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Extrinsic Calibration between a Multi-Layer Lidar and a Camera
Sergio A. Rodriguez F., Vincent Frémont and Philippe Bonnifait

Abstract— In this paper, we present a novel approach
for solving the extrinsic calibration between a camera and a
multi-layer laser range finder. Our approach is oriented for
intelligent vehicle applications, where the separation distance
between sensors frames are frequently very important. For this
purpose, we use a circle-based calibration object because its
geometry allows us to obtain not only an accurate estimation
pose by taking advantage of the 3D multi-layer laser range
finder perception but also a simultaneous estimation of the
pose in the camera frame and the camera intrinsic parameters.
These advantages simplify the calibration task in outdoor
environments. The method determines the relative position of
the sensors by estimating sets of corresponded features and by
solving the classical absolute orientation problem. The proposed
method is evaluated by using different synthetics environments
and real data. An error propagation analysis is made in order to
estimate the calibration accuracy and the confidence intervals.
Finally, we present a laser data projection into images to
validate the consistency of the results.

I. INTRODUCTION
In the framework of intelligent vehicles, multi-sensor

systems are used for developing complete preventive archi-
tectures in order to improve vulnerable road user protection
systems. These multi-sensor systems are usually composed
with radars, laser range-finders and cameras. In many appli-
cations like obstacle and pedestrian detection and tracking
systems, it is necessary to fuse information supplied by each
sensor in a cooperative way to associate the advantages of
every individual system in a final cooperative structure. For
this purpose the relative pose of the sensors have to be esti-
mated. Previous works on extrinsic laser-camera calibration
solve with accuracy the rigid transformation between a CCD
camera and a one-row laser range-finder [1] [2]. Another
calibration approach for outdoor scan systems without using
a calibration target is presented in [3]. Estimating the geo-
metrical transformation in one thing, but it is often important
to know the quality of the calibration between the frames of
different sensors for estimating guaranteed regions of interest
(ROI). Therefore, a confidence information on the calibration
stage is of prime importance.
In this paper, we propose an extrinsic calibration method,
vehicle-oriented, for a particular relative position between a
camera and a multi-layer laser lidar. It is worth to mention
that our contribution is focused on the calibration of the
multi-sensor system but not on each sensor. This particular
configuration is characterized by two critical conditions.
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The first critical point consists in the necessity to have
an important relative distance between the sensors and
the calibration target (see Figure 1). The increase of the
relative distance between the camera and the calibration
target demands a large-size calibration target in order to
ensure the accuracy of the estimation pose in the camera
frame. A second point is the large noise detected on 3D
laser range finder measurements detecting the surface of the
traditional “checkerboard” calibration object. This increase
is partially caused by the laser beam impacts on black-
white zones. Hence, our principal objectives are focused on
getting an accurate rigid transformation, a size-reduction of
the calibration target, a method which takes advantage of the
4-layer lidar information and an error analysis and confidence
interval estimation.
This paper is outlined as follows. Section II presents the
extrinsic calibration problem, the mathematical multi-sensor
system model, theorical basis and definitions. In section III,
we present the proposed calibration method summarized in a
circle-based target pose estimation step, rigid transformation
computation step and error/confidence analysis. Then, the
calibration algorithm summary is clarified in section IV.
Finally, results obtained with simulated data and real acqui-
sitions are presented in section V.

II. MULTI-SENSOR SYSTEM

The multi-sensor system is made with a multi-layer range
finder and a CCD camera rigidly fixed to the vehicle. The
multi-layer lidar is located in the bumper section and the
camera is placed behind the windshield (see Figure1). This
positioning only presents some occlusions to the camera for
short distances with respect to the multi-layer range finder.

