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Abstract

We study a generalization of the porous medium equation involving nonlocal terms. In particular, the L
p decay of

solutions of the Cauchy problem is proved. Explicit self-similar solutions with compact support generalizing the KZB
(or Barenblatt) solutions are constructed in the case corresponding to transport equation with a nonlocal velocity.

Résumé

Équation des milieux poreux fractionnaire

Cette Note est consacrée à l’étude d’une généralisation non locale de l’équation des milieux poreux. On obtient
en particulier des estimations L

p des solutions du problème de Cauchy. On exhibe aussi des formules explicites de
solutions auto-similaires à support compact qui ont sensiblement la même structure que celle bien connue de KZB
(or Barenblatt) dans le cas important où l’équation est de type transport avec une loi de vitesse non-locale.

Version française abrégée
Nous considérons le problème de Cauchy pour l’équation non-locale suivante

∂tu −∇ · (|u|m−1∇α−1u) = 0, (1)

avec m ≥ 1, x ∈ R
d, α ∈ (0, 2), t > 0, à laquelle on ajoute une condition initiale du type u(0, x) = u0(x)

avec u0 ∈ L1(Rd). ∇α−1 est un opérateur intégral singulier généralisant le gradient usuel (α = 2) et lié
au laplacien fractionnaire. Quand m = 2 et que la solution est positive, l’équation (1) est une équation de
transport avec une vitesse non-locale.

Etant donné que l’équation (1) est dégénerée, une approximation parabolique ou une régularisation sont
utilisées pour montrer l’existence de solutions

∂tu −∇ · (|u|m−1∇α−1u) = ε∆u, ∂tu −∇ · ((ε + |u|m−1)∇α−1u) = 0 (2)

avec ε > 0.
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Les résultats principaux de cette note sont des estimations en norme Lp(Rd) de la solution du problème
de Cauchy avec m ≥ 1. Ensuite, dans le cas m = 2, on obtient de formules explicites pour des solutions
auto-similaires qui se propagent à une vitesse finie.

Théorème 1 (Le problème de Cauchy et l’asymptotique)
(i) Étant donnée une fonction u0 ≥ 0 telle que u0 ∈ L1(Rd) ∩L∞(Rd), il existe une solution du problème

de Cauchy pour (1) qui est positive, globale en temps, et de masse constante :
∫

u(t, x) dx =
∫

u0(x) dx.
(ii) Les normes Lp(Rd) (1 ≤ p < ∞) de chaque solution u tendent vers 0 quand t → ∞ avec le taux
algébrique suivant

‖u(t)‖p ≤ C(d, α, m, p)‖u0‖

m−1
p

+ α
d

m−1+ α
d

1 t
−

p−1

m−1+ α
d .

Théorème 2 (Solutions auto-similaires) La fonction

u(t, x) = Ct−
d

d+α

(

1 − |x|2t−
2

d+α

)
α
2

+

est une solution auto-similaire de l’équation (1) pour m = 2.

1. Introduction

We study a nonlocal generalization of the porous medium equation

∂tu −∇ · (|u|m−1∇α−1u) = 0, (1)

where m ≥ 1, α ∈ (0, 2), x ∈ R
d, t > 0, supplemented with the following initial condition in L1(Rd)

u(0, x) = u0(x). (2)

The pseudodifferential (vector-valued) operator ∇β in (1) is defined via the Fourier transform as ∇βu =
F−1(iξ|ξ|β−1Fu). This definition is consistent with the usual gradient: ∇1 = ∇; the components of ∇0

are the Riesz transforms; moreover we have ∇ · ∇α−1 = ∇
α
2 · ∇

α
2 = −(−∆)

α
2 , where (−∆)

α
2 denotes the

fractional Laplacian operator: (−∆)
α
2 u = F−1(|ξ|αFu). It can also be defined as follows ∇α−1u = ∇I2−αu,

where Iβ for β ∈ (0, 2) is the integral smoothing operator

Iβ(u)(x) = −Cβ

∫

u(x + z) − u(x)

|z|d−β
dz

with some Cβ > 0.
Notice that for α = 2 we recover the Boussinesq equation (m = 2), and the porous media equation

(m > 1): ∂tu = ∇ · (|u|m−1∇u), t > 0, x ∈ R
d.

