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Abstract

In this paper, we present several results concerning vector potentials and scalar
potentials with data in Sobolev spaces with negative exponents, in a not neces-
sarily simply-connected, three-dimensional domain. We then apply these results to
Poincaré’s theorem and to Korn’s inequality.

1 Weak versions of a classical theorem of Poincaré

In this work, (the results of which were announced in [2]), Ω is a bounded open
connected subset of R3 with a Lipschitz-continuous boundary Γ. The notation

X′〈, 〉X denotes the duality pairing between a topological space X and its dual
X ′. The letter C denotes a constant that is not necessarily the same at its
various occurrences.

We begin with a weak version of a well-known theorem of Poincaré. Here as
elsewhere in this paper, “weak” means that the result to which it is attached
holds as well in Sobolev spaces with negative exponents.

Theorem 1.1. Let f ∈ H−m(Ω)3 for some integer m ≥ 0. Then the following
properties are equivalent:

(i) H−m(Ω)3〈f , ϕ〉Hm
0 (Ω)3 = 0 for all ϕ ∈ Vm = {ϕ ∈ Hm

0 (Ω)3; div ϕ = 0},

(ii) H−m(Ω)3〈f , ϕ〉Hm
0 (Ω)3 = 0 for all ϕ ∈ V = {ϕ ∈ D(Ω)3; div ϕ = 0},

(iii) There exists a distribution χ ∈ H−m+1(Ω), unique up to an additive con-
stant, such that f = grad χ in Ω.

If in addition Ω is simply-connected, the above properties are equivalent to:

(iv) curl f = 0 in Ω.

Proof. For the equivalence between (i), (ii) and (iii), we refer to [4]. Since the
implication (iii) =⇒ (iv) clearly holds, it remains to prove that (iv) =⇒ (iii).
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To begin with, let f ∈ H−m(Ω)3 be such that curl f = 0 in Ω. We then use
the same argument as in [8]: We know that there exist a unique u ∈ Hm

0 (Ω)3

and a unique p ∈ H−m+1(Ω)/R (see [5]) such that

∆mu + grad p = f and div u = 0 in Ω. (1)

Hence ∆mcurl u = 0 in Ω so that the hypoellipticity (see [10]) of the polyhar-
monic operator ∆m implies that curl u ∈ C∞(Ω)3. Since div u = 0, we deduce
that ∆u = curl curl u ∈ C∞(Ω)3. This also implies that ∆mu belongs to
C∞(Ω)3 and is an irrotational vector field. By the classical Poincaré theorem,
there exists q ∈ C∞(Ω)3 such that ∆mu = grad q. Thus, f = grad (p + q)
and, thanks to [4] proposition 2.10, the function p + q belongs to the space
H−m+1(Ω).

We can give another proof of the implication (iv) =⇒ (iii) by using the
following theorem:

Theorem 1.2. Assume that both Ω and R3 \ Ω are simply-connected. Let
u ∈ Hm

0 (Ω)3, m ≥ 0, be a vector field that satisfies div u = 0 in Ω. Then
there exists a vector potential ψ in Hm+1

0 (Ω)3 such that

u = curl ψ, div ∆m+1ψ = 0 in Ω, and ‖ψ‖Hm+1(Ω)3 ≤ C‖u ‖Hm(Ω)3 .
(2)

Proof. Let u ∈ Hm
0 (Ω)3 be such that div u = 0 in Ω and let ũ denote the

extension of u by 0 in R3 \Ω. Thus ũ ∈ Hm
0 (R3)3, div ũ = 0 in R3, and there

exist an open ball B containing Ω and a vector field w ∈ Hm+1
0 (B)3 such that

ũ = curl w , div ∆m+1w = 0 in B, and

‖w ‖Hm+1(B)3 ≤ C‖u ‖Hm(B)3 .

The open set Ω′ := B \Ω is bounded, has a Lipschitz-continuous boundary
and is simply-connected. Furthermore, the vector field w ′ := w |Ω′ belongs to
Hm+1(Ω′)3 and satisfies curl w ′ = 0 in Ω′. Therefore there exists a function
χ′ ∈ H1(Ω′) such that w ′ = grad χ′ in Ω′. Hence in fact χ′ ∈ Hm+2(Ω′) and
the estimate

‖χ′‖Hm+2(Ω′) ≤ C‖w ′‖Hm+1(Ω′)3

holds. Since the function χ′ ∈ Hm+2(Ω′) can be extended to a function χ̃ in
Hm+2(R3), with

‖χ̃‖Hm+2(R3) ≤ C‖χ′‖Hm+2(Ω′) ≤ C‖w ′‖Hm+1(Ω′)3 ,

the vector field ϕ̃ := w −grad χ̃ belongs to the space Hm+1(B)3 and satisfies
ϕ̃|Ω′ = 0. Then the restriction ϕ := ϕ̃|Ω belongs to the space Hm+1

0 (Ω)3,
satisfies the estimate (2), and curl ϕ̃ = curl w = ũ in B. Thus u = curl ϕ
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in Ω. Let now p denote the unique solution in the space Hm+2
0 (Ω) of ∆m+2p =

div ∆m+1ϕ, so that the estimate

‖p‖Hm+2(Ω) ≤ C‖ϕ‖Hm+1(Ω)3

holds. Then the function ψ = ϕ− grad p satisfies (2).