A. Problem Statement

The problem consists in calculating the rigid transfor-
mation (6 dof corresponding to a rotation matrix and a
translation vector) between the camera and the 4-layer lidar
frames. In order to obtain an accurate estimation of the
extrinsic parameters, we propose a method which takes
advantage of photographic and laser range data by using a
circle-based calibration target. It is worth to mention that the
laser beam of the lidar sensor is invisible (see Figure 1). The
circle-based calibration target is a rigid plane with a printed
black ring. The inner circle of the black ring describes a
plane perforation. Some of the benefits of using the proposed
calibration target are the following: Firstly, the circle based
target eliminates the noise generated by the black-white
zones of the traditional “checkerboard” calibration target.
Secondly, it is possible to obtain a precise estimation of the



pose by computing a circle fitting in the 3D space of the lidar
impacts lying in the perforation border of the calibration
target. Thirdly, the geometric and algebraic constraints of
the two concentric circles generated by the black ring, and
their image projection allow us to obtain a simultaneous
estimation of the camera pose and the intrinsic parameters
(i.e. focal length).

Fig. 1. Overview of the proposed strategy

B. Sensor Models and Frames

Our multi-layer lidar model uses 4 crossed-scan-planes
with a layer relative altitude aperture of 0.8◦ and an
azimuthal angle resolution defined as follows: 0.125◦ in
the range [-16◦ 16◦], 0.25◦ for [-60 ,-16◦) and (16◦,60]
and 0.5◦ for [-70 ,-60◦) and (60◦,70]. Figure 2 illustrates
in a general way the emission direction of the laser layers.
Let be i the layer id and j the scan point element. Thus,
a 3D laser impact is defined in the lidar frame, l, as:
lPij =

[
lPx,

lPy,
lPz

]T
For the purpose to define any lidar point with respect
to the calibration object frame (i.e. target frame, t), it
is necessary to define a rigid transformation. Therefore,
the corresponded point of lPij in the target frame, noted
tPij , can be obtained by applying the following rigid
transformation:

tPij = tRl · lPij + tTl (1)

It is worth adding that the calibration plane is defined by
Zt = 0 and the origin of the target frame is physically placed
at the center of target circle. Similarly as in equation (1), a
point in the target frame, tP, is defined in the camera frame,
c, as follows:

cPij = cRt · tPij + cTt (2)

with cPij =
[
cPx,

cPy,
cPz

]T
Where cRt is a 3 × 3 orthonormal matrix representing the
orientation and cTt a 3-vector representing the position of
the calibration target in the camera frame.
Let us consider the complete multi-sensor model where
the data provided by the lidar and the camera are related
by using a common detected object (i.e. circle-based
calibration target). We proceed to formalize the lidar to
camera transformation as a composition of the partial
transformations presented in equations (1) and (2).

Therefore, the rigid transformation of a 3D point in the
lidar frame, lPij , into the camera frame is determinated by
replacing equation (1) into (2) obtaning:

cPij = cRt · (tRl · lPij + tTl) + cTt (3)

simplyfing,
cPij = Φ · lPij + ∆ (4)

with Φ = cRt · tRl and ∆ = cRt · tTl+ cTt respectively the
orientation and the position of the lidar sensor with respect to
the camera. [Φ,∆] are the unknown values of the calibration
problem.
Additionally, the impact location of the lidar measurements
can be projected into the image even if the lidar beam
is invisible. For this purpose, a classical pinhole model is
considered. Hence, the image projection of a 3D point in the
camera frame, cPij , is given by

[px, py, 1]T ∼ K · cPij (5)

with

K =

 f 0 u0

0 f v0
0 0 1

 (6)

where K is the intrinsic calibration matrix with f the focal
length of the camera in pixels units and [u0, v0]T the image
coordinates of the principal point, assuming no distortion
and zero skew. The principal point is considered as a known
parameter. The operator ∼ denotes : up to a scale factor.
Finally, the image projection of lPij is computed by using
equation (4) in (5):

[px, py, 1]T ∼ K · (Φ · lPij + ∆) (7)

