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Abstract—We propose the use of discrete time-scale

transformations of acoustic signals to characterize the
wideband effect of underwater environment propagation.
The representation depends on the Mellin transform, and
it can be used to efficiently process the effect of the
underwater environment. For sparse environments, we
also consider a new approach with reduced computational
complexity. The approach is based on a warping lag-
Doppler filtering technique in the wideband ambiguity
function plane to separate ray paths and estimate their
parameters. We validate the signal representation and
filtering approach using real experimental data from the
BASE07 experiment.

I. INTRODUCTION

The characterization of underwater acoustic signals
in terms of propagation medium attributes is essential
for a large number of applications, including underwa-
ter communications, geoacoustic inversion, sonar, and
marine mammal monitoring. The time-varying nature
of the environment and the relative motion between
the transmitter-channel-receiver configuration most often
introduce undesirable distortions such as multipath and
Doppler on the transmitted signal. When a narrowband
signal undergoes a Doppler scale change, the transfor-
mation can be approximated by a frequency shift as
the signal bandwidth is much smaller than its central
frequency. However, for underwater acoustic signals, this
assumption does not hold because the signal bandwidth
is comparable to or larger than the central frequency.
A signal is considered wideband when the ratio of the
bandwidth and the central frequency of the signal is
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higher than 0.1 [1]. As a result, most underwater acoustic
signals in the medium-to-high frequency region (500-
10,000 Hz) should be characterized by time delays and
Doppler scale changes [2].

The scale changes are physical transformations that
are the result of fast relative motion between the prop-
agation medium or object and scatterers present in the
environment. These physical changes can be character-
ized by the wideband spreading function (WSF) rep-
resentation [1], [3], [4]. Specifically, the output of a
wideband system can be represented as a continuous
linear superposition of time shifts and Doppler scale
changes on the input signal, weighted by the WSF. Based
on the continuous WSF representation, an equivalent
discrete time-scale signal characterization was developed
in [5], [6] for processing purposes. This discrete channel
characterization decomposes a transformed wideband
signal into a sum of time-delayed and Doppler-scaled
versions of the input signal, weighted by a smoothed
and sampled version of the WSF.

Although this discrete time-scale signal representation
is appropriate to use for underwater wideband chan-
nels, it can also be computationally intensive. If the
channel is sparse, then propagating rays can arrive in
groups of similar time-shift and scale components due
to physical propagation constraints [2], [7]. Hence, in
order to minimize the processing computational expense
at the receiver, we propose to first detect and separate
the various ray groups using the wideband ambiguity
function (WAF) and a time-warping tool. The discrete
time-scale model is then applied to each ray group to
estimate the distinct transformation.

The paper is organized as follows. Section II provides
the WSF channel characterization. In Section III, we
assume channel sparsity, and we describe ray group



detection and separation. The application of the proposed
signal characterization to real data from the BASE07
experiment is presented in Section IV.

II. CHANNEL CHARACTERIZATION

For most underwater acoustic applications, the prop-
agating signal is considered to have wideband proper-
ties. This is due to the fact that the transmitted signal
undergoes distortions such as multipath and Doppler
scale changes when propagating in the underwater en-
vironment. The outputx(t) of the wideband underwater
environment can be modeled as a superposition of time-
shifted and Doppler-scaled versions of the input signal
s(t) as [5], [6]

x(t) =

∫ Ts

0

∫ ηmax

ηmin

X (τ, η)
√

η s(η(t − τ)) dη dτ, (1)

whereτ is the time shift andη is the scale parameter. The
wideband spreading function (WSF),X (τ, η), represents
the strength of underwater scatterers for varyingτ and
η. Due to the physical properties of realistic underwater
environments, we assume that the WSF is supported in
the regionsτ ∈ [0, Ts] and η ∈ [ηmin, ηmax], whereTs

is the time delay spread of the channel and[ηmin, ηmax]
represent the range of possible scaling factors.

By geometrically sampling the scaling factors using
the proprieties of the Mellin transform, it is possible
to represent the environment in terms of discretized
transformed parameters. The Mellin transform of a signal
s(t) is defined as

Ms(β) =

∫

∞

0
(1/

√
t) s(t)ej2πβ ln(t/tr) dt, (2)

where β ∈ ℜ is the Mellin variable andtr > 0 is
a normalization constant. Assuming that our signal is
localized in the time-frequency domain, it can be shown
that it is also localized in the Mellin domain [5], [8].
For a signal whose Mellin transform is bounded in
β ∈ [−β0/2, β0/2], the scaling factors in (1) can be
geometrically sampled asη = ηm

0 wherem is an integer
and η0 = e1/β0 . The time-delay can be uniformly sam-
pled for each given scaling factorηm

0 asτ = n/(ηm
0 W )

for the nth time-delay, whereW is the bandwidth of
s(t). As a result, the discrete time-scale representation
of the system is given by [5]

x(t) =
M1
∑

m=M0

N(m)
∑

n=0

Ψn,m η
m/2
0 s(ηm

0 t − n/W ), (3)

where Ψn,m is a smoothed and sampled version
of the WSF [5], M0 = ln(ηmin)/ ln(η0), M1 =

ln(ηmax)/ ln(η0), N(m) = ⌈ηm
0 WTs⌉, and ⌈·⌉ denotes

the next larger integer. It is worth noting that the number
of time-shift parameters is not the same for each scaling
factor asN is a function ofm in (3).