In the case m = 2 and for nonnegative initial data u0, the equation (1) is of transport type ∂tu+∇·(uv) = 0
with a nonlocal velocity v = −∇I2−αu.

Related works and results. Recently, L. Caffarelli and J. L. Vázquez [3] studied (1) in the case m = 2. They
proved the existence of weak solutions for non-negative bounded integrable initial data (with proper decay
at infinity). They also treat the case of bounded and compactly supported initial data, which propagate with
finite speed. By this paper, we contribute to those results showing optimal decay Lp-estimates of solutions
and constructing explicit compactly supported self-similar solutions.

Equation (1) is also a multidimensional generalization of the one studied in [2, (2.12)] when d = 1 and
m = 2 (for the integral of u) as a model of the dynamics of dislocations in crystals. The structure of (1)
suggests that it should enjoy the conservation of mass and nice comparison properties as was shown in [2].
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To some extent, (1) is also comparable to either the classical granular media equation or the aggregation
equation without viscosity ∂tu = ∇ · (u(∇K ∗ u)) studied in, e.g., [9]. Indeed, the Fourier multiplier ∇β has
an integral form which is quite similar to ∇K∗ . Note that, however, rather restrictive assumptions on K
are made in [9], assumptions which do not permit one to use the diffusive character of the equation (1);
moreover, restrictive smoothness assumptions are made on u0.

A related equation ∂tu = ∇·(u3∇(−∆)1/2u) is studied in [6]. It formally corresponds to (1) with α = m =
3; it can also be seen as the fractal version of the classical thin film equation. Such a nonlocal higher order
equation appears in the modeling of propagation of fractures in rocks. For this reason, it is expected to enjoy
a finite propagation speed property as the classical one. Since this equation is of order 3, the mathematical
analysis is more involved and additional technical efforts are necessary to prove the existence of global in
time nonnegative solutions.

2. The Cauchy problem and asymptotics

Our first main result states that good Lp estimates for solutions of (1)–(2) can be obtained.

Theorem 2.1 (Existence and decay of solutions for the Cauchy problem)
(i) Suppose that u0 ≥ 0 is such that u0 ∈ L1(Rd) ∩ L∞(Rd).
There then exists a unique global in time nonnegative solution u of (1)–(2) such that

∫

u(t, x) dx =
∫

u0(x) dx.
(ii) the Lp(Rd) norms (1 ≤ p < ∞) of each solution u decay algebraically as t → ∞

‖u(t)‖p ≤ C(d, α, m, p)‖u0‖

m−1
p

+ α
d

m−1+ α
d

1 t
−

p−1

m−1+ α
d .

The strategy of the proof of existence of solutions is to consider either solutions u = uε of

∂tu −∇ · (|u|m−1∇α−1u) = ε∆u, if α ∈ (0, 1] (3)

or

∂tu −∇ · ((ε + |u|m−1)∇α−1u) = 0, if α ∈ (1, 2) (4)

and then pass to the limit ε ց 0. Solutions of the approximating equation (3) exist because the term ε∆u
is strong enough to regularize (1) when 0 < α ≤ 1, to be compared with the construction achieved in [2,
Sec. 4, 5] via viscosity solutions. For the regularized equation (4) with α ∈ (1, 2), first one studies the time
discretized problem whose solutions are obtained via theory of pseudomonotone operators. We follow here
[6], keeping in mind that our problem is simpler since it is of order α ∈ (0, 2). In particular, it is easier
than in [6] to pass to the limit in the nonlinear term since the operator I2−α is regularizing. The necessary
estimates on the uniform boundedness of approximating solutions uε will follow easily when the a priori
Lp(Rd) decay estimates are derived, see below.

