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a b s t r a c t

A study of direction-based models for the representation of isotropic and anisotropic hyperelastic behav-
iour of rubber-like materials is proposed. The interest in such models is sustained by their ability to
account for the Mullins effect induced anisotropy. For such a purpose, the directional models should
be initially isotropic and representative of the hyperelastic behaviour of rubber-like materials. Various
models were defined according to different sets of directions. Models were tested in terms of their initial
anisotropy and their ability to reproduce the classic full-network hyperelastic behaviour. Various models
were proved to perform very well.

1. Introduction

Rubber-like materials are made of very long macromolecular
chains crosslinked into three-dimension polymer networks. The
length of the chains enables the high deformability and the net-
work structure provides the material with elasticity.

The early theory accounting for rubber elasticity is based on the
statistical treatment of the network defined by the assembly of
chains consisting of bonds of random directions in space. It is
grounded on a thermodynamics analysis showing that large defor-
mations in rubber-like materials result from a change of entropy.
The total entropy change of a bulk material is obtained by summa-
tion of the change of entropy of each chain. Explicit macromolecu-
lar models were first introduced for specific chain configurations in
the 40s. (An extended account of the macromolecular theory of
rubber elasticity may be found in Treloar (1975).)

Usually, the spatial distribution of chain orientations in a virgin
bulk material draws a sphere, which explains the initial isotropy of
rubbers. Treloar (1954) accounted for such a representation in the
full-network model and Treloar and Riding (1979) computed the
integration over the surface of a sphere of the elementary change
of entropy. Although, this model was shown later to drive to con-
stitutive relations depending on simple elliptic integrals (Perrin,
2000), it proved to be difficult to handle in finite element analysis.
In an effort of simplification, Wu and van der Giessen (1993) suc-
cessfully approximated the full integration model by combining
the 3-chain (Wang and Guth, 1952) and the 8-chain (Arruda and
Boyce, 1993) models. In these last models, the actual network is

represented by a finite number (3 and 8, respectively) of directions,
which follows the principal directions of the gradient deformation
tensor in order to satisfy to the isotropy of the material. This drives
to simple analytical stress–strain relations. The main drawback of
such models stands in their inability to evolve from isotropic mod-
els to anisotropic ones. Indeed, rubber-like materials exhibit in-
duced anisotropy due to mechanical loadings. More precisely,
during the first loading, the virgin material undergoes a stress-soft-
ening known as the Mullins effect (reviewed in Mullins (1969) and
Diani et al. (2009)), which is much more important in the direction
of stretch than in the other ones (Mullins, 1948, 1949; Laraba-
Abbes and Ienny, 2003; Hanson et al., 2005; Diani et al., 2006).
Anisotropy may also arise from the manufacturing process (Robis-
son, 2000; Diani et al., 2004) or from a structural effect like in rub-
ber composites reinforced by fibbers (Nechwatal et al., 2008).

In order to fit an anisotropy resulting from the Mullins effect,
the manufacturing process or the material structure, material
direction-based constitutive models were recently introduced
(Diani et al., 2004, 2006; Göktepe and Miehe, 2005). These models
are very much alike the macromolecular ones except for the choice
of directions, which do not follow the principal directions of the
gradient deformation but are materials. The set of directions is
chosen according to the initial isotropy or anisotropy of the mate-
rial. Isotropic virgin rubbers may transform into anisotropic mate-
rials, as the result of material softening in specific directions
according to the loading history (Göktepe and Miehe, 2005; Diani
et al., 2006). Therefore, in a material direction-based model, the
number of directions must be sufficient to provide with initial isot-
ropy and must be limited to favour finite element computations.

In a context of infinitesimal strains, Bažant and Oh (1986) intro-
duced various sets of directions and evaluated the anisotropy of
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the non-linear elastic modelled materials, by comparing the stress
responses to a uniaxial stretch according to the direction of
stretching. Estimating the anisotropy of a mechanical behaviour
law is still of actuality in linear elasticity (Moakher and Norris,
2006). In order to assess the anisotropy of the non-linear hyper-
elastic models for various types of loadings, we defined anisotropy
rates depending on the loading intensity and the loading type,
which are characterized by two invariants of the logarithmic strain
tensor. The anisotropy rates were computed and plotted for vari-
ous discrete representations of the affine full network, not limited
to the directions reported by Bažant and Oh (1986). As expected,
the model anisotropies depend on the number and orientations
of the directions. The low-anisotropy models compared favourably
to the full-network model, diverging for loadings of extreme inten-
sity only.

