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INTRODUCTION

Many materials, from emulsions and suspensions to foams and granular materials are dense assemblies of non-Brownian particles [START_REF] Larson | The Structure and Rheology of Complex Fluids[END_REF]. Since thermal energy is irrelevant, the dynamics of these systems must be studied in driven non-equilibrium conditions. Together with the driving mechanism, a second important control parameter is the volume fraction of the particles, φ. These materials undergo a fluid-to-solid 'jamming' transition as φ increases beyond some critical density φ c [START_REF]Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales[END_REF]. These systems are currently the object of an intense research effort, with three main objectives. What is the rheological behavior of dense suspensions when φ approaches φ c ? What is the mechanical response of disordered solids above φ c ? What is the nature of the transition at φ c between the fluid and solid states?

The properties of the jamming transition have received considerable interest in recent years, and much progress was made through the analysis of idealized theoretical models, such as soft, frictionless, repulsive particles as studied below [START_REF] For A Review | [END_REF]. Structural and mechanical properties of systems on both sides of the jamming transition have been analyzed [START_REF] Donev | Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings[END_REF][START_REF] O'hern | Random Packings of Frictionless Particles[END_REF], and a number of remarkable features emerged, such as algebraic scaling of linear mechanical response [START_REF] O'hern | Jamming at zero temperature and zero applied stress: The epitome of disorder[END_REF], or the development of nontrivial timescales or lengthscales characterizing the macroscopic behavior of the system [START_REF] Wyart | Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids[END_REF][START_REF] Olsson | Critical scaling of shear viscosity at the jamming transition[END_REF][START_REF] Hatano | Growing length and time scales in a suspension of athermal particles[END_REF].

With the developments of new experimental techniques (confocal microscopy, original light scattering techniques, etc.), the dynamics of systems near the jamming transition can now be resolved at the particle scale. Very recently, a number of 'anomalous' or 'unexpected' dynamic behaviors were reported in granular and colloidal assemblies: superdiffusive particle motion [START_REF] Cipelletti | Universal Aging Features in the Restructuring of Fractal Colloidal Gels[END_REF][START_REF] Lechenault | Critical scaling and heterogeneous superdiffusion across the Jamming transition[END_REF], non-monotonic variations of characteristic scales across the transition [START_REF] Lechenault | Critical scaling and heterogeneous superdiffusion across the Jamming transition[END_REF][START_REF] Candelier | Creep Motion of an Intruder within a Granular Glass Close to Jamming[END_REF][START_REF] Sessoms | Multiple dynamic regimes in concentrated microgel systems[END_REF]14], anomalous drop of dynamic correlations upon compression [START_REF] Sessoms | Multiple dynamic regimes in concentrated microgel systems[END_REF][START_REF] Ballesta | Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition[END_REF]. Thus, it appears timely to investigate, at the fundamental level of single particle trajectories, the signatures of the jamming transition in idealized theoretical models. Our work reveals original signatures of the jamming transition in both fluid and solid phases which, we believe, shed light on recent experimental findings. We also establish a connection between single particle dynamics and collective particle motion, which allows us to develop an intuitive and appealing picture of jamming as the consequence of the diverging size of rigid particle clusters.

In this article, we borrow tools developed to characterize particle motion in viscous liquids near the glass transition to study the microscopic dynamics of harmonic spheres across the fluid-to-solid jamming transition. We study a bidimensional 50:50 binary mixture of N particles of diameter ratio 1.4 with harmonic repulsion [START_REF] Durian | Foam Mechanics at the Bubble Scale[END_REF],

V (r ij ) = k(r ij -σ ij ) 2
, where r ij is the distance between the centers of particle i and j, σ ij = (σ i + σ j )/2, and σ i is the diameter of particle i. Particles only interact when they overlap,

