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Partial Differential Equations Barenblatt profiles for a nonlocal porous medium equation

We study a generalization of the porous medium equation involving nonlocal terms. More precisely, explicit selfsimilar solutions with compact support generalizing the Barenblatt solutions are constructed. We also present a formal argument to get the L p decay of weak solutions of the corresponding Cauchy problem.

Résumé Solutions auto-similaires pour une équation des milieux poreux non locale

Cette note est consacrée à l'étude d'une généralisation non locale de l'équation des milieux poreux. Plus précisément, on obtient des formules explicites de solutions auto-similaires à support compact qui ressemblent fortement aux solutions de type Barenblatt. On donne aussi un argument formel qui permet d'obtenir des estimations L p des solutions faibles du problème de Cauchy.

Version française abrégée

Nous considérons le problème de Cauchy pour l'équation non locale suivante

avec m > 1, x ∈ R d , α ∈ (0, 2), t > 0, à laquelle on ajoute une condition initiale u(0, x) = u 0 (x). Ici ∇ β est un opérateur intégral singulier généralisant le gradient usuel (β = 1) et lié au laplacien fractionnaire. Le résultat principal de cette note sont des formules explicites de solutions auto-similaires qui se propagent à une vitesse finie.

Théorème 1 (Solutions auto-similaires) La fonction

(ainsi que ses translations en x) est une solution auto-similaire de l'équation (1) pour R > 0 quelconque et une constante C > 0 convenable.

Ensuite, nous présentons un calcul formel qui permet d'obtenir des estimations en norme L p (R d ) des solutions faibles du problème de Cauchy, en particulier celles construites par Caffarelli et Vázquez [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF] for all t > 0.

Introduction

We study a nonlocal generalization of the porous medium equation

∂ t u -∇ • u∇ α-1 |u| m-1 = 0, (1) 
where m > 1, α ∈ (0, 2), x ∈ R d , t > 0, supplemented with an initial condition u(0, x) = u 0 (x).

(2)

The pseudodifferential (vector-valued) operator ∇ β in ( 1) is defined via the Fourier transform as ∇ β u = F -1 (iξ|ξ| β-1 F u). This definition is consistent with the usual gradient: ∇ 1 = ∇; the components of ∇ 0 are the Riesz transforms; moreover we have

∇ • ∇ α-1 = ∇ α 2 • ∇ α 2 = -(-∆) α 2 , where (-∆) α 2 denotes the fractional Laplace operator: (-∆) α 2 u = F -1 (|ξ| α F u).
It can also be defined by real analysis tools as follows ∇ α-1 u = ∇I 2-α u, where I β for β ∈ (0, d) is an integral smoothing operator, called the Riesz potential (see [12, Ch. V])

I β (u)(x) = -C β u(x + z) |z| d-β dz with some C β > 0. Note that then ∇ α-1 u(x) = ∇I 2-α (u)(x) = (d + α -2)C 2-α (u(x + z) -u(x)) z |z| d+α dz, α ∈ (0, 2).
Eq. ( 1) can be interpreted as a transport equation of the type ∂ t u = ∇ • (uv) for some velocity vectorfield v which is a potential; more precisely, v = ∇p where p = I 2-α (|u| m-1 ). It can be interpreted as a nonlocal pressure in the case of nonnegative initial data. Then, of course (-∆) 2-α 2 p = |u| m-1 , see [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF], [START_REF] Caffarelli | Asymptotic behaviour of a porous medium equation with fractional diffusion[END_REF] for that notation.