III. W IDEBAND LAG -DOPPLER FILTERING METHOD

A. Ray Theory

When the channel is sparse, we expect of lot of
the discrete WSF valuesΨn,m in Equation (3) to be
zero. As a result, it would be computationally intensive
to try and estimate all the WSF values of a sparse
underwater channel. Following ray theory, propagating
rays of sparse channels can arrive in groups of similar
time delay and scale components due to the channel’s
physical propagation properties [2], [7]. It can actually
be shown that the ray theory based signal representation
can be considered as a special case of (1) with

X (τ, η) =

N
∑

i=1

ai δ(τ − τi)δ(η − ηi) , (4)

whereN is the number of ray paths,ai is the attenuation
factor of theith ray, andδ(·) is the Dirac delta function.
As a result, in order to reduce the processing com-
putational complexity at the receiver, we only need to
estimateN ray paths instead of all the WSF components.

The method we propose to estimate the ray paths is to
first detect and separate the rays in the wideband ambi-
guity function (WAF) plane using a warping lag-Doppler
filtering approach. Once the ray paths are separated, the
corresponding attenuation coefficient for each ray path
is estimated using a least-squares error (LSE) approach.

B. Signal Warping

Warping was considered as a way of nonlinearly map-
ping the time axis onto a new axis, where processing may
be more easily applied [9]–[11]. Specifically, warping
can be applied by transforming the time axist with a
potentially nonlinear functionw(t). We introduce the
linear and unitary warping operatorWw with associated
warping functionw(t) such that when acting on a square-
integrable signalg(t) ∈ L2(R), it transforms it as [12]

(Wwg)(t) =

∣

∣

∣

∣

dw(t)

dt

∣

∣

∣

∣

1/2

g(w(t)). (5)

Let us considerg(t) as a time-varying signal (i.e., as
signal whose spectrum varies with time) that is mono-
component. Specifically, it can be given by

g(t) = ej2πcg ϕ(t), (6)



wherecg is the frequency-modulation (FM) rate andϕ(t)
is the time-varying (possibly nonlinear) phase function of
the signal. For most realistic applications and analytical
signals, we can assume that, givenϕ(t), its derivative
dϕ(t)

dt > 0, inverse functionϕ−1(t), and derivative of its
inverse functiondϕ−1(t)

dt > 0 exist. Here,ϕ(ϕ−1(t)) = t
for all t. Then, using the warped functionw(t) = ϕ−1(t)
in Equation (5), the projection of the signalg(t) in
Equation (6) in the warped time-domain defined by
Wϕ−1 yields an amplitude-modulated sinusoid. That is,

(Wϕ−1g)(t) =
∣

∣

∣

dϕ−1(t)
dt

∣

∣

∣

1/2
ej2πfg ϕ(ϕ−1(t))

=
∣

∣

∣

dϕ−1(t)
dt

∣

∣

∣

1/2
ej2πfg t.

(7)

Equation (7) states that any signalg(t) whose phase
function is a known continuous and invertible function
can be time-warped (using the inverse of the phase
function of the signal) to warp the signal into a sinusoid.
The resulting sinusoid can be accurately processed; for
example, it can be time-frequency bandpass filtered. The
filtering residue can be projected back in the initial time
domain using the inverse warping operatorWϕ.

C. Warping Lag-Doppler Filtering

The aim of the warping lag-Doppler filtering (WALF)
approach is to provide an efficient way of separating
the different ray paths in the WAF plane [2], [7]. We
define a dictionary of signalsD that represent the time-
shifted and scaled signals received after propagating over
the wideband channel, as shown in Equation (1). The
dictionary signals are given by

g(m,n)(t) =
√

ηm s(ηm (t − τn)), ηm 6= 0, (8)

where s(t) is the transmitted signal. The steps of the
WALF iterative algorithm are summarized as follows.