We can give yet another proof of the above implication (iv) =⇒ (iii):
Consider again the solution u ∈ Hm

0 (Ω)3 to (1) and let v ∈ Hm+1
0 (Ω)3

denote the vector potential of u as given by theorem 1.2. We then have
∆mcurl u = 0. If m = 2k, for some integer k ≥ 1, then

H−m−1(Ω)3〈∆mcurl u , v 〉Hm+1
0 (Ω)3 = H−1(Ω)3〈∆kcurl u , ∆kv 〉H1

0 (Ω)3

=
∫
Ω

∆ku ·∆kcurl v dx

= ‖∆ku ‖2
L2(Ω)3 .

This implies that ∆ku = 0 in Ω and thus u = 0 since u ∈ Hm
0 (Ω)3. The case

m = 2k + 1 follows by a similar argument. �

2 Scalar Potentials

Let Γi, 0 ≤ i ≤ I, denote the connected components of the boundary Γ of the
domain Ω, Γ0 being the boundary of the only unbounded connected component
of R3 \Ω. We do not assume that Ω is simply-connected, however we assume
that there exist J connected and oriented surfaces Σj, 1 ≤ j ≤ J contained in
Ω, with the following properties: each surface Σj is an open subset of a smooth
manifold, the boundary of Σj is contained in Γ for 1 ≤ j ≤ J , the intersection
Σi ∩ Σj is empty for i 6= j, and finally the open set Ω◦ = Ω \ ⋃J

j=1 Σj is
simply-connected and pseudo-Lipschitz in the sense of [1]. Each such surface
Σj is called a cut. Finally, let [·]j denote the jump of a function over each cut
Σj, 1 ≤ j ≤ J .

We then define the spaces

H(curl, Ω) = {v ∈ L2(Ω)3; curl v ∈ L2(Ω)3},
H(div, Ω) = {v ∈ L2(Ω)3; div v ∈ L2(Ω)},

each one being equipped with the graph norm, and their subspaces

H0(curl, Ω) = {v ∈ H(curl, Ω); v × n = 0 on Γ},
H0(div, Ω) = {v ∈ H(div, Ω); v · n = 0 on Γ}.
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For any function q in H1(Ω◦), grad q denotes the gradient of q in the
sense of distributions in D ′(Ω◦). It belongs to L2(Ω◦)3 and therefore can be
extended to L2(Ω)3. In order to distinguish this extension from the gradient

of q in D ′(Ω), we denote it by g̃rad q. Finally, we remark that the space

KT (Ω) := {w ∈ H(curl, Ω) ∩H0(div, Ω); curl w = 0 and div w = 0 in Ω}

is of dimension equal to J : As shown in [1] Prop. 3.14, it is spanned by the

vector fields g̃rad qT
j , 1 ≤ j ≤ J , where each function qT

j ∈ H1(Ω◦), which is
unique up to an additive constant, satisfies

∆qT
j = 0 in Ω◦,

∂nq
T
j = 0, on Γ,

[qT
j ]k = constant, [∂nq

T
j ]k = 0, 〈∂nq

T
j , 1〉Σk

= δjk for 1 ≤ k ≤ J.

(3)

where 〈·, ·〉Σk
denotes the duality pairing between the spaces H−1/2(Σk) and

H1/2(Σk).

Theorem 2.1. Given any function f ∈ L2(Ω)3 that satisfies

curl f = 0 in Ω and
∫
Ω
f · v dx = 0 for all v ∈ KT (Ω), (4)

there exists a scalar potential χ in H1(Ω) such that

f = grad χ in Ω and ‖χ‖H1(Ω) ≤ C‖f ‖L2(Ω)3 . (5)

Proof. It suffices to show that, given any vector field v ∈ H0(div, Ω) such
that div v = 0 in Ω, there holds

∫
Ω f · v dx = 0. Let

z =
J∑

j=1

〈v · n , 1〉Σj
g̃rad qT

j

and w = v −z . According to [1], theorem 3.17, there exists a vector potential
ψ ∈ L2(Ω)3 that satisfies w = curl ψ, div ψ = 0 in Ω and ψ × n = 0 on Γ.
Hence ∫

Ω
f · v dx =

∫
Ω
f · curl ψ dx = 0.

The result is then a consequence of theorem 1.1: there exists a function
χ ∈ H1(Ω) satisfying (5).

Remark 2.2. (1) Any function f ∈ L2(Ω)3 that satisfies curl f = 0 in Ω can
be decomposed as:

f = grad χ + g̃rad p, with χ ∈ H1(Ω) and g̃rad p ∈ KT (Ω).
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Such a result was alluded to in [11].

(2) The second condition in (4) is trivially satisfied when Ω is simply-connected,
since KT (Ω) = {0} in this case.