Notice that for α = 2 and nonnegative initial data we recover the Boussinesq equation (m = 2), and the usual porous media equation (m > 1):

∂ t u = ∇ • u∇ u m-1 , t > 0, x ∈ R d .
Recently, L. Caffarelli and J. L. Vázquez ([3], [START_REF] Caffarelli | Asymptotic behaviour of a porous medium equation with fractional diffusion[END_REF]) studied equation [START_REF] Biler | A nonlinear diffusion of dislocation density and self-similar solutions[END_REF] in the case m = 2. They proved the existence of weak solutions for nonnegative bounded integrable initial data with exponential decay at infinity. They also treat the case of bounded and compactly supported initial data, which propagate with finite speed. It is shown in [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF] that self-similar solutions can be constructed by considering an obstacle problem for the fractional Laplace operator. In this note, we contribute to those results constructing explicit compactly supported self-similar solutions. Moreover, we show a kind of hypercontractivity estimates, i.e. the optimal decay in L p of general solutions with u 0 ∈ L 1 (R d ).

Results on equation [START_REF] Biler | A nonlinear diffusion of dislocation density and self-similar solutions[END_REF] in this note are multidimensional generalizations of those obtained in [START_REF] Biler | A nonlinear diffusion of dislocation density and self-similar solutions[END_REF] for a model of the dynamics of dislocations in crystals (for the integral of u when d = 1 and m = 2). The structure of [START_REF] Biler | A nonlinear diffusion of dislocation density and self-similar solutions[END_REF] suggests that it should enjoy the conservation of mass and some comparison properties as was shown in [START_REF] Biler | A nonlinear diffusion of dislocation density and self-similar solutions[END_REF]. For an analysis of a related nonlocal equation, see [START_REF] Imbert | A higher order non-local equation appearing in crack dynamics[END_REF].

Complete proofs of all results announced in this note will be published in [START_REF] Biler | Nonlocal porous medium equation: Barenblatt profiles and other weak solutions[END_REF].

Self-similar solutions

The equation ( 1) has the following scaling property:

if u(t, x) is a solution, so is ℓ dλ u(ℓt, ℓ λ x)
for each ℓ > 0 and λ = 1 d(m-1)+α . We look for nonnegative solutions that are invariant under that scaling, i.e. of the following form

u(t, x) = 1 t dλ Φ α,m x t λ , where λ = 1 d(m -1) + α , (3) 
for a function Φ α,m : R d → R + satisfying the following nonlinear and nonlocal equation in

R d -λ∇ • (yΦ α,m ) = ∇ • Φ α,m ∇ α-1 Φ m-1 α,m . (4) 
Before stating our main result, we recall the definition of weak solutions for (1) introduced in [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF] in the case m = 2.

Definition 2.1 (Weak solutions) A function u : (0, T ) × R d → R is a weak solution of (1) in Q T = (0, T )×R d submitted to the initial condition u(0, x) = u 0 (x) if u ∈ L 1 (Q T ), I 2-α (|u| m-1 ) ∈ L 1 (0, T ; W 1,1 loc (R d )), u∇I 2-α (|u| m-1 ) ∈ L 1 (Q T ) and u(ϕ t -∇I 2-α (|u| m-1 ) • ∇ϕ) dx dt + u 0 (x)ϕ(0, x) dx = 0 (5)
for each test function ϕ ∈ C 1 (Q T ) such that ϕ has compact support in the space variable x, and vanishes near t = T .

Theorem 2.2 (Self-similar solutions) For each α ∈ (0, 2], m > 1 and R > 0, the function

Φ α,m (y) = k(R 2 -|y| 2 ) α 2 + 1 m-1 with k = d d(m -1) + α Γ d 2 2 α Γ 1 + α 2 Γ d+α 2 (6)
is a solution of (4). Consequently, the function

u(t, x) = t - d d(m-1)+α k R 2 -|x| 2 t - 2 d(m-1)+α α 2 + 1 m-1 (7)
is a weak solution of (1), satisfies the equation in the pointwise sense for |x| = Rt When α = 2, we recover the classical Kompaneets-Zel'dovich-Barenblatt-Pattle formulas, see, e.g., [START_REF] Vázquez | The Porous Medium Equation. Mathematical Theory[END_REF]. Note also that given M > 0 there exists a unique R > 0 such that Φ α,m (y) dy = M . Remark 2.3 As mentioned above, self-similar solutions of (1) have been proved to exist in [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF] by studying the following obstacle problem for the fractional Laplacian

P ≥ Φ, V = (-∆) α 2 P ≥ 0, either P = Φ or V = 0,
with α ∈ (0, 2) and Φ(y) = C -a|y| 2 . The novelty of our approach is that we exhibit the explicit solution of this obstacle problem: P (y) = I α (Φ α,2 ) (y), where I α is the Riesz potential, and Φ α,2 is defined in ( 6) with m = 2 and a suitable R > 0.