2. Material direction-based constitutive models

2.1. Constitutive equations

Rubber-elastic materials may be characterized by a strain–en-
ergy function W depending on the deformation gradient F. In the
case of directional models, the strain–energy function is defined
by:

W F
� �

¼ m
Xm

i¼1

xiwðv iÞ ð1Þ

where v i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F ui
� �T

� F ui
� �r

is the stretch applied in the direction

defined by the unit vector ui, the parameter xi characterizes the
weight matching direction ui and

P
ixi ¼ 1, w is the elementary

strain energy, and m is the number of directions. In the case of ideal
isotropy, every direction is equally balanced, their number m tends
toward infinity. In such a case, the strain–energy density (1) trans-
forms into:

W F
� �

¼ m
4p

Z p

h¼0

Z 2p

/¼0
wðvÞds with ds ¼ sin hdhd/ ð2Þ

which corresponds to the full-network model strain–energy density
(Treloar and Riding, 1979). From a macromolecular point of view, m
characterizes the density of chains supporting the stresses, from a
mechanical point of view, m is proportional to the material shear
modulus.

The elementary strain energy density, w, may be chosen of var-
ious forms. In this study, we adopt to use the elementary strain en-
ergy provided by the macromolecular models. In the latter ones, w
arises from a statistical calculation of the macromolecular entropy
of a single molecular chain. It writes as:

wðvÞ ¼ kBTN bðvÞ vffiffiffiffi
N
p þ ln

bðvÞ
sinh bðvÞ

� �� �
with bðvÞ ¼ L�1 vffiffiffiffi

N
p
� �

which leads to
dw
dv ¼ kBT

ffiffiffiffi
N
p

L�1 vffiffiffiffi
N
p
� �

ð3Þ

where kB is Boltzmann’s constant, T the absolute temperature, and v
cannot exceed

ffiffiffiffi
N
p

, which designates the limit of extension of the
chains. The function L�1 is the inverse of the Langevin’s function
LðxÞ ¼ cothðxÞ � 1

x and was introduced by Kuhn and Grün (1942)
for an account of large deformations. For analytical and numerical
conveniences, it is usually approximated by a Padé approximant
or a polynomial function introduced by Cohen (1991) and Kuhn
and Kuhn (1946), respectively:

L�1
Pad�eðxÞ ¼ x

3� x2

1� x2

L�1
PolyðxÞ ¼ 3xþ 9

5
x3 þ 297

175
x5 þ 1539

875
x7 þ 126117

67375
x9 þ � � �

ð4Þ

The error involved in the use of an approximation is shown in Fig. 1.
Both approximants provide with a very good approximation of the
inverse Langevin function as long as x 6 0:8. For x 2�0:8;1½, which
corresponds to deformations close to the limit of extension, the
Padé approximant is to be preferred.

Considering an incompressible isotropic rubber characterized
by (1), the Cauchy stress tensor writes as:

r ¼ oW

oF
FT � p1 ð5Þ

where p is a Lagrange Multiplier resulting from the incompressibil-
ity assumption. The latter assumption is favoured by infinitesimal
volume changes in rubbers when submitted to loading conditions
such as uniaxial tension, biaxial tension, pure shear, etc.

Let us note that when considering the special cases for which
the deformation gradient F is symmetric, one may write the prin-
cipal Cauchy stresses ri as,

rk ¼ ~rk � p 8k ¼ f1;2;3g ð6Þ

where ~rk writes as,
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Fig. 1. Normalized difference between the inverse Langevin function L�1 and its approximants (4).