Theorem 2.3. Given any distribution f ∈ H0(div, Ω)′ that satisfies

curl f = 0 in Ω and H0(div,Ω)′〈f , v 〉H0(div,Ω) = 0 for all v ∈ KT (Ω),
(6)

there exists a scalar potential χ in L2(Ω) such that

f = grad χ in Ω and ‖χ‖L2(Ω) ≤ C‖f ‖H0(div,Ω)′ . (7)

Proof. Let f ∈ H0(div, Ω)′ be such that curl f = 0 in Ω. Hence (see proposi-
tion 1 of [6]) there exist ψ ∈ L2(Ω)3 and χ0 ∈ L2(Ω) such that

f = ψ + grad χ0 in Ω and ‖ψ‖L2(Ω)3 + ‖χ0‖L2(Ω) ≤ C‖f ‖H0(div,Ω)′ . (8)

Observe that, thanks to the density of D(Ω)3 in H0(div, Ω),

H0(div,Ω)′〈grad χ0, v 〉H0(div,Ω) = 0 for all v ∈ KT (Ω).

Therefore, the function ψ ∈ L2(Ω)3 satisfies relations (4). By theorem 2.1,
there exists a function p ∈ H1(Ω) such that

ψ = grad p in Ω and ‖p‖H1(Ω) ≤ C‖ψ‖L2(Ω)3 ≤ C‖f ‖H0(div,Ω)′ .

Hence the function χ = p + χ0 satisfies the announced properties.

Remark 2.4. Note that this theorem is an extension of the equivalence (iii)
⇐⇒ (iv) in theorem 1.1 with m = 1 to the case where Ω is not simply-
connected.

More generally, let us introduce, for any integer m ≥ 0, the space

Hm
0 (div, Ω):={v ∈ H0(div, Ω); div v ∈ Hm

0 (Ω)},

which coincides with H0(div, Ω) for m = 0. Its dual space, denoted by H−m(div, Ω),
can then be characterized by

H−m(div, Ω) = {ψ + grad χ; ψ ∈ H0(div, Ω)′, χ ∈ H−m(Ω)}.

One can also show that D(Ω)3 is dense in Hm
0 (div, Ω) and that the following

Green formula holds for any χ ∈ H−m(div, Ω) and v ∈ Hm
0 (div, Ω):

H−m(div,Ω)〈grad χ, v 〉Hm
0 (div,Ω) + H−m(Ω)〈χ, divv 〉Hm

0 (Ω) = 0. (9)
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As a consequence of theorem 2.3, it is easy to prove the following theorem,
which shows that property (iv) in theorem 1.1 also holds when Ω is not
simply-connected.

Theorem 2.5. For any distribution f ∈ H−m(div, Ω) that satisfies (6), there
exists a scalar potential χ in H−m(Ω) such that

f = grad χ in Ω and ‖χ‖H−m(Ω) ≤ C‖f ‖H−m(div,Ω). (10)

Proof. We give the proof when m = 1; the general case is similar. Let f ∈
H−1(div, Ω) satisfy (6). Then, there exist ψ ∈ H0(div, Ω)′ and χ0 ∈ H−1(Ω)
such that

f = ψ + grad χ0 in Ω and ‖ψ‖H0(div,Ω)′ + ‖χ0‖H−1(Ω) ≤ C‖f ‖H−1(div,Ω).
(11)

Observe that, thanks to (11), we have

H−1(div,Ω)〈grad χ0, v 〉H1
0 (div,Ω) = − H−1(Ω)〈χ0, div v 〉H1

0 (Ω) = 0

for all v ∈ KT (Ω). By theorem 2.3, there exists a function p ∈ L2(Ω) such
that ψ = grad p and the estimate (7) holds. Then the function χ = χ0 + p
satisfies the announced properties.

3 Vector potentials in Hm
0 (Ω)3

First, we recall some results concerning the existence of tangential vector po-
tential (see [1] for proofs).

Below, 〈·, ·〉Γi
denotes the duality pairing between the spaces H−1/2(Γi)

and H1/2(Γi). Given any function u ∈ H(div, Ω) that satisfies

div u = 0 in Ω and 〈u · n , 1〉Γi
= 0, 0 ≤ i ≤ I, (12)

there exists a vector potential ψ in L2(Ω)3 such that

u = curl ψ, div ψ = 0 in Ω, and ψ · n = 0 on Γ, (13)

satisfying the estimate

‖ψ‖L2(Ω)3 ≤ C‖u ‖L2(Ω)3 . (14)

Moreover, there exists a unique vector field ψ ∈ L2(Ω)3 satisfying (13) and
such that

〈ψ · n , 1〉Σj
= 0, 1 ≤ j ≤ J, (15)
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and the estimate (14) holds. When Ω is of class C 1,1, then ψ belongs to H1(Ω)3

and the estimate
‖ψ‖H1(Ω)3 ≤ C‖u ‖L2(Ω)3 (16)

holds. If moreover u ∈ Hm(Ω)3 and Ω is of class C m+1,1, for some integer
m ≥ 0, then ψ belongs to Hm+1(Ω)3 and the estimate

‖ψ‖Hm+1(Ω)3 ≤ C‖u ‖Hm(Ω)3 (17)

holds. We also recall the result concerning the existence of normal vector
potentials (see again [1] for proofs). For any vector field u ∈ H(div, Ω) that
satisfies

div u = 0 in Ω, u ·n = 0 on Γ and 〈u ·n , 1〉Σj
= 0, 1 ≤ j ≤ J, (18)

there exists a vector potential ψ in L2(Ω)3 such that

u = curl ψ, div ψ = 0 in Ω and ψ × n = 0 on Γ, (19)

and the estimate
‖ψ‖L2(Ω)3 ≤ C‖u ‖L2(Ω)3 (20)

holds. Moreover, there exists a unique vector field ψ ∈ L2(Ω)3 satisfying (19)
and such that

〈ψ · n , 1〉Γi
= 0, 0 ≤ i ≤ I , (21)

and the estimate (20) holds. When u is more regular, then (16) and (17) are
also satisfied.