Those explicit self-similar solutions express one of the most important features of the porous medium equation: the property of finite propagation speed. In the case of the classical porous medium equation (α = 2), this property is established using comparison with suitably large self-similar solutions, cf. [START_REF] Vázquez | The Porous Medium Equation. Mathematical Theory[END_REF]. For the generalized porous medium equation ( 1) with m = 2, special supersolutions have been used for comparison, cf. [START_REF] Caffarelli | Asymptotic behaviour of a porous medium equation with fractional diffusion[END_REF].

The proof of Theorem 2.2 is based on an application of the following fundamental technical fact.

Lemma 2.4 For all β ∈ (0, 2) and γ > 0, we have

I β (1 -|y| 2 ) γ 2 + =        C γ,β,d × 2 F 1 d -β 2 , - γ + β 2 ; d 2 ; |y| 2 for |y| ≤ 1, Cγ,β,d |y| β-d × 2 F 1 d -β 2 , 2 -β 2 ; d + γ 2 ; 1 |y| 2 for |y| ≥ 1, (8) 
with

C γ,β,d = 2 -β Γ( γ 2 +1)Γ( d-β 2 ) Γ( d 2 )Γ( β+γ 2 +1) and Cγ,β,d = 2 -β Γ( γ 2 +1)Γ( d-β 2 ) Γ( d 4 )Γ( d+γ 2 +1
) , where 2 F 1 is the hypergeometric function. The verification of (8) consists in passing to Fourier transforms and calculating certain integrals (the so called (Sonine-)Weber-Schafheitlin integrals) involving Bessel and hypergeometric functions 2 F 1 , cf. [START_REF] Magnus | Formulas and theorems for the special functions of mathematical physics[END_REF].

Proof of Theorem 2.2. Let φ α (y) = 1 -|y| 2 α 2 + . Observe that φ α ∈ L 1 (R d ). We next show that I 2-α (φ α ) ∈ W 1,1 loc (R d )
. By Lemma 2.4 with γ = α ∈ (0, 2), β = 2 -α, and 2 F 1 (a, -1; c; z) = 1 -a c z, we get

I 2-α (φ α )(y) =        C α,2-α,d 1 - d + α -2 d |y| 2 if |y| ≤ 1, Cα,2-α,d |y| 2-(d+α) 2 F 1 d + α 2 -1, α 2 ; d + α 2 ; 1 |y| 2 if |y| ≥ 1,
which is a locally integrable function. Recalling that ∇ α-1 = ∇I 2-α , we then deduce by the chain rule that for

y ∈ B 1 , ∇ α-1 (φ α )(y) = -(d K α,d ) -1 y where K α,d is defined in Corollary 2.5 below. For |y| ≥ 1, one uses ∂ ∂z 2 F 1 (a, b; c; z) = ab c 2 F 1 (a + 1, b + 1; c + 1; z), hence ∇ α-1 (φ α ) is locally integrable. To conclude, we remark that φ 1 m-1 α (y)∇ α-1 φ α (y) = -φ 1 m-1 α (y) (K α,d d) -1 y, for all y ∈ R d , because φ α (y) = 0 for |y| ≥ 1.
Hence, scaling the variables, we immediately obtain that the function Φ α,m defined in ( 6) satisfies

∇ α-1 (Φ m-1 α,m ) = -λy for |y| < R. Now, for all y ∈ R d the identity -λyΦ α,m = Φ α,m ∇ α-1 Φ m-1 α,m
follows because Φ α,m (y) = 0 for all |y| ≥ R, so (4) holds with λ = 1 d(m-1)+α and k = dλ K α,d defined in [START_REF] Getoor | First passage times for symmetric stable processes in space[END_REF]. It is straightforward to verify using (4) that u given by formula ( 7) is a weak solution of (1) in each strip (t 0 , T ) × R d , 0 < t 0 < T < ∞. Moreover, the Hölder continuity is easy to check.

