the maximum modification of 1.41 well represents the
dispersiveness shown in Figure 7.

B. Impact on the TDP sensitivity

The equivalent-source approach can now be applied to
derive the sensitivity of the TDP in the stratified configuration,
yielding

∂Êtx

∂ǫ̃
=

∂Π2

∂ǫ̃
R

−1
Π1e

−jkzss
Êinc +

− Π2e
−jkzss

R
−1

Γ1
∂Γ2

∂ǫ̃
R

−1e−2jkzss
Π1Êinc .(36)

As shown in Section VI, the sensitivity of the reflection
matrices is one order of magnitude smaller than that of the
transmission ones. Hence, we can claim that:

∂Êtx

∂ǫ̃
≃ ∂Π2

∂ǫ̃
R

−1
Π1e

−jkzss
Êinc . (37)

Comparing this result to the sensitivity obtained in the first
place with no buffer yields:

∂Êtx

∂ǫ̃
≃ ∂Π0

∂ǫ̃
Ξ

′
Êince

−jkzss , (38)

where

Ξ
′ =

(

∂Π0

∂ǫ̃

)−1
∂Π2

∂ǫ̃
R

−1
Π1e

−j(kz2−kz0)s . (39)

Plugging (31) and (38) into (14) provides a tool for com-
puting the new linear sensitivities as in the case with no shell.
The fundamental quantity that dominates the modification of
the sensitivities is the product of the norms of the two matrices
Ξ and Ξ

′. An example of the spectral behaviour of‖Ξ′‖ is
shown in Fig. 8: as opposed to the modification of the TDP, the
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norm of the first derivative of the transmitted PWS is generally
not strongly affected when compared to the case with no shell,
especially for sources with a poor reactive content. Again,the
statistical distributions related to the source PWS have been
computed and are shown in Fig. 9. These results give a better
insight into the modification of the linear sensitivities; indeed,
the sensitivity to the conductivity (imaginary part ofS) is more
strongly affected than the one to the permittivity. In particular,
its average value decreases for a more reactive source and it
spreads over a quite larger support.

The derivation of a closed-form upper-bound is not feasible
for the modification of the linear sensitivities. Nevertheless,
the following bound provides some information:

|S(D1H) + jS(D1S)|s
|S(D1H) + jS(D1S)|0

≤

≤
∫

‖Π0ΞΠ
−1
0 ‖2‖Ξ′‖2w(K)dK , (40)

where the indices stands for “shell” and “no shell”.

The statistical results for the modification of the TDP and
its sensitivities are summarized in Table III forkBW = k0,
together with the value of the correction factors evaluatedfor
a paraxial propagation and the upper bounds given in (34)
and (40). As for the results shown in Table II, though the
paraxial model provides a fairly good estimate for the average
modifications, it is unable to account for the dispersion they
induce. Moreover, it cannot explain neither the stronger impact
for more reactive sources, nor the shift in the linear sensitivity
related to the conductivity (see Fig. 9).

For the sake of brevity, we will not derive here the second-
order sensitivity in the case of a shell. Nevertheless, the same
approach can be extended to include such analysis. We can
conclude that, in the case of SAR applications, the presence
of a shell has not a fundamental impact on how the TDP reacts
to modifications in the permittivityǫr, whereas the sensitivity
to the conductivityσ is more strongly spread and lowered.
Moreover, the shell can indeed strongly increase the transfer
of energy between the two half-spaces, as well as lead to a
further uncertainty in the evaluation of the TDP for a given
near-field source.
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Fig. 9. Statistical distributions of the modification of thelinear sensitivity
operator due to the presence of a dielectric shell for a 6 GHz SAR configu-
ration. The real part is related to the sensitivity to the dielectric permittivity
ǫr, while the imaginary part deals with the sensitivity to the conductivity σ.