V (r ij > σ ij ) = 0.
We work in the zero temperature limit, so that all the dynamical processes in the system are induced by an external driving. We use a simple shear flow, and perform quasi-static shear simulations, as described before [START_REF] Heussinger | Jamming Transition as Probed by Quasistatic Shear Flow[END_REF]. Very small shear strains are applied, followed by a minimization of the potential energy. At each step, particles are first affinely displaced along the y-axis by an amount δy = γ 0 x with γ 0 = 5 × 10 -5 . Appropriate Lees-Edwards periodic boundary conditions are used. During the subsequent energy minimization, additional nonaffine displacements occur in both directions. In the dilute limit, these nonaffine displacements are absent, and their presence di-rectly reveals the influence of interactions and interparticle correlations. In the following, we focus on the purely nonaffine displacements occurring along the x-direction, i.e. transverse to the flow. We use system sizes N = 900, 1600 and 2500 to detect finite size effects. The unique control parameter is the volume fraction, φ. Below a critical value, φ c ≃ 0.843, which is well defined and sharp in the thermodynamic limit, the system flows with no resistance, while a yield stress grows continuously from 0, when φ increases above φ c [START_REF] Heussinger | Jamming Transition as Probed by Quasistatic Shear Flow[END_REF]. This corresponds to the jamming transition for the present system and driving conditions.

SUPERDIFFUSIVE PARTICLE MOTION

The simplest quantity which is measured from particle displacements is the root mean-squared displacement,

∆(γ) = 1 N N i=1 [x i (γ) -x i (0)] 2 1/2 , (1) 
where x i (γ) -x i (0) is the transverse displacement of particle i after a total strain γ is applied. In this expression, the brackets indicate averages taken over independent initial conditions all chosen in the driven stationary state at a particular density. We present the evolution of ∆(γ) at various volume fractions across φ c in Fig. 1. The displacements in the yield-stress flow regime above φ c are diffusive at all strains, ∆ ∼ √ γ. This is a robust signal of the quasi-static dynamics in yield-stress materials. It can be traced back to the accumulation of plastic rearrangements spanning the entire system [START_REF] Lemaître | Plastic response of a twodimensional amorphous solid to quasistatic shear: Transverse particle diffusion and phenomenology of dissipative events[END_REF][START_REF] Tanguy | Plastic response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate[END_REF]. The important observation here is that the diffusion constant depends only weakly on density and distance to φ c .

The regime below φ c is more interesting. At any given volume fraction, particles move in a superdiffusive, ballistic manner at short strain, ∆ ∼ γ, before crossing over to diffusive motion at large strain. Since we work at zero temperature, this ballistic regime is completely unrelated to the trivial short-time ballistic displacements in particle systems with classical Newtonian dynamics.

Superdiffusive behavior can be interpreted from the observation that below the jamming transition, the network of particle contacts is not sufficient to insure mechanical stability, and there exists a large number of zerofrequency modes allowing particle displacements at no energy cost [START_REF] Alexander | Amorphous solids: their structure, lattice dynamics and elasticity[END_REF]. The actual displacement field is a superposition of these modes, which can thus persist until the particle configuration has evolved sufficiently to decorrelate the mode spectrum. Persistence of the modes, followed by their decorrelation explain superdiffusive and diffusive motion, respectively.

Remarkably, Fig. 1 shows that particles move faster when φ is increased towards φ c in both ballistic and diffusive regimes. In particular, the short-time particle 1), as a function of strain γ for various volume fractions φ. For φ > φc, diffusive motion is observed at all γ. In contrast, a superdiffusive regime develops for φ < φc, with a particle 'velocity' ℓ∆(φ) = ∆(γ)/γ which increases when approaching φc.

'velocities' ℓ ∆ (φ) ≡ ∆(γ)/γ increase with φ. This is a surprising finding because compression towards jamming usually yields slower dynamics [START_REF] Lechenault | Critical scaling and heterogeneous superdiffusion across the Jamming transition[END_REF][START_REF] Ballesta | Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition[END_REF]. Note that ℓ ∆ is a displacement per unit of strain and thus has the dimension of length. Thus an increasing particle velocity in fact implies an increasing lengthscale. Indeed, we will argue below that superdiffusion reflects the concerted motion of solid-like clusters of particles correlated over a length scale comparable to ℓ ∆ (φ), and which grows towards φ c .