The following known result (with an important probabilistic interpretation) proved by Getoor [6, Th. 5.2], see also [START_REF] Landkof | Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften. Band[END_REF]App.] for a related calculation, is an immediate consequence of Lemma 2.4. For its proof, it suffices to use the relation (-∆)

α 2 = ∆I 2-α . Corollary 2.5 For each α ∈ (0, 2], the identity K α,d (-∆) α 2 1 -|y| 2 α 2 + = -1 in B 1 holds with the explicit constant K α,d = Γ( d 2 ) 2 α Γ(1+ α 2 )Γ( d+α 2 )
.

The Cauchy problem and asymptotics

We now briefly discuss the questions of the existence of weak solutions and their uniqueness in the case m = 2. In [START_REF] Biler | A nonlinear diffusion of dislocation density and self-similar solutions[END_REF], viscosity solutions have been considered which permitted the authors to prove regularity and uniqueness of solutions to (1) in one space dimension. In higher dimensions, a construction of mild solutions is achieved in [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF] through a parabolic regularization of (1) with a suitable cutoff of the singular kernel of I 2-α , and then a passage to the limit. The uniqueness of weak solutions and, a fortiori, the validity of the full comparison principle seem to be difficult questions, cf. a discussion in [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF]. Another construction of weak solutions to (1) with m > 1 as limits of mild solutions of parabolically perturbed equation (1) will be published in [START_REF] Biler | Nonlocal porous medium equation: Barenblatt profiles and other weak solutions[END_REF].

Formal computation 3.1 (Decay of solutions for the Cauchy problem) Suppose that for 0

≤ u 0 ∈ L 1 (R d )∩L ∞ (R d ). Then L p (R d ) norms (1 ≤ p < ∞)
of any sufficiently regular and global in time nonnegative weak solution u of (1)-( 2) such that u(t, x) dx = u 0 (x) dx decay algebraically

u(t) p ≤ C(d, α, m, p) u 0 α+d(m-1)/p α+d(m-1) 1 t - d d(m-1)+α (1-1/p) for all t > 0. (9) 
Our computation below can be applied, for example, to weak solutions constructed by Caffarelli and Vázquez [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF], who studied problem (1)-( 2) with m = 2 and with initial conditions satisfying 0 ≤ u 0 (x) ≤ Ce -c|x| for some constants c, C and all x ∈ R d .

Formal proof of [START_REF] Landkof | Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften. Band[END_REF]. In order to prove the announced L p estimates of solutions (similar to those for degenerated partial differential equations like the porous medium equation in e.g. [START_REF] Vázquez | Smoothing and Decay Estimates for Nonlinear Diffusion Equations[END_REF], [5, Ch. 2]), we recall the Stroock-Varopoulos inequality for q ≥ 1 |w| q-2 w(-∆)

α 2 w dx ≥ 4(q -1) q 2 ∇ α 2 |w| q 2 2 dx ( 10 
)
valid for each w ∈ L q (R d ) such that (-∆) α 2 w ∈ L q (R d ). Note that the constant in [START_REF] Liskevich | Some problems on Markov semigroups, Schrödinger operators[END_REF] is the same as for the usual Laplacian operator -∆ (i.e. α = 2). The proof is given, e.g., in [START_REF] Liskevich | Some problems on Markov semigroups, Schrödinger operators[END_REF]Prop. 1.6] and [10, Th. 2.1 combined with (1.7)].