TDP S(D1H ) S(D1S)

〈·〉 1.008 0.87 0.80

0.9 GHz
〈·2〉 0.0034 0.0066 0.02

paraxial 1.01 0.92 0.86
upper bound 1.009 (1.07) -

〈·〉 1.04 0.88 0.79

2.5 GHz
〈·2〉 0.010 0.0074 0.034

paraxial 1.03 0.92 0.88
upper bound 1.03 (1.13) -

〈·〉 1.19 0.99 0.89

6.0 GHz
〈·2〉 0.03 0.02 0.05

paraxial 1.16 1.02 0.98
upper bound 1.41 (1.33) -

TABLE III

MODIFICATION OF THE TDP AND ITS LINEAR SENSITIVITIES IN PRESENCE

OF A DIELECTRIC SHELL, WITH s = 2 MM AND ǫs = 4, FOR A

GAUSSIAN-ENVELOPEPWSWITH kBW = k0 . THE BOUND FOR THETDP

MODIFICATION IS GIVEN BY (34),WHEREAS THE VALUES IN

PARENTHESES CORRESPOND TO THE BOUND(40).
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V. NEGLECTING THE NORMAL COMPONENT

There have been several discussions about whether the
normal component̂Ez be negligible or not [3]. In other words,
is it possible to approximate‖Ê‖ with ‖Ê‖‖ ? This same
assumption is used throughout this paper. An answer to this
question can be given by recalling that [11]

‖Ê‖2 = ‖TÊ
‖‖2 = Ê

‖H
T

H
TÊ

‖ ≤ ν(K)‖Ê‖‖2 , (41)

whereν(K) is the maximum eigenvalue of the matrixTH
T.

This allows writing

1 ≤ ‖Ê(K)‖2

‖Ê‖(K)‖2
≤ ν(K) . (42)

A useful rule of thumb for deciding whether the normal
component can be neglected involves again the hypothesis
kBW . k0|χ|: in this case, the normal component can be
neglected. As an example validating this statement, the upper
boundν(K) is shown in Fig. 10 for several frequencies, as
computed for standard tissue-equivalent liquids.

Back in the spatial domain, the impact ofEz on the TDP
can also be assessed; indeed:

1 ≤ TDP

TDP‖
≤
∫

ν(K)w(K)dK , (43)

having definedTDP‖ as the TDP obtained by neglectingEz.
The band-limitedness of the PWS means that the upper-bound
for the error on the TDP for SAR configurations must be lower
than 4 % for a Gaussian-envelope PWS withkBW = k0 and
1 % for kBW = k0/2, whereas it can be as high as 20 % for
kBW = 2k0.

VI. PARAXIAL APPROXIMATION

In the previous analysis, no assumption was made on the
distance between the source and the dielectric interface, so that
the reactive components (in air) of the PWS were considered as
contributing to the TDP. Nevertheless, the propagatorP (K, z)
in air imposes a very strong attenuation to the reactive parts,
as expressed by the attenuation-per-wavelengthAdB/λ:

AdB/λ

(

K,
z

λ

)

= 40π log(e)
z

λ

√

(‖K‖
k0

)2

− 1 . (44)

As an example, the PWS components over the spectral radius
‖K‖ = 1.1k0 experience an attenuation of 25 dB after a
propagation distance of one wavelength. In many practical
situations such a distance is not enough to justify a far-field
analysis; nevertheless, although the field topography has not
yet assumed its far-field configuration, a distance ofλ is
enough to enforce a PWS with almost the same envelope
w(K) that would be obtained in a truly far-field analysis. Thus,
from the TDP point of view, these two configurations coincide.
Recalling that the eigenvalues of all the sensitivity operators
vary very slowly over the air active region (see Fig. 2 and 3),
they can be fairly approximated by considering their values
in the origin. This means that even in a configuration that
does not satisfy the far-field criteria, a paraxial analysiscan
be applied.

Under a paraxial approach, the transmission operatorΠ0 is
just a scalar function, given by

Π0 =
2

1 + χ
, (45)

to be compared with the exact expression (55). It is thus
necessary to define the sensitivities of the transmission terms:

1

Π0

∂Π0

∂ǫ̃
≃ − 1

2χ(1 + χ)
(46)

1

Π0

∂2Π0

∂ǫ̃2
≃ 1 + 3χ

4χ3(1 + χ)2
, (47)

and, finally, the sensitivities of the signal energyE as required
by (10)

δE
E ≃ −Re

{

δǫ̃

χ(1 + χ)

}

(48)

δ2E
E ≃ 1

2

∣

∣

∣

∣

δǫ̃

χ(1 + χ)

∣

∣

∣

∣

2

+

+
1

2
Re

{

1 + 3χ

χ3(1 + χ)2
(δǫ̃)2

}

. (49)

These results can be applied in practice as long as the reactive
content of a source is negligible, thus providing a simple way
of predicting the sensitivity of the TDP together with (10).