The displacements ∆ and the associated length scale ℓ ∆ (φ) measure how much particles have to move in addition to the affine displacements, in order to accomodate the imposed shear flow. At φ = 0.840, for example, this additional displacement is about ten times larger than the affine contribution itself. This means, that close to φ c the system is in a highly 'fragile' state and small changes in the boundary or loading conditions lead to large-scale motions [START_REF] Cates | Jamming, Force Chains and Fragile Matter[END_REF].

Interestingly, superdiffusion was recently used to identify the location of the jamming transition in a driven bidimensional granular system [START_REF] Lechenault | Critical scaling and heterogeneous superdiffusion across the Jamming transition[END_REF]. Due to the 'random agitation' driving mechanism in the experiment, superdiffusion is observed on a modest time window, and only very close to φ c . This is consistent with our finding that superdiffusion is indeed most pronounced near the transition. 

NONMONOTONIC BEHAVIOR OF OVERLAP CORRELATION FUNCTION

A second, often studied, correlation function to quantify single particle dynamics is the 'overlap' function [START_REF] Franz | On non-linear susceptibility in supercooled liquids[END_REF] 

Q(a, γ) = 1 N N i=1 exp - [x i (γ) -x i (0)] 2 2a 2 . (2) 
The overlap Q(a, γ) goes from 1 to 0 as typical particle displacements get larger than the probing lengthscale a.

It is thus very similar to a self-intermediate scattering function in liquids, with a playing the role of an inverse wavevector, and γ the role of time.

The behavior of Q(a, γ) is presented in Fig. 2 for a fixed a = 0.001 (qualitatively similar results are obtained for different choices of a) and various volume fractions across φ c . For φ < φ c , we find that the overlap function decays faster when φ increases. This is consistent with the above observation that displacements get larger closer to φ c . A qualitatively different behaviour is found above the transition, where the overlap decays more slowly when φ increases. This is in striking contrast with the behavior of the mean squared displacement in Fig. 1 which showed no such variations with φ.

The data in Fig. 2 thus imply the existence of an unexpected nonmonotonic variation of the dynamical behaviour, which is absent in the root mean-squared displacement, Fig. 1. To quantify these differences we define the analog ℓ Q (φ) of the displacement scale, ℓ ∆ (φ), discussed above. For a given strain γ we measure the value of a such that 3) (ℓ el Q is defined from purely elastic deformations above jamming). It is a nonmonotonic function, with a maximum at the jamming transition, mirroring the behavior of the overlap in Fig. 2. It obeys power law behavior with different exponents on both sides of the transition. In the fluid phase, ℓQ behaves similarly to the 'velocity' ℓ∆ defined from superdiffusive behaviour.

Q (a ≡ γℓ Q (φ), γ) = 0.5 . (3) 
The value 0.5 is arbitrary and we find similar results with 0.3 and 0.7. In Fig. 3 we report the behaviour of ℓ Q (φ) defined from Eq. ( 3), which clearly reflects the nonmonotonic behaviour of the overlap observed in Fig. 2.

This result shows that a remarkably simple statistical analysis of single particle displacements in athermal systems very easily reveals the existence of, and quite accurately locates, the fluid-to-solid jamming transition. This measurement requires no finite size scaling, or other involved or indirect statistical analysis [START_REF] Lechenault | Critical scaling and heterogeneous superdiffusion across the Jamming transition[END_REF][START_REF] Candelier | Creep Motion of an Intruder within a Granular Glass Close to Jamming[END_REF][START_REF] Ballesta | Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition[END_REF].