Fig. 2. Rigid transformations

III. EXTRINSIC CALIBRATION

The proposed solution consists in estimating different
poses of the calibration object detected simultaneously by
the camera and the multi-layer lidar. A minimum of 6 poses
[4] have to be estimated in the lidar and the camera frame
in order to get all degrees of freedom. Each pose of the
calibration target is parameterized by the 3D coordinates of
the circle center and the normal vector of its plane. Then,



a first estimation of the rigid transformation is obtained
by solving the usual absolute orientation problem [4]. This
solution consists in determining the relationship between the
two coordinate frames using sets of corresponded features
(i.e. circle centers of each pose). Finally a non-linear 3D
minimization is done in order to refine the estimated extrinsic
parameters.

A. Target pose estimation in the lidar frame
First, for a robust detection of the circle in the 3D space,

we use several lidar scans. Then, the robust outlier rejection
technique proposed in [1] is applied on n 4-layer lidar
scans of the calibration scene. After the outlier rejection
proceeding, the points lying in the perforation border of
the calibration target are extracted. This point set contains
between 8 and 8 · n points denoted lPi. It is worth to take
into account that the pose of target frame origin with respect
to the lidar frame is defined as by the inversed transformation
stated in equation (1) where tRT

l corresponds to the orienta-
tion of the calibration frame and its origin in the lidar frame,
lC = −(tRT

l ·tTl). Taking advantage of this fact, we perform
a nonlinear 3D circle fitting problem constrained to a known
radius, r, and parameterized as follows: α̂, β̂ are orientation
angles of the 3D circle axis vector, lN(α̂, β̂), with respect to
y-axis and z-axis respectively and lĈ = [lĈx, lĈy, lĈz]T are
the cartesian coordinates of the estimated 3D circle center
coincident with the target frame origin (see Figure 2). By
using the geometric criteria as stated in [5]:

iΠ1=lN(α̂, β̂)·
−−−→
lĈlPi (8)

iΠ2=‖lN(α̂, β̂)×
−−−→
lĈlPi‖ − r (9)

with
−−−→
lĈlPi = lPi − lĈ.

Where:
• iΠ1 corresponds to the Euclidean distance between a

target-contour laser range finder impact,lPi, and the
3D plane defined by lN(α̂, β̂) and the estimated circle
center, lĈ.

• iΠ2 represents the Euclidean distance between a
target-contour laser range finder point,lPi, and the 3D
circle axis defined by lN(α̂, β̂) and the estimated circle
center, lĈ.

Accordingly, we minimize the following objective function
using the Levenberg-Marquardt algorithm (LM-algorithm)
[6] which solves the following non-linear squares problem:

e =
n∑
i=1

[iΠ2
1 + iΠ2

2] (10)

After convergence of the non linear minimization algorithm
and by applying this technique to various poses (6 poses are
needed for a solution) of the calibration target, we obtain not
only a first set of 3D laser features (i.e. circle centers, lĈ, and
normal plane vectors, lN) but also a 3D circle reconstruction
in the laser range finder frame for every pose. Now, in order
to acquire the corresponded features in the camera frame we
have to analyze the image.

B. Target pose estimation in the camera frame

Like several camera calibration methods using projected
concentric circles [7] [8] [9], we estimate the position of the
calibration target in the camera frame. For this purpose, it
is necessary to estimate the intrinsic camera parameters. As
stated in [7], intrinsic calibration parameters can be obtained
first by computing the image of the absolute conic (IAC)
with precision [10] from the imaged circular points [11] [10]
with only an image of two concentric circles. Considering the
intrinsic calibration issue as a non principal aim of this paper,
we will not give more details about it. Given A1 and A2 as
the pixel centered point set of the principal (i.e. external)
and secondary (i.e. internal) circle projection which can be
obtained by the segmentation methods widely explained in
[9] [12]. Achieving a non linear ellipse fitting algorithm
stated in [13], we obtain two conic matrices, Q1 and Q2,
in the form:

Q =

 a b/2 d/2f
b/2 c e/2f
d/2f e/2f f/f2

 (11)

Where a,b, c,d, e, f are the conic parameters and f is the
focal length in pixels. Q1 and Q2 are normalized to det Q =
−1. Consequently, in order to remove the scale uncertainty,
the normal vector to the target plane as in [8] is given by:

cN = Q1

xcyc
f

 (12)

Where xc and yc are the image coordinates of the projected
circle center. Finally, the 3D circle center in the camera
frame, cĈ, is obtained as stated in [9]:

cĈ =

√
λ3 R [xc/f yc/f 1]T
cN · [xc/f yc/f 1]T

(13)

Where λ is the smaller positive eigenvalue of Q1 and R is
the radius of the principal circle in the target object. Thus,
the camera pose estimation is characterized by cN and cĈ.

C. Estimation of the rigid transformation between the lidar
and the camera

The method presented in the above subsection allows us
estimating the 3D center points of the circle-based calibration
target for various poses. These pose estimations are com-
posed with 3D corresponding center point set in the camera
and the laser range finder frame. Therefore, in order to
estimate an initial guess solution we formulate the extrinsic
calibration as a classical absolute orientation problem.

1) Initial guess from a linear solution: A well-known
closed-form solution for this problem is the method devel-
oped by Arun et al. [14]. This method consists in obtaining
the optimal rotation from the singular value decomposition
(SVD) of the correlation matrix of the centered point sets
represented by Σ:

Σ = [lĈi − lC̄][cĈi − cC̄]T = U S VT (14)

Where lĈi are the coordinates of the 3D-circle center point
set estimated from the ith pose by the laser range finder



measures, lC̄ is the centroid of the 3D-circle center point
set in the laser range finder frame,cĈi are the coordinates of
the 3D-circle center point set estimated from the ith pose by
the camera measures and cC̄ is the centroid of the 3D-circle
center point set in the camera frame. Thus, the 3x3 optimal
rotation matrix is obtained as follows:

Φ0 = VUT (15)

The translation, ∆0, is obtained as the vector which aligns
the centroid of the 3D-circle center point set in the camera
frame, cC̄, and the rotated centroid Φ0 · lC̄:

∆0 = cC̄−Φ0 · lC̄ (16)

2) Refining parameters: The rigid transformation ob-
tained in the above section, [Φ0,∆0], is a linear minimiza-
tion of the Euclidean distance error between the 3D circle
center point sets. This solution is usually a good starting
guess of the extrinsic calibration. Therefore, in the aim of
refining these estimated parameters, we first generate the 3D
circles of the n poses estimated by the camera. It consists
in computing m points of each estimated circle pose by
using the 3D circle center and an orthonormal base lying
in circle’s plane. This orthonormal base is obtained from
the normal vector to the circle’s plane applying the Gram-
Schmidt procedure [15]. Let be cFi,k, the kth generated 3D
point using the camera estimation of the ith pose. Secondly,
the 3D circles of all the poses estimated by the lidar are
generated in the same way as presented for the camera
estimations obtaining lFi,k. Then, we apply systematically
the first guess for the rigid transformation, [Φ0,∆0], as in
the equation (4). Thirdly, under the assumption that the error
orientation of the first guess rigid transformation is lower
than π/2, we match the 3D points of the camera and lidar
transformed estimations for every pose by using the nearest
neighbor criterion as illustrated in Figure 3. At this point, it
is worth to mention that we have a 3D point set of camera
and lidar observations associated. Finally, the refining of the
rigid transformation parameters, [α, β, ρ, tx, ty, tz]T , is
obtained by minimizing the following non-linear objective
function:

ε =
n∑
i=1

m∑
k=1

W · [D2
ik] (17)

with Dik = ||cFi,k − [Φ(α,β,ρ) · lFi,k + ∆(tx,ty,tz)]||.
Where Dik represents the Euclidean distance residual of the
points after applying the rigid transformation and W is a
weighting matrix. The results are obtained by using a robust
M-estimator algorithm for calculating the robust weights as
stated in [16] and the LM-algorithm. After convergence, the
solution of the calibration problem is represented by [Φ,∆].