Remark 3.1. Let u be a vector field in H(div, Ω) that satisfies:

div u = 0 in Ω and u · n = 0 on Γ.

Using the same arguments as those of theorem 2.1, it is easy to verify that

〈u · n , 1〉Σj
= 0, 1 ≤ j ≤ J,

if and only if ∫
Ω
u · grad qT

j dx = 0 for all 1 ≤ j ≤ J.

Another kind of less standard but useful vector potential is given by the
following theorem.

Theorem 3.2. Assume that the boundary of the domain Ω is of class C 1,1.
For any function u in H(div, Ω) satisfying (18), there exists a vector potential
ψ in H1

0 (Ω)3, such that

u = curl ψ and div ∆ψ = 0 in Ω, ‖ψ‖H1(Ω)3 ≤ C‖u ‖L2(Ω)3 . (22)

7



Proof. Given any vector field u ∈ H(div, Ω) satisfying (18), we associate the
vector potential ψ0 ∈ H1(Ω)3 satisfying (19) and the estimate

‖ψ0‖H1(Ω)3 ≤ C‖u ‖L2(Ω)3 .

That Γ is of class C 1,1 implies that the normal trace ψ0 · n belongs to
H1/2(Γ). Hence, the fourth-order problem

∆2χ = 0 in Ω, χ = 0 and ∂nχ = ψ0 · n on Γ

has a unique solution χ in H2(Ω) satisfying the estimate

‖χ‖H2(Ω) ≤ C‖ψ0 · n ‖H1/2(Γ) ≤ C‖u ‖L2(Ω)3 .

Then the vector field

ψ = ψ0 − grad χ

satisfies (22).

The vector field ψ given by the previous theorem is unique up to vector
fields belonging to the space

K1
0(Ω):={w ∈ H1

0 (Ω)3; curl w = 0 and div (∆w ) = 0 in Ω}

(see proposition 3.4 below).

Corollary 3.3. Assume that the boundary of the domain Ω is of class C m+1,1,
for some integer m ≥ 0. For any vector field u ∈ Hm(Ω)3 that satisfies (18),
there exists a vector potential ψ in (Hm+1Ω) ∩H1

0 (Ω))3 satisfying

u = curl ψ and div ∆ψ = 0 in Ω and ‖ψ‖Hm+1(Ω)3 ≤ C‖u ‖Hm(Ω)3 .

Proof. Under the given assumptions, the vector potential ψ given by the
previous theorem belongs to Hm+1(Ω)3 and its normal trace ψ · n belongs
to Hm+1/2(Γ), on the one hand. On the other hand, the solution χ to the
fourth-order problem found in the previous belongs to Hm+2(Ω)3.

We now characterize the space K1
0(Ω).

Proposition 3.4. Assume that the boundary of the domain Ω is of class C 1,1.
Then the space K1

0(Ω) is spanned by the vector fields grad q1
i , 1 ≤ i ≤ I, where
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each q1
i is the unique solution in H2(Ω) to the problem

∆2q1
i = 0 in Ω,

q1
i

∣∣∣
Γ0

= 0 and q1
i

∣∣∣
Γk

= δik, 1 ≤ k ≤ I,

∂nq
1
i = 0 on Γ,

〈∂n∆q1
i , 1〉Γk

= δik and 〈∂n∆q1
i , 1〉Γ0 = −1, 1 ≤ k ≤ I.

(23)

Proof. First, we prove that the space K1
0(Ω) and the space

G1:={grad q ∈ H1
0 (Ω)3; ∆2q = 0 in Ω}

coincide. First, it is clear that G1 is included in K1
0(Ω). Second, given w ∈

K1
0(Ω), let w̃ denote the extension by zero of w to an open ball B containing

Ω. Since curl w̃ = 0 in B, w̃ is the gradient of a function q ∈ H2(B).
Moreover, q = 0 in B \ Ω, so that q′ := q|Ω belongs to H2

0 (Ω). Since ,w =
grad q′, one finds that w belongs to G1.
Moreover, it is clear that the set of vector fields grad qi, 1 ≤ i ≤ I, where
qi ∈ H2(Ω) is the unique solution to

∆2qi = 0 in Ω,

qi

∣∣∣
Γ0

= 0 and qi

∣∣∣
Γk

= δik, 1 ≤ k ≤ I,

∂nqi = 0 on Γ,

(24)

spans G1 (= K1
0(Ω)).

One still has to check the last line of (23). Introduce now

M2:={r ∈ H2(Ω); r
∣∣∣
Γ0

= 0 and r
∣∣∣
Γk

= δik, 1 ≤ k ≤ I, ∂nr = 0 on Γ}.