BROAD TAILS IN VAN HOVE DISTRIBUTIONS

We have discussed two signatures of the jamming transition from the behavior of ∆ (superdiffusion) and Q(a, γ) (nonmonotonic relaxation as a function of density). It should come as a third surprise that both dynamic quantities apparently provide distinct informations, in particular for φ > φ c , although they both aim at quantifying dynamics at the particle scale. In fact, such discrepancies are well-known and well-studied in the field of the glass transition where several similar 'decoupling' phenomena have been studied [START_REF] Ediger | Spatially Heterogeneous Dynamics in Supercooled Liquids[END_REF]. Indeed, if the particle dynamics were a Gaussian process, the information content of ∆ and Q would be mathematically equivalent. Their different behavior thus suggests that the distribution of single particle displacements is strongly non-Gaussian [START_REF] Chaudhuri | Universal Nature of Particle Displacements close to Glass and Jamming Transitions[END_REF].

To substantiate this claim we report the evolution of 

∆⋅P(x)

x/∆ 0.8400 0.8380 0.8340 φ = 0.8250 FIG. 4: Displacement distribution after a single strain step, γ = γ0, for different volume fractions φ < φc, rescaled such that a Gaussian process (dashed line) has unit variance. Increasingly heterogeneous distributions of particle displacements are found when approaching φc, with the development of algebraic tails yielding a diverging kurtosis at φc. the van Hove distribution,

P (x, γ) = 1 N δ (x -[x i (γ) -x i (0)]) . (4) 
as a function of volume fraction below φ c (Fig. 4) as well as above φ c . Above φ c the shape of the van Hove function has a form well-known from recent work on sheared glasses [START_REF] Lemaître | Plastic response of a twodimensional amorphous solid to quasistatic shear: Transverse particle diffusion and phenomenology of dissipative events[END_REF][START_REF] Tanguy | Plastic response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate[END_REF]; therefore, we do not show our data here. Briefly, the distribution is 'bimodal', with a first component at small x resulting from displacements during reversible elastic branches, and a second component at larger x due to irreversible plastic events. This second contribution in fact completely dominates the second moment of the distribution, and thus controls the diffusive behavior of ∆(γ) in Fig. 1.

The decomposition between elastic and plastic branches above φ c suggests a separate analysis of these two types of dynamics. We have computed Q(a, γ) along elastic branches only, and defined ℓ el Q (φ), the 'elastic' analog of the displacement scale ℓ Q (φ) for the full overlap; it is shown in Fig. 3. Both ℓ Q and ℓ eq Q are very close, confirming that Q(a, γ) is not very sensitive to plastic rearrangements, in contrast to ∆(γ). The scaling of the typical elastic response above φ c has recently been discussed in great detail [START_REF] Ellenbroek | Critical scaling in linear response of frictionless granular packings near jamming[END_REF][START_REF] Wyart | Elasticity of Floppy and Stiff Random Networks[END_REF]27], and we simply quote the result:

ℓ el Q ∼ (φ c -φ) -1/4 ∼ ℓ Q , in
good agreement with our numerical results.

Below φ c the distributions remain highly non-Gaussian (Fig. 4), even though plastic events are absent. Deviations from a Gaussian shape become stronger as φ increases towards φ c . The distribution develops polynomial tails, and it is thus not surprising that different averages taken over such distributions provide quantitatively dis-tinct results. In Fig. 3, we show that ℓ Q ∼ (φ c -φ) -0.9 , for φ < φ c . In contrast, we find that the scale ℓ ∆ , defined in Fig. 1, scales as ℓ ∆ ∼ (φ c -φ) -1.1 with an exponent slightly distinct from the one of ℓ Q .

Hence, despite the appeal of the algebraic 'scaling' relations reported in Fig. 3, our measured particle distributions P (x, γ) do not follow simple scaling forms, even along elastic branches, in apparent contradiction with recent claims [27]. Single particle dynamics is not 'universal' near the jamming transition and it is somewhat ambiguous to define 'typical' displacements from such broad distributions.