We first initialize the process by definingp0(t) = x(t)
wherex(t) is the received signal. Then, at theith itera-
tion, i = 0, 1, · · · ,M − 1, the projection of the residue
pi(t) onto every dictionary elementg(m,n)(t) ∈ D is
computed to obtain:

Λ
(m,n)
i = 〈pi, g

(m,n)〉 ,

∫ +∞

−∞

pi(t) g(m,n) ∗(t)dt. (9)

Then, we select the dictionary atomg(mi,ni)
i (t), with

time-shift τni
and scaleηmi

, which maximizes the mag-
nitude of the projection:

g
(mi,ni)
i (t) = argmax

g(m,n)(t)∈D

|Λ(m,n)
i |. (10)

For realistic applications, we can assume that the phase
function ϕ(t) of s(t) is differentiable anddϕ(t)

dt > 0.
As s(t) is assumed to be known, we assume thatϕ(t)
is known as well. We introduceϕi(t) to represent the
phase function ofg(mi,ni)

i (t) which is given by

ϕi(t) = ϕ(ηmi
(t − τni

)). (11)

The residuepi(t) is then warped with the time warping
operatorWϕ−1

i
,

Qi(t) = (Wϕ−1
i

pi)(t). (12)

As the warped signal is now a sinusoid, it can be filtered
out easily in the warped time domain, as desired. Ac-
cording to the propagation properties,ϕj 6= ϕi, ∀j 6= i,
j = 0, 1, · · · ,M−1. As a result, only the signal received
for the ith ray path is filtered out using a cut-band filter:

Ui(t) = FQi(t). (13)

Here,F represents the cut-band filter that removes the
narrowband function received for theith ray path after
the WALF operation. The projection is then unwarped
back to the time domain where the signal of the next
WALF iteration is obtained as

pi+1(t) = (Wϕi
Ui)(t). (14)

IV. BASE07 EXPERIMENT

The BASE07 experiment was jointly conducted by the
NATO Undersea Research Center, the Forschungsanstalt
der Bundeswehr für Wasserschall und Geophysik, the
Applied Research Laboratory, and the Service Hydro-
graphique et Océanographique de la Marine (SHOM).
Two additional days of measurements were also con-
ducted by SHOM to collect data for the geoacoustic in-
version testing. Results based on the BASE07 experiment
can be found in [2], [13], [14]. The real data we used
was collected from a shallow water environment on the
Malta Plateau. An linear, frequency-modulated (LFM)
signal, whose spectrogram time-frequency representation
is illustrated in Fig. 1, was transmitted by a source
moving rectilinearly at constant speed from 2 to 12 knots
and at different depths. The transmitted LFM signal had
a 2 kHz bandwidth, 1.3 kHz central frequency, and a 4
s duration. Also, both the source and the receiver were
moving with a relative velocity of 2.1 m/s, and the range
between the transmitter and the receiver was1, 300 m.

Figure 2 represents the WAF of the received signal
where the crosses illustrate the ray path coordinates
estimated with the WALF algorithm. The WAF values
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Fig. 1. Spectrogram of the LFM signal transmitted by the towed
transmitter, demonstrating the effects of the multipath underwater
propagation.

are computed during the processing as the values ob-
tained with Equation (9) during the first WALF iteration.
Figure 2 shows four ray paths that arrive at different time
delays and different Doppler scaling factors. After a ray
path is detected in the WAF plane, it is filtered out using
the WALF approach. The advantage of our method is
that the ray path detection provides an overall estimate
of the ray Doppler scaling factor and time delay. As the
channel is sparse, only a small dictionary was needed.
Hence, for each ray path, the dictionary used for matrix
inversion was small. In particular, only 4 possible scaling
factors and 110 possible time delay factors, centered
around the ray path estimates, were used for the matrix
inversion. The global dictionary was much bigger as it
was made of 19 possible scaling factors and 255 possible
time delay factors. The attenuation coefficients (AC) in
Equation (4), corresponding to the estimated WSF values
for the sparse channel, obtained for each of the four
detected ray paths as well as the ray path reconstructions
from the estimated channel coefficients are presented in
Figure 3. It is worth noting that for each ray path, the
expected parameter ranges are very small and are around
the center of the ray path. The ray path reconstruction
errors are computed as follows:

ǫ =

∫

|x(t) − x̂(t)|2 dt
∫

|x(t)|2 dt
, (15)

wherex(t) is the original experimental data and̂x(t) is
the recovered signal from the time-scale representation.
The different reconstruction errors are1.37%, 3.44%,
7.86%, and 5.86% for the first to the fourth ray path,
respectively.

The global AC estimate is obtained from the estimates
of the four ray paths. The global AC estimate is shown in
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Fig. 2. WAF of a received signal. The crosses represent the position
of the detected ray paths. Note that the speed parameter relates to
the scale factor using the relationshipη = 1/(1 − v/c), wherec is
the speed of sound in the ocean.

Fig. 4; it enables the reconstruction of the signal received
for the four ray paths with a reconstruction error of3.4%.

V. CONCLUSION

We introduced a new approach to characterize the
signal propagating over wideband linear time-varying
channels with a moving receiver and a moving trans-
mitter. The method is based on the discrete time-scale
characterization for acoustic signals and the WALF al-
gorithm for extracting different arrival ray paths in order
to decrease the computational complexity of the channel
estimation when the channel is sparse. This method can
be used for applications such as channel estimation for
underwater acoustic communications, and active or pas-
sive tomography, when the relative transmitter-receiver
velocity is unknown. The new approach was successfully
evaluated using data from the BASE07 experiment.
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