For 1 ≤ i ≤ I, the problem: find q1
i in M2 such that

∀r ∈ M2,
∫
Ω

∆q1
i ∆r dx = −r

∣∣∣
Γi

, (25)

has a unique solution. Furthermore, the following Green’s formula can be
proven by a density argument, for any functions q and r in M2 with ∆2q in
L2(Ω): ∫

Ω
(∆2q)r dx =

∫
Ω

∆q ∆r dx +
I∑

i=1

r
∣∣∣
Γi

〈∂n(∆q), 1〉Γi
.

This formula implies that the solution q1
i to (25) satisfies (23). The vector

fields grad q1
i , 1 ≤ i ≤ I, are clearly linearly independent and they belong to

K1
0(Ω). Consequently, they form a basis of K1

0(Ω).
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Proposition 3.5. Assume that the boundary of the domain Ω is of class C 1,1.
Given any function u in H(div, Ω) satisfying (18), there exists a unique vector
potential ψ in H1

0 (Ω)3 satisfying

u = curl ψ, div ∆ψ = 0 in Ω and 〈∂n(div ∆ψ) , 1〉Γi
= 0, 0 ≤ i ≤ I.

(26)
Moreover, the estimate (16) holds.

Proof. Let (ψ0 − grad χ) be the potential vector of u given in the proof of
theorem 3.2. Then the vector field

ψ = ψ0 − grad χ +
I∑

i=1

〈∂n(∆χ) , 1〉Γi
grad q1

i

satisfies (26) (note that the quantities 〈∂n(∆χ), 1〉Γi
are well defined since

∆2χ = 0).

Corollary 3.6. Assume that the boundary of the domain Ω is of class C m+1,1

for some integer m ≥ 0. Given any function u in Hm(Ω)3 that satisfies (18),
there exists a unique vector potential ψ in (Hm+1Ω) ∩H1

0 (Ω))3 satisfying

u = curl ψ, div ∆ψ = 0 in Ω and 〈∂n(div ∆ψ) , 1〉Γi
= 0, 0 ≤ i ≤ I

and the estimate (17).

Theorem 3.7. Assume that the boundary of the domain Ω is of class C 2,1.
Given any function u in H1

0 (Ω)3 that satisfies

div u = 0 in Ω and 〈u · n , 1〉Σj
= 0, 1 ≤ j ≤ J, (27)

there exists a vector potential ψ in H2
0 (Ω)3 such that

u = curl ψ and div ∆2ψ = 0 in Ω and ‖ψ‖H2(Ω)3 ≤ C‖u ‖H1(Ω)3 .
(28)

Proof. Given u in H1
0 (Ω)3 that satisfies (27), let ϕ ∈ (H2(Ω)∩H1

0 (Ω))3 denote
the vector potential given by corollary 3.6. The sixth-order problem

∆3χ = 0 in Ω, χ =
∂χ

∂n
= 0 and

∂2χ

∂n 2
=

∂ϕ

∂n
· n on Γ, (29)

has a unique solution χ ∈ H3(Ω) that satisfies the estimate

‖χ‖H3(Ω) ≤ C‖∂ϕ

∂n
‖H1/2(Γ)3 ≤ C‖ϕ‖H2(Ω)3 ≤ C‖u ‖H1(Ω)3 .
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Note that the last boundary condition in (29) can be written as(
∂

∂n
grad χ

)
· n =

∂ϕ

∂n
· n .

For any unit tangent vector τ on Γ, we have:

∂ϕ

∂n
· τ =

∂ϕi

∂xj

njτi =
∂ϕj

∂xi

τinj =
∂ϕj

∂τ
nj = 0.

Also, one can show that (∂ngrad χ) · τ = 0, which implies that the relation
∂ngrad χ = ∂nϕ holds. So, the vector field ψ = ϕ − grad χ belongs to
H2(Ω)3 and satisfies (28).

The vector field ψ given by Theoerm 3.7 is unique up to vector fields in
the space

K2
0(Ω):={w ∈ H2

0 (Ω)3; curl w = 0 and div ∆2w = 0 in Ω},

which we now characterize.

Proposition 3.8. Assume that the boundary of the domain Ω is of class C 2,1.
Then the space K2

0(Ω) is spanned by the vector fields grad q2
i , 1 ≤ i ≤ I, where

each function q2
i is the unique solution in H3(Ω) to the problem

∆3q2
i = 0 in Ω,

q2
i

∣∣∣
Γ0

= 0 and q2
i

∣∣∣
Γk

= δik, 1 ≤ k ≤ I,

∂nq
2
i = ∂2

nq
2
i = 0 on Γ,

〈∂n(∆2q2
i ) , 1〉Γk

= δik and 〈∂n(∆2q2
i ) , 1〉Γ0 = −1, 1 ≤ k ≤ I.