It is tempting to speculate that the polynomial tails which develop near but below φ c in Fig. 4 are in fact the 'precursors' of the plastic events taking place above φ c . The tails in fact become so broad that the kurtosis of the distribution (also called 'non-Gaussian parameter') actually diverges at small γ when φ c is approached from below (data not shown). This implies that the kurtosis could be used as a second, simple statistical indicator of the underlying jamming transition. In glass-formers, the non-Gaussian parameter increases as the glass transition is approached, but much more modestly [START_REF] Kob | Dynamical Heterogeneities in a Supercooled Lennard-Jones Liquid[END_REF], while van hove distributions develop exponential rather than algebraic tails [START_REF] Chaudhuri | Universal Nature of Particle Displacements close to Glass and Jamming Transitions[END_REF].

DYNAMICAL HETEROGENEITY AND COLLECTIVE MOTION

Let us now turn to the discussion of particle correlations. This will allow us to make concrete the notion of 'rigid' clusters that we have alluded to above. To this end, we first discuss the images shown in Fig. 5, where the spatial fluctuations of the overlap are shown. From this figure, we can readily identify dynamically correlated clusters of particles, that clearly grow in size upon approaching φ c from below. These images are direct evidence that dynamics becomes more collective as φ c is approached. Above φ c the system is now solid, and responds as an elastic body. Correspondingly, mobility fluctuations are correlated on a length scale comparable to the system size, the only visible effect of the density being that the snapshot looks less 'disordered' at the largest φ. Very similar observations were recently made experimentally in a soft granular material [14].

To quantify these qualitative observations, we study the dynamical susceptibility χ 4 , defined as the variance of statistical fluctuations of the overlap Q [START_REF] Franz | On non-linear susceptibility in supercooled liquids[END_REF],

χ 4 (a, γ) = N Q(a, γ) 2 -Q(a, γ) 2 , (5) 
where Q represents the instantaneous contribution to the average Q. Our results are summarized in Fig. 6. In all cases, χ 4 (a, γ) displays a well-defined maximum when shown as a function of γ, which shifts towards FIG. 5: Grey-scale plot of the spatial fluctuations of the overlap in Eq. ( 2) (dark='immobile', light='mobile') for φ = 0.825 < φc (left), φc = 0.840 (middle) and φ = 0.85 > φc (right). Strain γ and probing length scale a chosen such that Q ≈ 0.5. Spatial correlations are increasing with φ towards φc, but stay comparable to system size above φc when the system is in the solid phase.

lower strain when φ increases. This maximum identifies a strain for which fluctuations of the overlap are maximal, and is slaved to the typical strain over which Q decays in Fig. 2, as commonly found in studies of dynamic heterogeneity [START_REF] Lacevic | Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function[END_REF][START_REF] Toninelli | Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios[END_REF]. As is well-known, the height of this maximum is a good estimate of the number of particles relaxing in a correlated manner [START_REF] Mayer | Heterogeneous Dynamics of Coarsening Systems[END_REF][START_REF] Dalle-Ferrier | Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence[END_REF], which justifies the fundamental importance of χ 4 . The increase of the height of the peak of the dynamic susceptibility when φ increases towards φ c in Fig. 6 thus quantitatively confirms the visual impression given by the snapshots: the dynamics is increasingly collective when φ increases towards φ c . As shown in Fig. 6, this conclusion does not depend on our choice of a probing lengthscale a.

To quantify the possible divergence of the spatial correlation of the dynamics, we analyze the data as above for the overlap. For a given strain γ, we look for a such that χ 4 is maximum (it corresponds roughly to ℓ Q (γ) defined in Eq. ( 3)) and measure its height. We report the evolution of this maximum of χ 4 as a function of volume fraction in Fig. 7. The data for three different system sizes superimpose below φ c , and we can satisfactorily describe the φ-dependence as: χ 4 ∼ (φ c -φ) -1.8 . Comparing this apparent divergence with the much more modest increase of dynamic correlations in glass-forming liquids close to the glass transition [START_REF] Berthier | Direct Experimental Evidence of a Growing Length Scale Accompanying the Glass Transition[END_REF], emphasizes once more the qualitative differences between both types of transitions.