~rk ¼ m
Xm

i¼1

xikBT
ffiffiffiffi
N
p

L�1 v iffiffiffiffi
N
p
� �

ov i

okk
kk ð7Þ

when the elementary strain energy density w is defined by (3) and
when the three principal stretches, defining the eigenvalues of F,
are noted k1 P k2 P k3 P 0 ðk1k2k3 ¼ 1Þ. Note that when ui is de-
fined by ui

1;u
i
2;u

i
3

� �
in BF the principal basis of F, ov i

okk
¼ kkðui

k
Þ2

v i .
One notes that Eqs. (6) and (7) depend strongly on the number

and the orientations of the model directions. In the following sec-
tion, we introduce various sets of directions, which could apply.

2.2. Sets of directions

Bažant and Oh (1986) calculated and reported several sets of
directions appropriate for efficient numerical integrations on the
surface of a sphere. Each set of directions is defined by the vectors
connecting the center to the vertices of a specific polyhedron
(Fig. 2). New polyhedrons are defined by adding vertices at the cen-
ters of the edges or faces of existing polyhedrons. In order to
achieve accurate integrations of polynomial functions, directions
are balanced by specific weights, xi. The coordinates of the vectors
and the values of their weights are listed in Bažant and Oh (1986).
We exploited five sets of directions of 32, 42, 66, 74 and 122 direc-
tions, respectively. Bažant and Oh (1986) defined the degree of a
set of directions by the maximum degree of the polynoms exactly
integrated on the surface of the sphere by the discrete system. The
32 and 42-point sets are 9th-degree, the 66-point is a 11th-degree
set, while the 74-point and the 122-point are 13th-degree sets, but
the 122-point is not fully symmetric, which will discuss later.

A second family of sets of directions was built using a simple
iterative process. From a first set of directions, we start a larger
set of directions consisting of the directions of the previous set
added of new directions defined by the vectorial sum of three
existing directions and their orthogonal symmetries (Fig. 2). Start-
ing with the orthogonal basis e1; e2; e3

� �
, one builds a first set of six

directions, u1 ¼ e1;u2 ¼ e2;u3 ¼ e3;u4 ¼ �e1;u5 ¼ �e2;u6 ¼ �e3
� �

.
Then at the first step of the iterative process, 14 directions are de-
fined using: u1; u2; u3 and their symmetries �u1; �u2; �u3 added

of u7 ¼ u1þu2þu3ffiffi
3
p and its seven symmetries: �u1�u2�u3ffiffi

3
p ;

�u1þu2þu3ffiffi
3
p ;

u1�u2þu3ffiffi
3
p ;

u1þu2�u3ffiffi
3
p ;

�u1�u2þu3ffiffi
3
p ;

u1�u2�u3ffiffi
3
p ; and �u1þu2�u3ffiffi

3
p . At the second

step, 38 directions are built based on u1; u2; u3; u7
� �

(see Table 1).
Following this process, we built sets of 6, 14, 38 and 110 directions.
For each set of directions, we note that if ui is one of the set direc-
tion that �ui is also. Like in the case of the direction sets based on
polyhedron geometries, weights xi may be calculated according to

procedure reported in Bažant and Oh (1986) to obtain the highest
degree for each sets. The direction coordinates, ui ui

1;u
i
2;u

i
3

� �
, and

weights xi, are reported in Tables 1 and 2 for the 7th-degree 38-
direction and the 9th-degree 110 direction sets, respectively.

Fig. 2. Construction of material directions. Left: sets of directions are defined by the
vertices of polyhedrons, which are built one from the other by adding vertices at the
center of the faces or edges (see Bažant and Oh (1986) for more details). Right: sets
of material directions are built using an iterative scheme, directions of a new set
being defined by the directions of the previous set added of the vectorial sums of
three directions existing at the previous iteration.