(30)

Proof. First, we prove that the space K2
0(Ω) coincides with the space

G2:={grad q ∈ H2
0 (Ω)3; ∆3q = 0 in Ω},

using the same argument as in proposition 3.4. We next note that the set of
vector fields grad qi, 1 ≤ i ≤ I, where qi ∈ H3(Ω) is the unique solution to
the problem

∆3qi = 0 in Ω,

qi

∣∣∣
Γ0

= 0 and qi

∣∣∣
Γk

= δik, 1 ≤ k ≤ I,

∂nqi = ∂2
nqi = 0 on Γ,

(31)

spans K2
0(Ω).
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Let now

M3:={r ∈ H3(Ω); r
∣∣∣
Γ0

= 0, r
∣∣∣
Γk

= δik, 1 ≤ k ≤ I , ∂nr = ∂2
nr = 0 on Γ}.

For 1 ≤ i ≤ I, the problem: find q2
i in M3 such that

∀r ∈ M3,
∫
Ω
grad ∆q2

i · grad ∆r dx = r
∣∣∣
Γi

, (32)

has a unique solution. Furthermore, the following Green’s formula can be
proved by a density argument, for any functions q and r in M3 with ∆3q in
L2(Ω):

∫
Ω
(∆3q)r dx = −

∫
Ω
grad ∆q · grad ∆r dx +

I∑
i=1

r
∣∣∣
Γi

〈∂n(∆2q), 〉Γi
.

This formula shows that the solution q2
i of (32) satisfies (30). The vector fields

grad q2
i , 1 ≤ i ≤ I, are clearly linearly independent and they belong to

K2
0(Ω). Consequently, they form a basis of K2

0(Ω).

Corollary 3.9. Assume that the boundary of the domain Ω is of class C 2,1.
Given any function u in H1

0 (Ω)3 such that (27) holds, there exists a unique
vector potential ψ in H2

0 (Ω)3 satisfying

u = curl ψ, div ∆2ψ = 0 in Ω and〈∂n(div ∆ψ) , 1〉Γi
= 0, 0 ≤ i ≤ I,

with the corresponding estimate.

More generally, we can prove using the same arguments:

Theorem 3.10. Assume that boundary of the domain Ω is of class C m+1,1

for some integer m ≥ 1. Given any vector field u in Hm
0 (Ω)3 that satisfies

(27), there exists a vector potential ψ in Hm+1
0 (Ω)3 such that

u = curl ψ and div ∆m+1ψ = 0 in Ω and ‖ψ‖Hm+1(Ω)3 ≤ C‖u ‖Hm(Ω)3 .
(33)

Moreover, there exists a unique vector potential ψ in Hm+1
0 (Ω)3, satisfying

(33) and
〈∂ndiv ∆ψm+1 , 1〉Γi

= 0, 0 ≤ i ≤ I. (34)

Remark 3.11. Similar results are found in Borchers & Sohr [7], but with
different proof.

Let Ω be a domain with a boundary of class C m+1,1 for some integer m ≥ 1
and let u in Hm

0 (Ω)3 be such that div u = 0. If Ω is simply-connected (J = 0),
and Γ is connected (I = 0), then there exists a unique vector potential ψ in
Hm+1

0 (Ω)3 satisfying (33).
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4 Weak vector potentials

First, we note that the continuous embeddings H0(curl, Ω)′ ↪→ H−1(Ω)3 and
H0(div, Ω)′ ↪→ H−1(Ω)3 hold. Besides, given any f ∈ H−1(Ω)3, we know that
there exist a unique u ∈ H1

0 (Ω)3 and χ ∈ L2(Ω) such that

f = −∆u + grad χ and div u = 0 in Ω, (35)

and satisfying the estimate

‖u ‖H1(Ω)3 + ‖χ‖L2(Ω)/R ≤ C‖f ‖H−1(Ω)3 .

Letting ξ = curl u , we obtain the decomposition f = curl ξ + grad χ with
div ξ = 0 in Ω and ξ ·n = 0 on Γ. Since ξ ∈ L2(Ω)3 and χ ∈ L2(Ω), it follows
that curl ξ ∈ H0(curl, Ω)′ and grad χ ∈ H0(div, Ω)′, so that

H−1(Ω)3 = H0(curl, Ω)′ + H0(div, Ω)′. (36)

Proposition 4.1. Assume that the boundary of the domain Ω is of class
C 1,1. Then, for any f in the dual space H0(div, Ω)′, there exist a unique u ∈
(H2(Ω)∩H1

0 (Ω))3 and χ ∈ L2(Ω) solution to (35) and satisfying the estimate

‖u ‖H2(Ω)3 + ‖χ‖L2(Ω)/R ≤ C‖f ‖H0(div,Ω)′ .

Proof. Let f be in the dual space of H0(div, Ω). We know (see proposition 1
of [6]) that there exist ψ ∈ L2(Ω)3 and χ0 ∈ L2(Ω) such that

f = ψ + grad χ0 and ‖ψ‖L2(Ω)3 + ‖χ0‖L2(Ω) ≤ C‖f ‖H0(div,Ω)′ . (37)

Thanks to the regularity of Γ, there exist u ∈ (H2(Ω) ∩ H1
0 (Ω))3 and

p ∈ H1(Ω) satisfying

ψ = −∆u + grad p and div u = 0 in Ω, (38)

with
‖u ‖H2(Ω)3 + ‖p‖H1(Ω)/R ≤ C‖ψ‖L2(Ω)3 .

Then u and χ = p + χ0 satisfy the announced properties.