Assuming that correlated domains have a compact geometry, this finding immediately translates into a genuine dynamic correlation length scale, ξ 4 , which grows as ξ 4 = √ χ 4 ∼ (φ c -φ) -0.9 . Strikingly, we found a similar power law divergence for both ℓ Q and ℓ ∆ in Figs. 1 and3. The exponents are furthermore close to the one obtained in previous work [START_REF] Heussinger | Jamming Transition as Probed by Quasistatic Shear Flow[END_REF] using the spatial dependence of the displacement correlation function.

These findings call for a simple relation between singleparticle displacements, as characterized by ℓ Q or ℓ ∆ , and particle correlations, as given by ξ 4 or by displacement correlations. The picture that we propose assumes par- ticles to form 'temporarily rigid' clusters of the size of the correlation length ξ 4 . Driven by the shear-strain γ these clusters move or rotate in a solid-like manner over distances ∆ cluster = ξ 4 • γ. This motion shows up as pronounced ballistic regime in the mean-squared displacement or in the decay of the overlap function Q and allows to make the identification, ℓ Q ≃ ξ 4 . The cross-over to particle diffusion then corresponds to a typical cluster lifetime. On longer strains, clusters break up and lose their identity. This process is evident in the reduction of the dynamical correlation length as measured by the decreasing amplitude of χ 4 with γ in Fig. 6.

Moving to φ > φ c in Fig. 6, we observe that χ 4 still exhibits a maximum at a given strain γ, which again tracks the relaxation of Q. Remarkably, we now find that the height of this peak strongly depends on the system size, and increases roughly linearly with N , see Fig. 6. This suggests that spatial correlations saturate to the system size at φ c and remain scale-free above φ c in the entire FIG. 7: Evolution of the maximum of the dynamic susceptibility χ4 across the jamming transition (symbols as in Fig. 6).

It diverges algebraically as φ increases towards φc and is system size independent. Above φc, the maximum is proportional to the system size, with an amplitude which decays slowly upon compression, both for plastic and elastic dynamics.

solid phase. This is in agreement with studies of the mechanical response of disordered solids, which showed evidence of plastic rearrangements spanning the entire system [START_REF] Tanguy | Plastic response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate[END_REF][START_REF] Maloney | Universal Breakdown of Elasticity at the Onset of Material Failure[END_REF]. Additionally, we show in Figs. 6 and7 that the dynamic susceptibility measured along purely elastic branches (discarding plastic events), is linearly growing with N as well. Therefore both elastic and plastic dynamics are correlated over a lengthscale which saturates to the system size above φ c . Indeed, the elastic response of a disordered solid is also scale-free, as shown theoretically [START_REF] Didonna | Nonaffine correlations in random elastic media[END_REF][START_REF] Picard | Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids[END_REF] and numerically [START_REF] Maloney | Correlations in the Elastic Response of Dense Random Packings[END_REF][START_REF] Leonforte | Continuum limit of amorphous elastic bodies II: Linear response to a point source force[END_REF]. For a given system size, χ 4 grows with φ below φ c , and becomes proportional to N above φ c . However, the amplitude of χ 4 decreases slowly with φ above φ c . The net result is that χ 4 , for a fixed system size N , has a striking nonmonotonic behaviour with φ, and presents an absolute maximum at φ c , which adds to our list of microscopic signatures of the jamming transition.