Table 1
Direction and weights of the 2 � 19-direction set.

ui
� �

1 ui
� �

2 ui
� �

3
xi

1 1.0 0.0 0.0 0.0584319
2 0.0 1.0 0.0
3 0.0 0.0 1.0

4 0.577350269 0.577350269 0.577350269 0.0436761
5 �0.577350269 0.577350269 0.577350269
6 �0.577350269 �0.577350269 0.577350269
7 0.577350269 �0.577350269 0.577350269

8 0.684550319 0.684550319 0.250562807 0.0125000
9 0.250562807 0.684550319 0.684550319

10 0.684550319 0.250562807 0.684550319
11 �0.684550319 0.684550319 0.250562807
12 �0.250562807 0.684550319 0.684550319
13 �0.684550319 0.250562807 0.684550319
14 �0.684550319 �0.684550319 0.250562807
15 �0.250562807 �0.684550319 0.684550319
16 �0.684550319 �0.250562807 0.684550319
17 0.684550319 �0.684550319 0.250562807
18 0.250562807 �0.684550319 0.684550319
19 0.684550319 �0.250562807 0.684550319

Table 2
Direction and weights of the 2 � 55-direction set.

ui
� �

1 ui
� �

2 ui
� �

3
xi

1–3 Coordinates defined Table 1 0.03735430
4–7 Coordinates defined Table 1 0.00269572
8–19 Coordinates defined Table 1 0.01250000

20 0.831826946 0.464071197 0.304469794 0.00630984
21 0.703227911 0.703227911 0.104599285
22 0.464071197 0.831826946 0.304469794
23 0.304469794 0.831826946 0.464071197
24 0.104599285 0.703227911 0.703227911
25 0.304469794 0.464071197 0.831826946
26 0.464071197 0.304469794 0.831826946
27 0.703227911 0.104599285 0.703227911
28 0.831826946 0.304469794 0.464071197
29 �0.831826946 0.464071197 0.304469794
30 �0.703227911 0.703227911 0.104599285
31 �0.464071197 0.831826946 0.304469794
32 �0.304469794 0.831826946 0.464071197
33 �0.104599285 0.703227911 0.703227911
34 �0.304469794 0.464071197 0.831826946
35 �0.464071197 0.304469794 0.831826946
36 �0.703227911 0.104599285 0.703227911
37 �0.831826946 0.304469794 0.464071197
38 �0.831826946 �0.464071197 0.304469794
39 �0.703227911 �0.703227911 0.104599285
40 �0.464071197 �0.831826946 0.304469794
41 �0.304469794 �0.831826946 0.464071197
42 �0.104599285 �0.703227911 0.703227911
43 �0.304469794 �0.464071197 0.831826946
44 �0.464071197 �0.304469794 0.831826946
45 �0.703227911 �0.104599285 0.703227911
46 �0.831826946 �0.304469794 0.464071197
47 0.831826946 �0.464071197 0.304469794
48 0.703227911 �0.703227911 0.104599285
49 0.464071197 �0.831826946 0.304469794
50 0.304469794 �0.831826946 0.464071197
51 0.104599285 �0.703227911 0.703227911
52 0.304469794 �0.464071197 0.831826946
53 0.464071197 �0.304469794 0.831826946
54 0.703227911 �0.104599285 0.703227911
55 0.831826946 �0.304469794 0.464071197



In order to provide the reader with a visual sense of the distri-
bution of the directions, each direction set has been represented
using a Lambert azimuthal projection in Fig. 3. In this Figure, we
observe that the 66-direction and the 122-direction sets reported
in Bažant and Oh (1986) seems to offer a relatively uniform distri-
bution of orientations.

2.3. Material anisotropy

In order to assess the initial isotropy of a material direction-
based model, one has to define a measure of anisotropy. It is simple
to verify that some models are anisotropic but it is delicate to com-
pare them in terms of their anisotropy. For example, Bažant and Oh
(1986) evaluated the anisotropy of each of their models by calcu-
lating the difference between the uniaxial stresses resulting from
a uniaxial tension according to various directions. In order to ex-
tend this anisotropy characterization to all kind of loading condi-
tions, we propose to characterize the loading conditions by

heq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln k1Þ2 þ ðln k2Þ2 þ ðln k3Þ2

q
and q ¼ 3 ln k2

ln k1�ln k3
, the invariants

of the logarithmic tensor H ¼ 1
2 ln F FT , instead of k1; k2; k3. Indeed,

heq and q designate the intensity of deformation and the type of
deformation, respectively. By definition heq P 0 and q varies from
�1, corresponding to a uniaxial compression or equi-biaxial ten-
sion, to +1, characterizing the uniaxial tension. Then, the parameter
of anisotropy may be calculated according to the type of loadings
for an identical intensity of deformation. For this purpose, we
introduce R, a matrix of rotation defined by three angles ðh;/;wÞ,
and which defines the rotation transforming the basis of the mate-
rial direction basis BD into the basis defined by the eigenvectors of
C. Then, we define the anisotropy parameter A by,