We next consider the space

KN(Ω):={w ∈ H0(curl, Ω) ∩H(div, Ω); curl w = 0 and div w = 0 in Ω}

which is of dimension I. As shown in proposition 3.18 of [1], this space is
spanned by the vector fields grad qN

i , 1 ≤ i ≤ N , where each function qN
i ∈

13



H1(Ω) is the unique solution to the problem

∆qN
i = 0 in Ω,

qN
i = 0 on Γ0, 〈∂nq

N
i , 1〉Γ0 = −1,

qN
i = constant on Γk, 〈∂nq

N
i , 1〉Γk

= δik, for 1 ≤ k ≤ I.

(39)

Theorem 4.2. Given any distribution f in the dual space H0(curl, Ω)′ that
satisfies

div f = 0 in Ω and H0(curl,Ω)′〈f , v 〉H0(curl,Ω) = 0 for all v ∈ KN(Ω),
(40)

there exists a vector potential ξ in L2(Ω)3 such that

f = curl ξ, with div ξ = 0 in Ω and ξ · n = 0 on Γ, (41)

and such that the following estimate holds:

‖ξ‖L2(Ω)3 ≤ C‖f ‖H0(curl,Ω)′ . (42)

Proof. Let f be in the dual space H0(curl, Ω)′. According to corollary 5 of [6],
there exist ψ ∈ L2(Ω)3 and ξ0 ∈ L2(Ω)3 with div ξ0 = 0 in Ω and ξ0 · n = 0
on Γ, such that f = ψ + curl ξ0 and such that the estimate

‖ψ‖L2(Ω)3 + ‖ξ0‖L2(Ω)3 ≤ C‖f ‖H0(curl,Ω)′

holds. Thanks to the density of D(Ω)3 in H0(curl, Ω), we deduce that for all
v ∈ KN(Ω), we have

H0(curl,Ω)′〈curl ξ0 , v 〉H0(curl,Ω) = 0.

Since div f = 0, it follows that div ψ = 0. Then, thanks to the orthogonality
relations

H0(curl,Ω)′〈f , grad qN
i 〉H0(curl,Ω) = 0 for all i = 1, . . . , I,

the relations 〈ψ ·n , 1〉Γi
= 0 are satisfied for all i = 1, . . . , I. There thus exists

a vector potential ϕ ∈ L2(Ω)3 (see theorem 3.12 of [1]) such that ψ = curl ϕ,
with div ϕ = 0 in Ω and ϕ · n = 0 on Γ, and such that

‖ϕ‖L2(Ω)3 ≤ C‖ψ‖L2(Ω)3 .

Hence, the vector field ξ = ξ0 +ϕ possesses the announced properties.

Remark 4.3. The previous theorem has been established in [6] when Γ is
connected, in which case KN = {0}.
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For any integer m ≥ 0, let us introduce the space

Hm
0 (curl, Ω) := {v ∈ H0(curl, Ω); curl v ∈ Hm

0 (Ω)3}.

We can easily characterize its dual space, as:

H−m(curl, Ω) = {ψ + curl ξ; ψ ∈ H0(curl, Ω)′, ξ ∈ H−m(Ω)3}.

We can prove that D(Ω)3 is dense in Hm
0 (curl, Ω) and that the following Green

formula holds: for any ξ ∈ H−m(curl, Ω) and v ∈ Hm
0 (curl, Ω)

H−m(curl,Ω)〈curlξ, v 〉Hm
0 (curl,Ω) + H−m(Ω)3〈ξ, curlv 〉Hm

0 (Ω)3 = 0. (43)

By using the decomposition (1) with (m + 1) instead of m, it is easy to prove
(as in Section 2) that

H−m−1(Ω)3 = H−m(curl, Ω) + H−m(div , Ω), for m ≥ 1.

Theorem 4.4. For any distribution f in the dual space H−1(curl, Ω) that
satisfies

div f = 0 in Ω and 〈f , v 〉 = 0, for all v ∈ KN(Ω) (44)

there exists a vector potential ξ in H−1(Ω)3 such that

f = curl ξ, div ξ = 0 in Ω, and ‖ξ‖H−1(Ω)3 ≤ C‖f ‖H−1(curl,Ω). (45)

Proof. Given f in the dual space H−1(curl, Ω), there exist f 0 ∈ H0(curl, Ω)′

and ξ0 ∈ H−1(Ω)3 such that f = f 0 + curl ξ0, and satisfying the estimate

‖f 0‖H0(curl,Ω)′ + ‖ξ0‖H−1(Ω)3 ≤ C‖f ‖H−1(curl,Ω).

Since ξ0 ∈ H−1(Ω)3, there exists θ0 ∈ L2(Ω)3 satisfying div θ0 = 0 in Ω,
θ0 ·n = 0 on Γ, and there exists χ ∈ L2(Ω) such that ξ0 = curl θ0 +grad χ
and

‖θ0‖L2(Ω)3 + ‖χ‖L2(Ω)/R ≤ C‖ξ0‖H−1(Ω)3 .