It is also interesting to consider the reflection coefficientΓd

at the air-dielectric interface as seen from air and its relative
sensitivity:

Γd =
χ − 1

χ + 1
(50)

∣

∣

∣

∣

1

Γd

∂Γd

∂ǫ̃

∣

∣

∣

∣

≃ 1

|χ(χ2 − 1)| . (51)

This last result can be used to explain the low sensitivity
of the incident field to drifts in the lossy medium. To this
end, let us consider the powerPR = Pav(1 − |Γin|2) radiated
by a lossless antenna;Γin is here the steady-state reflection
coefficient as seen from the antenna feed-line, and it is
thus affected by the reflections over the dielectric interface.
Considering the free-space reflection coefficientΓa at the
antenna input port,Γin can be written as

Γin = Γa + αΓd , (52)
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where α is related to the transmitting properties of the an-
tenna [14]; the finite directivity of the antenna implies that
|α| < 1. These considerations lead to the following result:

1

PR

∣

∣

∣

∣

∂PR

∂ǫ̃

∣

∣

∣

∣

=
2|αΓin|

1 − |Γin|2
∣

∣

∣

∣

∂Γd

∂ǫ̃

∣

∣

∣

∣

(53)

and finally to

1

PR

∣

∣

∣

∣

∂PR

∂ǫ̃

∣

∣

∣

∣

<
|Γin|

1 − |Γin|2
1

|χ(1 + χ)2| . (54)

Therefore, the relative sensitivity of the power radiated by
the antenna is approximately bounded by|Γin|/|χ|3, which
is at least one order of magnitude smaller than the signal-
energy sensitivity. This result proves that, unless in a very
near-field configuration, the power radiated by the antenna
is less strongly affected by changes in the lossy half-space
characteristics than the TDP, as reported in [7].

VII. C ONCLUSIONS

We have introduced a spectral approach for the analysis of
the sensitivity of the TDP to drifts of the electrical properties
of a lossy half-space. The definition of a sensitivity operator
and of the derivative matrices has shown that their eigenvalues
distribution leads to a clear understanding of complex phenom-
ena, such as the dispersiveness of the TDP sensitivity and in
particular the fact that the sensitivity to the conductivity is
more critical. The same approach was extended to the case
of a stratified structure, in order to investigate how a lossless
shell modifies the TDP and its sensitivity.

In all these scenarios, the fundamental role played by the
reactive content of the source PWS was highlighted, pointing
out how it gives rise to a statistically dispersive behaviour of
the TDP and its sensitivity to drifts in the electrical parameters
of the lossy medium. Hence, the very idea of characterizing
the sensitivity in a deterministic way, independently from
the source, is not physically sound, especially for near-field
sources. These results should thus lead to a better understand-
ing of the phenomena involved in near-field configurations,
such as in SAR applications.

APPENDIX I
DEFINITION OF THE SPECTRAL TRANSMISSION OPERATOR

AND RELATED DERIVATIVES

The transmission and the reflection operators, respectively
Π and Γ, for a dielectric interface between two media are
defined as [5]:

Π = 2X−1(Y1 + Y2)
−1

Y1X (55)

Γ = X
−1(Y1 + Y2)

−1(Y1 − Y2)X (56)

Yi = − 1

ωµ0kz,i

[

k2
i − k2

x −kxky

−kxky k2
i − k2

y

]

(57)

X =

[

0 1
−1 0

]

, (58)

beingkz,i =
√

k2
i − ‖K‖2, i ∈ [1, 2].