A similar maximum of χ 4 has recently been reported both for colloidal [START_REF] Sessoms | Multiple dynamic regimes in concentrated microgel systems[END_REF][START_REF] Ballesta | Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition[END_REF] and granular [START_REF] Lechenault | Critical scaling and heterogeneous superdiffusion across the Jamming transition[END_REF] assemblies, and given two distinct interpretations. It was associated to a nonmonotonic dynamic correlation lengthscale ξ 4 diverging at φ c in Ref. [START_REF] Lechenault | Critical scaling and heterogeneous superdiffusion across the Jamming transition[END_REF]. Alternatively, it was attributed to a nonmonotonic strength of essentially scale-free spatial correlations in Refs. [START_REF] Sessoms | Multiple dynamic regimes in concentrated microgel systems[END_REF][START_REF] Ballesta | Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition[END_REF]. Our results clearly favor the second interpretation to explain the behavior above φ c . The dynamic susceptibility χ 4 above φ c is system size dependent with scale-free spatial dynamic fluctuations (Figs. 6,7).

This finding suggests that the length scale identified from the low-frequency part of the vibrational spectrum, and much studied recently [START_REF] Wyart | Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids[END_REF]27,[START_REF] Leonforte | Continuum limit of amorphous elastic bodies II: Linear response to a point source force[END_REF] does not directly influence the dynamics at the particle scale beyond the linear regime where it belongs. We suggest, however, that it indirectly influences the behaviour of χ 4 , and leads to the decaying strength of the correlations as observed in Fig. 7 above φ c . The evolution of the displacement length scale ℓ Q above φ c in Fig. 3 suggests a simple explanation for this decay. The overlap function Q(a, γ) relax when typical displacements are of the order of a. When φ increases, typical displacements in response to strain increments become smaller, and more steps are needed to decorrelate the overlap. If these steps are not perfectly correlated, more steps directly imply less dynamic fluctuations and thus a reduced χ 4 [START_REF] Mayer | Heterogeneous Dynamics of Coarsening Systems[END_REF]. This physical explanation was made more quantitative in the empirical model of Ref. [START_REF] Ballesta | Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition[END_REF], which then accounts for a nonmonotonic evolution of χ 4 across φ c .

SUMMARY

To summarize, borrowing tools from studies of dynamic heterogeneity in glass-formers, we provided a detailed account of the evolution of the microscopic dynamics of an idealized model system across the jamming transition. We found a number of original signatures, that are strikingly different from the behaviour of viscous liquids, but might have been observed in recent experimental reports. Given the (relative) ease with which particle trajectories can be monitored in suspensions, foams, or granular assemblies, we hope our study will motivate further experimental studies along the lines of the present study. In particular, one should aim at understanding how macroscopic constitutive laws can be derived from the complex microscopic relaxation processes in jamming materials described in this paper.
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 1 FIG.1: Nonaffine displacement, Eq. (1), as a function of strain γ for various volume fractions φ. For φ > φc, diffusive motion is observed at all γ. In contrast, a superdiffusive regime develops for φ < φc, with a particle 'velocity' ℓ∆(φ) = ∆(γ)/γ which increases when approaching φc.
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 2 FIG.2:The average overlap Q(a, γ) for a = 0.001 and different volume fractions across the jamming transition. The relaxation becomes faster when φ increases towards φc, but slows down when φ increases above φc. The fluid and solid phases are thus readily distinguished by their distinct behavior upon compression.
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 3 FIG.3: Relaxation lengthscale ℓQ(φ) quantifying the decay of the overlap Q(a, γ) for γ = 0.0005, from Eq. (3) (ℓ el Q is defined from purely elastic deformations above jamming). It is a nonmonotonic function, with a maximum at the jamming transition, mirroring the behavior of the overlap in Fig.2. It obeys power law behavior with different exponents on both sides of the transition. In the fluid phase, ℓQ behaves similarly to the 'velocity' ℓ∆ defined from superdiffusive behaviour.
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 6 FIG.6: Dynamical susceptibility χ4 as function of strain γ for: (Top) different volume-fractions φ < φc and probing lengthscale a. (Bottom) a single φ = 0.85 > φc and different system sizes. The dynamic susceptibility increases when φ increases towards φc reflecting increasingly collective dynamics. Above φc dynamic correlations are system size dependent, even when only elastic branches are considered.