A ¼
max
ðh;/;wÞ

Xðheq;qÞ � min
ðh;/;wÞ

Xðheq;qÞ

max
ðh;/;wÞ

Xðheq;qÞ
ð8Þ

X designating a measure of the material ‘‘response” to the applied
deformation. Many quantities may apply to X, we consider three
of them,

� The strain–energy density:

X ¼W ð9Þ

� The von Mises equivalent stress:

X ¼ req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

s2
1 þ s2

2 þ s2
3

� �r
ð10Þ

sk being the principal stresses of the deviatoric part of the Cau-
chy stress tensor.

� The Tresca equivalent stress:

X ¼ max
k;l
jrk � rlj ð11Þ

The degree of anisotropy, A, defined accordingly to (9),can be
easily estimated for any kind of loadings (symmetric and non-sym-
metric deformation gradient tensors). Values of X for (10) or (11)
are more difficult to reach in the case of non-symmetric deforma-
tion gradient tensors than for symmetric ones. Therefore, for rea-
sons of simplicity and as a first approach, we limited ourselves to
the cases of loadings inducing symmetric deformation gradient ten-
sors. We note that for every expression of X, A is null when the
material is isotropic. Anisotropy A depends on the set of directions
and their respective weights and on the material parameter N.

Fig. 3. Lambert azimuthal projection of the direction sets.



2.4. Approximation of the full integration

Initially isotropic rubber-like materials are made of randomly
oriented macromolecular chains. For such a reason, the full-net-
work model, (2) consisting of a full integration over a sphere, ap-
pears as a realistic representation of the contribution of each
macromolecule. As mentioned earlier, directional models, based
on a discrete summation over a number of chosen directions, were
developed for anisotropic materials and also for initially isotropic
materials evolving towards anisotropic ones. Within isotropic
assumption, directional models should compare favourably to the
full-network model.

Denoting md and Nd, and mf and Nf , the parameters of the direc-
tional models and the full-network model, respectively, these
parameters must satisfy to certain conditions in order to fit the
same material behaviour. Since

ffiffiffiffiffiffi
Nd

p
represents the maximal

stretch sustained by the model directions, assuming Nf ¼ Nd will
guaranty the same limit of extension in the privileged directions.
Considering md ¼ mf will compare two materials of identical initial
stiffness (same shear modulus).

In the following, models will be compared with respect to the
anisotropy rates and the full-network representation.

3. Results and discussion

3.1. Anisotropy of discrete networks

In order to first evaluate the sensitivity of the anisotropy rates
defined according to the parameters X in (9)–(11), we computed
values of A for the 6-direction model. The intensity of loading is
set to one ðheq ¼ 1Þ and q varies in the range of [-1,1] covering
every loading conditions from equi-biaxial tension to uniaxial ten-
sion. Results are shown in Fig. 4 for a material with N = 26 (this va-
lue corresponds to the fit of classic data (Arruda and Boyce, 1993)).
For the three anisotropy rates, the uniaxial tension ðq ¼ 1Þ appears
to be the most discriminant in terms of isotropy. The energy-based
anisotropy rate shows significantly lower values then the other
anisotropy rates; the strain energy appears to be insufficient to
track the anisotropy of the models. The anisotropy rate based on
the Tresca equivalent stress shows a particular drop when q tends
toward �1. This particular feature was observed for the 6-direction
model only and thus has to be related to the low number of direc-
tions creating a discontinuity. In the following, only values of the
anisotropy rate calculated with the von Mises equivalent stress

(10) will be presented. Indeed, similar results were obtained with
the Tresca equivalent stress (11) for the results we report.