In order to prove the announced nonnegativity property as well as the Lp estimates of solutions (similar
to those for degenerated partial differential equations like the porous medium equation in [4, Ch. 2]), we
recall the generalized Kato inequalities

∫

(−∆)
α
2 w sgnw dx ≥ 0,

∫

(−∆)
α
2 w w+ dx ≥ 0,

∫

(−∆)
α
2 w w− dx ≤ 0, (5)

where w+ = max{0, w}, w− = max{0,−w}, and the Stroock–Varopoulos inequality

∫

(−∆)
α
2 w|w|p−2w dx ≥

4(p − 1)

p2

∫

∣

∣

∣
∇

α
2 |w|

p
2

∣

∣

∣

2

dx (6)
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valid for each w ∈ Lp(Rd) such that (−∆)
α
2 w ∈ Lp(Rd). Note that the constant in (6) is the same as for the

usual Laplacian operator −∆ (α = 2). The proof is given, e.g., in [10, Prop. 1.6] and [10, Th. 2.1, combined
with the Beurling–Deny condition (1.7)].

Inequalities (5) are used to prove the nonnegativity property of solutions of (1) with nonnegative data
(2). Note that ‖u(t)‖1 = ‖u0‖1 for nonnegative solutions of (1)–(2).

We give below a formal argument involving (6) which, in fact, can be applied to nonnegative solutions
of each of the approximating equations (3), (4), and leads to the Lp decay estimates. Multiply (1) by up−1

with p > 1 and integrate by parts to get

1

p

d

dt

∫

|u|p dx = −(p − 1)

∫

um−1up−2∇α−1u · ∇u dx

≤−
p − 1

p + m − 2

∫

up+m−2(−∆)
α
2 u

≤−
4p(p − 1)

(p + m − 1)2

∥

∥

∥
∇

α
2

(

u
p+m−1

2

)∥

∥

∥

2

2
(7)

after applying the Stroock–Varopoulos inequality (6). To estimate the right hand side of the above inequality,
we use the Nash inequality

‖v‖
2(1+ α

d
)

2 ≤ CN‖∇
α
2 v‖2

2‖v‖
2α
d

1 (8)

valid for all functions v with v ∈ L1(Rd), ∇
α
2 v ∈ L2(Rd) with a constant CN = C(d, α). The proof of (8)

for d = 1 can be found in, e.g., [7, Lemma 2.2], and this extends easily to the general case d ≥ 1. Moreover,
we will need for 1 < p ≤ r ≤ 2p and r = p + m − 1 (i.e. m ≥ 1, p ≥ m − 1), the Gagliardo–Nirenberg type
inequality

‖u‖a
p ≤ CN

∥

∥∇
α
2 |u|

r
2

∥

∥

2

2
‖u‖b

1 (9)

with a = p
p−1

d(r−1)+α
d and b = pα+d(r−p)

d(p−1) . This inequality is a consequence of the Nash inequality (8) written

for v = |u|
r
2 , i.e. ‖u‖

r(1+α
d
)

r ≤ CN

∥

∥∇
α
2 |u|

r
2

∥

∥

2

2
‖u‖

rα
d

r
2

, and two Hölder inequalities for the Lq norms:

‖u‖p ≤ ‖u‖γ
r‖u‖

1−γ
1 , ‖u‖ r

2
≤ ‖u‖δ

p‖u‖
1−δ
1 ,

which hold with γ = p−1
r−1

r
p and δ = r−2

p−1
p
r . Combining the above three inequalities, we get (9). This permits

us to write
1

p

d

dt

∫

|u|p dx ≤ −K‖u‖a
p‖u‖

−b
1

with some positive constant K. The above inequality leads to the differential inequality

d

dt
f(t) ≤ −KM−bf(t)

a
p

for the function f(t) = ‖u(t)‖p
p, M = ‖u0‖1, and a/p > 1, which immediately gives the algebraic decay of

the Lp norms, p ≥ m − 1, of all the approximating solutions u = uε of either (3) or (4) with the bounds

independent of ε > 0: f(t) ≤
(

K
(

a
p − 1

)

M−b t
)

−
1

a
p
−1

. Of course, this is sufficient to get the conclusion

of Theorem 2.1 iii) for all the solutions of (1) and all 1 ≤ p < ∞, since 1
a
p
−1 = d(p−1)

d(m−1)+α , remember that

r = p + m − 1, and finally interpolate between L1(Rd) and Lp(Rd), with p sufficiently large.