We will also need the following Nash inequality

v 2(1+ α d ) 2 ≤ C N ∇ α 2 v 2 2 v 2α d 1 (11) 
valid for all functions

v with v ∈ L 1 (R d ), ∇ α 2 v ∈ L 2 (R d ) with a constant C N = C(d, α
). The proof of ( 11) for d = 1 can be found in, e.g., [START_REF] Karch | On the convergence of solutions of fractal Burgers equation toward rarefaction waves[END_REF]Lemma 2.2], and this extends easily to the general case d ≥ 1.

Moreover, we will need the Gagliardo-Nirenberg type inequality: for p > 1 and p ≥ m -1, The computation, which lead to [START_REF] Landkof | Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften. Band[END_REF], consists in getting a differential inequality of the form d dt |u| p dx ≤ -K u a p u -b 1 for some positive constant K and where a and b appear in [START_REF] Stein | Singular Integrals and Differentiability Properties of Functions[END_REF]. Multiply (1) by u p-1 with p > 1, integrate by parts, and use the relation

u a p ≤ C N ∇ α 2 |u| r 2 2 
∇ • ∇ α-1 = -(-∆) α 2 to get 1 p d dt u p dx = -(p -1) u p-1 ∇u • ∇ α-1 (u m-1 ) dx = - p -1 p u p (-∆) α 2 u m-1 dx ≤ - 4(p -1)(m -1) (p + m -1) 2 ∇ α 2 u p+m-1 2 2 2
after applying the Stroock-Varopoulos inequality [START_REF] Liskevich | Some problems on Markov semigroups, Schrödinger operators[END_REF] with w = u m-1 and q = p m-1 + 1. To estimate the right hand side of the above inequality, we use [START_REF] Stein | Singular Integrals and Differentiability Properties of Functions[END_REF]. We finally have: .

Of course, this is sufficient to get the conclusion of Theorem 3.1 for each 1 ≤ p < ∞ since 1 

α+d

  dans le cas m = 2 et telle que |u 0 (x)| ≤ Ce -c|x| pour deux constantes C et c. Calcul formel 1 (Asymptotique du problème de Cauchy) Étant donnée une fonction 0≤ u 0 ∈ L 1 (R d ) ∩ L ∞ (R d ), les normes L p (R d ), 1 ≤ p < ∞,des solutions faibles u tendent vers 0 quand t → ∞ avec le taux algébrique suivant u(t) p ≤ C(d, α, m, p) u 0

1 d

 1 (m-1)+α , and is min α 2(m-1) , 1 -Hölder continuous at the interface |x| = Rt 1 d(m-1)+α .

1 ) 2 , 2 , 1 and u r 2 ≤ u δ p u 1 -δ 1 ,

 122111 and r = p + m -1. This inequality is a consequence of the Nash inequality[START_REF] Magnus | Formulas and theorems for the special functions of mathematical physics[END_REF] written for v = |u| r and two Hölder inequalities for the L q norms: u p ≤ u γ r u 1-γ which hold with γ = pthe above three inequalities, we get[START_REF] Stein | Singular Integrals and Differentiability Properties of Functions[END_REF].

d dt |u| p dx ≤ -K u a p u -b 1 5 with K = 1 CN 2 . 1 ap - 1 .

 51211 The above inequality leads to the differential inequalityd dt f (t) ≤ -KM -b f (t) a pfor the function f (t) = u(t) p p , M = u 0 1 , and a/p > 1, which immediately gives the algebraic decay of the L p norms for p ≥ m -1:f (t) ≤ K a p -1 M -b t-Finally, we obtain the desired estimate with C(d, α, m, p)

a p - 1 =

 1 d(p-1) d(m-1)+α , and interpolating between L 1 (R d ) and L p (R d ) with p sufficiently large.Remark 3.2 In our recent work[START_REF] Biler | Nonlocal porous medium equation: Barenblatt profiles and other weak solutions[END_REF], we present a more subtle iterative argument, which allows us to show that also u(t) ∞ ≤ C u 0 for all t > 0.
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