By applying the derivative chain-rule, the first derivative
∂Π/∂ǫ̃ is given by:

∂Π

∂ǫ̃
=

∂Π

∂k2

∂k2

∂ǫ̃
, (59)

where

∂Π

∂k2
= −2X−1

B
∂Y2

∂k2
BY1X (60)

B = (Y1 + Y2)
−1 (61)

∂Y2

∂k2
= − k2

kz,2

[

Y2

kz,2
+

2

ωµ0
1

]

(62)

∂k2

∂ǫ̃
=

k1

2
√

ǫ̃
. (63)

In the same way, the second derivative is given by:

∂2
Π

∂ǫ̃2
=

∂2
Π

∂k2
2

(

∂k2

∂ǫ̃

)2

+
∂Π

∂k2

∂2k2

∂ǫ̃2
, (64)

where

∂2
Π

∂k2
2 = 2X−1

B

(

2
∂Y2

∂k2
B

∂Y2

∂k2
+

− ∂2
Y2

∂k2
2

)

BY1X (65)

∂2
Y2

∂k2
2 = Y2

‖K‖2

k4
z,2

+ 1
2

ωµ0kz,2

(

2
‖K‖2

k2
z,2

+ 1

)

(66)

∂2k2

∂ǫ̃2
= − k1

4ǫ̃3/2
. (67)

Concerning the derivatives of theT operator, we get:

∂T

∂ǫ̃
=





0 0
0 0
kx ky





1

2

k2
1

k3
z,2

(68)

and

∂2
T

∂ǫ̃2
= −





0 0
0 0
kx ky





3

4

k4
1

k5
z,2

. (69)

APPENDIX II
PROOF OF(25)

The sensitivity operator defined in (18) operates over a
matrix A ∈ C2×2. We consider at first the fact that any
matrix can be decomposed into the sum of an Hermitian part
AH and a skew-Hermitian oneAS . Hence, the matrixAH

is orthonormal, i.e., with eigenvaluesλHi ∈ R, as well as
jAS ; this last claim implies that the eigenvaluesλSi of AS

are purely imaginary. Furthermore, thanks to their symmetry
properties the diagonalization matrices are orthonormal too,
so that one can write:

AH = XHΛHX
H
H (70)

AS = XSΛSX
H
S , (71)

whereΛH,S are diagonal matrices containing the eigenvalues
of, respectively, the Hermitian and the skew-Hermitian com-
ponent ofA. Imposingv = Ê

‖
tx, we are able to write the
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integrand of the numerator of (18) as:

v
H
Av = e

H
HΛHeH + e

H
SΛSeS

=
∑

i

λHi|eHi|2 +
∑

i

λSi|eSi|2 , (72)

having introduced the representation of the vectorv into the
new basis given by the diagonalization matricesAH andAS

as:

eH = X
H
Hv (73)

eS = X
H
S v , (74)

where the termsλHi andλSi are the eigenvalues of, respec-
tively, matricesAH andAS .

As shown in Section V, matrixTH
T ≃ 1 for any source

with kBW . k0|χ|. Recalling thatXHX
H
H = XSX

H
S = 1, we

can state that

v
H
T

H
Tv ≃

∑

i

|eHi|2 =
∑

i

|eSi|2 , (75)

leading to

S(A) ≃
∑

i

∫

λHi
|eHi|2

∑

m

∫

|eHm|2dK
dK +

+
∑

i

∫

λSi
|eSi|2

∑

m

∫

|eSm|2dK
dK . (76)

In order to compute the statistical average ofS(A), the
following functions need to be studied

wi

2
=

|ei|2
∑

m

∫

|em|2dK
, (77)

where e stands foreH or eS . This function represents the
energy distribution of the PWS normalized to its total energy;
it can thus be regarded as a function describing an envelope.
Only one component of the PWS, as represented over the
diagonalized basis, is considered, according to the value of the
index i. It is reasonable to assume that the two components
of this function are identically distributed; therefore, their
averages are identical too. Hence, the energy-density spectrum
〈w〉 = 〈wi〉, ∀i can be defined, yielding

〈S(A)〉 ≃
∫

[

λ̄H(K) + λ̄S(K)
]

〈w(K)〉dK , (78)

where λ̄H and λ̄S are the arithmetic means of, respectively,
the eigenvalues of matricesAH and AS . The fact that the
same envelope has been used for the Hermitian and the
skew-Hermitian parts is due to the unitary property of the
diagonalization matrices. The energy content of the PWS is
therefore not modified passing from one basis to the other.
No assumption has been made in order to come to this result;
it is therefore independent of the probability distribution of
the energy-density spectrum.
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