3. Self-similar solutions

The next step is to construct nonnegative self-similar solutions in the case m = 2. We look for solutions
that are invariant under some scalings and with a prescribed mass. A classical dimensional analysis permits
us to conclude that solutions should be of the following form
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u(t, x) =
1

tdλ
Φα,m

( x

tλ

)

, λ =
1

(m − 1)d + α
, y =

x

tλ
, (10)

for some function Φα,m : R
d → R

+ satisfying the following elliptic equation R
d

− λ∇ · (yΦα,m) = ∇ ·
(

Φm−1
α,m ∇α−1Φα,m

)

. (11)

In the case m ≥ 1, this equation reduces to some Dirichlet problem; it is worth mentioning that this is not
true anymore for fast diffusions, that is to say when m < 1.

Theorem 3.1 (Self-similar solutions) For m = 2, the function u : (0,∞) × R
d → R

+ defined by (10),
with

Φα,2(y) = C(1 − |y|2)
α
2

+ ,

i.e.

u(t, x) = Ct−
d

d+α

(

1 − |x|2t−
2

d+α

)
α
2

+

and a positive constant C, is a (α
2 -Hölder continuous) solution of (1), in the pointwise sense for |x| 6= 1.

When α = 2, we recover the classical KZB (or Barenblatt) formulas, see, e.g., [12].

Theorem 3.1 implies that the decay rate in Theorem 2.1, iii) is optimal. Indeed, it exactly corresponds to
that for self-similar solutions.

Proof of Theorem 3.1. As explained above, the problem of determining self-similar solutions reduces
to the study of the elliptic equation (11). First, it is natural to look for solutions Φ such that −λyΦ =
Φm−1∇α−1Φ. Now, since we want to construct a compactly supported solution, we look for nonnegative
solutions Φ vanishing outside the unit ball B1 ⊂ R

d, and such that −λy = Φm−2∇α−1Φ in B1.
We also emphasize that the homogeneous Dirichlet condition here should be understood in the form Φ ≡ 0

outside B1, and not Φ = 0 only on ∂B1. See [1] and also [2] for more details.
The proof of Theorem 3.1 is reduced to the following fundamental technical lemma.

Lemma 3.2 For all β ∈ (−1, 1) and γ ∈ (0, 1), we have for each y ∈ B1

Iβ

(

(1 − |y|2)
γ

2

+

)

= Cγ,β,d × 2F1

(

d − β

2
,−

γ + β

2
,
d

2
, |y|2

)

with Cγ,β,d = 2−β Γ( γ

2
+1)Γ( d−β

2 )
Γ( d

2 )Γ(β+γ

2
+1)

, and where 2F1 denotes the hypergeometric function.

This formula is obtained through a tedious computation involving the Weber–Schafheitlin integrals, [11,

p. 99]). Remark next that when β + γ = 2, it is known that 2F1

(

d−β
2 ,−1, d

2 , z
)

= 1 − d−β
d z.

Corollaries of Lemma 3.2 We would like to shed some light on the fact that two more pieces of information
can be derived from Lemma 3.2.

• First, when β + γ < 2 (here β = 2− α, γ = α
m−1 , m 6= 2), the previous computation permits one to prove

that if self-similar solutions exist, they are certainly not of the form C(1 − |y|2)
γ
2

+ .

• Second, we can deduce from Lemma 3.2 the following corollary which was proved by Getoor [5], see also
[8, App.].

Corollary 3.3 For all α ∈ (0, 2], the identity

Kα,d(−∆)
α
2 (1 − |y|2)

α
2 = −1 in B1

holds with Kα,d =
Γ( d

2 )
2αΓ(1+ α

2 )Γ( d+α
2 )

.
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