In order to study the influence of the model parameters N, we
set heq ¼ 1 and q ¼ 1 and computed A as a function of N for the
6-direction model. Fig. 5 illustrates the change of anisotropy vs.
N. A lower limit value of N equal to 10 was set in order to avoid
stretches close of the limit of extension

ffiffiffiffi
N
p� �

. The model anisot-
ropy increases with the decrease of N. Actually, a decrease of N is
equivalent to an increase of the intensity of loading heq, therefore
and as expected, anisotropy increases with the loading intensity.
In the following, every result was obtained with N = 10 in order
to exhibit high anisotropy.

Next, the model anisotropy was computed according to the set
of directions and the type of loading ð�1 6 q 6 1Þ for a loading
intensity of heq ¼ 1. Results provided by the direction sets built
with the iterative scheme are shown in Fig. 6a, while those pro-
vided by the direction sets based on polygons are given in
Fig. 6b. In Fig. 6a, one observes, as expected that the model tends
toward isotropy when increasing the number of directions. None-
theless, direction sets used by Bažant and Oh (1986) provide lower
anisotropies (Fig. 6b). There are interests in choosing the 32-direc-
tion model, since it exhibits lower anisotropy and lower calculation
duration than the 110-direction model. Also, we note that 66-
direction model shows less anisotropy than the 74-direction mod-
el, which supports the visual impression (Fig. 3) of uniform distri-
bution of orientations of the 66-direction model. Finally, we
observe that the 122-direction model is not less anisotropic than
the 66-direction model for all values of q. Actually, for values of
q lower than 0.4, the 66-direction model displays less anisotropy.
This is probably due to the full symmetry property of the 66-direc-
tion model, which is not shared by the 122-direction model.

With this anisotropy investigation done, we now compare the
proposed directional models to the full-network.

3.2. Discrete networks vs. full-network

As mentioned earlier, the full-network is probably the most
intuitive representation for isotropic rubber-like materials. Then,
in order to decide of the interest of the directional models, it is
not only necessary that these models can fit isotropy but also that
they can reproduce the full-network behaviour. For this reason, we
performed a comparison of the discrete networks with the full net-
work assuming, as explained in Section 2.4, Nd ¼ Nf and md ¼ mf .
The difference between the discrete models and the full-network
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Fig. 4. Comparison of the anisotropy rates AðXÞ according to the type of loading conditions for a loading intensity heq ¼ 1 and for the 6-direction model with N = 26.



model in uniaxial tension is shown in Fig. 7 in terms of the error (%)
generated by a discrete integration vs. loading intensity. Fig. 7
shows the ability of directional models to replicate the full-net-
work model for moderate to large stretches according to the mod-
el. Each directional model diverges from the full-network model
when the stretching exceeds a limit. This stretch limit depends

on the direction set but appears to be higher for direction sets
based on polygon geometries. In order to give a quantitative idea
of the stretch limit, we report a difference between the full-nert-
work uniaxial response and the 122-direction model response of
less than 1% for stretches below 306%, when the theoretical stretch
cannot exceed 316% due to the value of N (10).
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Fig. 6. Anistropy of the directional models for an intensity loading of heq ¼ 1 vs. the type of loading ðN ¼ 10Þ. (a) Models based on direction sets built using an iterative
scheme. (b) Models based on Bažant and Oh (1986) direction sets.
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Fig. 5. Anisotropy rate of the 6-direction model in uniaxial tension vs. the model parameter of extension limit N.



4. Conclusion

We investigated specific models referred as directional models,
designed for the representation of the hyperelastic behaviour of
isotropic and anisotropic rubber-like materials. The main interest
of such models is their abilities to evolve from isotropy to anisot-
ropy by a non-homogeneous alteration of the material stiffness
according to the directions. In order to propose an efficient initially
isotropic directional model, we introduced several sets of direc-
tions, and tested the models according to their anisotropies and
their abilities to reproduce the classic full-network isotropic
behaviour. Three parameters of anisotropy were proposed based
on the strain energy density, the Mises equivalent stress and the
Tresca equivalent stress, respectively. Model anisotropy was
estimated according to the direction set, the type of loadings
(although, only loadings with symmetric deformation gradient
tensors were considered so far) and the loading intensity. The uni-
axial tension loading proved to be discriminant to characterize the
model anisotropy. Excellent isotropy performances were obtained
for Bažant and Oh (1986) discrete model. These models were also
successfully compared to the full-network model.
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