Since f 0 ∈ H0(curl, Ω)′, then f 0 = ψ0 + curl ϕ0, with ψ0 ∈ L2(Ω)3,
ϕ0 ∈ L2(Ω)3, div ϕ0 = 0 in Ω, ϕ0 · n = 0 on Γ and

‖ψ0‖L2(Ω)3 + ‖ϕ0‖L2(Ω)3 ≤ C‖f 0‖H0(curl,Ω)′ .

Then f = ψ0+curl ϕ0+curl curl θ0 = ψ0+curl µ, with µ = ϕ0+curl θ0,
div µ = 0 in Ω, and the estimate

‖ψ0‖L2(Ω)3 + ‖µ‖H−1(Ω)3 ≤ C‖f ‖H−1(curl,Ω)
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holds.

Thanks to the density of D(Ω)3 in H1
0 (curl, Ω), we infer that

H−1(curl,Ω)〈curl µ , v 〉H1
0 (curl,Ω) = 0, for all v ∈ KN(Ω).

Since div f = 0, div ψ0 = 0 and therefore the condition 〈ψ0 · n , 1〉Γi
= 0 is

automatically satisfied for any i = 0, . . . , I. Then by (12), there exists a vector
potential ϕ ∈ L2(Ω)3 such that

ψ0 = curl ϕ, div ϕ = 0 in Ω and ϕ · n = 0 on Γ,

and

‖ϕ‖L2(Ω)3 ≤ C‖ψ0‖L2(Ω)3 .

Hence, the vector field ξ = µ+ϕ satisfies the announced properties.

More generally, we can prove:

Theorem 4.5. Given any integer m ≥ 0 and any distribution f in the dual
space H−m(curl, Ω) that satisfies (44), there exists a vector potential ξ in
H−m(Ω)3 such that

f = curl ξ, with div ξ = 0 in Ω, and ‖ξ‖H−m(Ω)3 ≤ C‖f ‖H−m(curl,Ω).

5 Weak versions of Korn’s inequality

Finally, we consider tensor fields. The next theorem generalizes theorem 3.2
of [8] and theorem 7 of [3] to Sobolev spaces with negative exponents.

In what follows, the subscript s denotes a space of symmetrix matrix fields.

Theorem 5.1. Assume that Ω is simply-connected. Given an integer m ≥ 0,
let e = (eij) ∈ H−m

s (Ω)3×3 be a symmetric matrix field that satisfies the
following compatibility conditions for all i, j, k, l ∈ {1, 2, 3}:

Rijkl :=
∂2eik

∂xl∂xj

+
∂2ejl

∂xk∂xi

− ∂2ejk

∂xl∂xi

− ∂2eil

∂xk∂xj

= 0 in H−m−2(Ω). (46)

Then there exists a vector field v ∈ H−m+1(Ω)3 such that eij = 1
2
(∂jvi + ∂ivj)

and v is unique up to vector fields in the space R(Ω) = {a + b ∧ idΩ; a , b ∈
R3}.
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Proof. Given e = (eij) ∈ H−m
s (Ω)3×3, let fijk := ∂jeik − ∂iejk. Then fijk ∈

H−m−1(Ω) and, thanks to the compatibility conditions (46), we have

∂

∂xl

fijk =
∂

∂xk

fijl.

Hence the implication (iii) =⇒ (iv) in theorem 1.1 shows that there exist
distributions pij ∈ H−m(Ω), unique up to additive constants, such that ∂kpij =
fijk.

Besides, since ∂kpij = −∂kpji, we can choose the distributions pij in such
a way that pij + pji = 0. Noting that the distributions qij := eij + pij belong
to H−m(Ω) and satisfy ∂kqij = ∂jqik, we again resort to theorem 1.1 to assert
the existence of distributions vi ∈ H−m+1(Ω), unique up to additive constants,
such that ∂jvi = qij.

For any integer m ≥ 0, let

E(Ω) := {e ∈ H−m
s (Ω)3×3, Rijkl(e ) = 0}

and

Ḣ−m+1(Ω)3 := H−m+1(Ω)3/R(Ω).

By the previous theorem, given any e = (eij) ∈ E(Ω), there exists a unique
v̇ = (v̇i) ∈ Ḣ−m+1(Ω)3 such that eij = 1

2
(∂jvi + ∂ivj). We may thus define

a linear mapping F : E(Ω) → Ḣ−m+1(Ω)3 by F(e ) = v̇ . Using the same
method as in [8], we can then prove the following Korn’s inequality in Sobolev
spaces with negative exponents:

Theorem 5.2. The linear mapping F : E(Ω) → Ḣ−m+1(Ω)3 is an isomor-
phism. Besides, there exists a constant C ≥ 0 such that

infr∈R(Ω)‖v + r‖H−m+1(Ω)3 ≤ C
∑
i,j

‖εij(v )‖H−m(Ω) for all v ∈ H−m+1(Ω)3,

and

‖v ‖H−m+1(Ω)3 ≤ C(‖v ‖H−m(Ω)3 +
∑
i,j

‖εij(v )‖H−m(Ω)) for all v ∈ H−m+1(Ω)3

where εij(v ) = 1
2
(∂jvi + ∂ivj).

Remark 5.3. Analogous techniques would likewise extend to Sobolev spaces
with negative exponents the results obtained for non-simply connected do-
mains in [9], [12] and [13].
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