D. Calibration accuracy

At this point, we have estimated the rigid transformation
between the camera and the laser range finder frame. The
accuracy of the calibration results is estimated under the
assumption that measurement errors are normally distributed.

Fig. 3. Matching of the camera and lidar estimations

Therefore, the covariance matrix of the estimated parameters,
Cσ , is defined as follows:

Cσ = MSE · J · JT (18)

with MSE = 1
θ−φ ·

θ∑
i=1

ε2.

Where J represents the Jacobian matrix of the last LM-
algorithm iteration and MSE represents the mean squared
error defined by θ, the number of observations, φ, the number
of estimated parameters and ε the residual of the non-linear
objective function. In our case, φ is equal to 6 (3 rotations
and 3 translations) and θ−φ represents the degree of freedom
of the χ2 distribution. Based in the above classical approach
for the covariance matrix of the non-linear fitted parameters,
the width of the 95% confidence interval is obtained thanks
to [17]:

δCi =
√
Mχ2(95%,φ) ·

√
Cσ(i, i) (19)

where
√

Cσ(i, i) is the standard deviation of the estimated
parameter and M the corresponding value of the χ2 distri-
bution function.

IV. CALIBRATION ALGORITHM
The following is a summary of the calibration method

explained in section III.

Algorithm 1 Circle-based Extrinsic Calibration Technique
1: for i = 1 to at least 6 do
2: Estimate the ith lidar calibration pose, [lN lĈ]i, as stated in section

III-A
3: Estimate the ith camera calibration pose, [cN cĈ]i, as stated in

section III-B
4: end for
5: Compute a first guess, [Φ0,∆0], for the lidar-camera rigid transforma-

tion using the linear solution (III-C.1)
6: Match the 3D circle poses estimations (III-C.2)
7: repeat
8: Non-linear minimization using LM-algorithm
9: Robust noise variance estimation σ2 based in non-linear minimiza-

tion residuals
10: Weighting matrix W update from M-estimator
11: until convergence of [Φ,∆]
12: Estimate the confidence intervals using III-D

V. EXPERIMENTAL RESULTS
Evaluation tests have been carried out in order to estimate

the behavior and robustness of the presented method in simu-
lated and real conditions. The method has been implemented
using Matlab 7.4.



A. Synthetic data
The considerations which were taken into account in the

simulation model correspond to the sensor relative position
on board the vehicle. The extrinsic parameters used were the
translation vector in meters ∆ = [−0.2, 0.8, 1.8]T and the
orientation matrix Φα,β,ρ, computed from the rotation angles
α = 11◦, β = −1◦ and ρ = 0.5◦. The multi-layer lidar
impacts were generated as the intersection of the lidar beam
emission vectors and the simulated calibration target plane.
A 3D space constraint was used to guarantee that all lidar
layers impact the calibration object. Then, a Gaussian white
noise was added in the direction of the lidar beam emission
vector. By using the model presented in (5), a synthetic image
was computed as a discrete image projection of the circle-
based calibration target. The intrinsic parameters used in the
camera model were a focal length of 1670 pixels and point
(0, 0). Next, a Gaussian white noise was added to the image
projection coordinates of the circle-based calibration target
and to the focal length of the camera model.

1) Test No. 1: A first Monte Carlo-like simulation test
was made in order to estimate the precision achieved by the
method with a minimal number of poses (worst case). Thus, 6
random poses were distributed and oriented randomly in the
common FOV of the multi-sensor system by 100 trials. The
noise was added to the image coordinates and the focal length
was fixed to a standard deviation of one pixel. For each trial
the extrinsic parameters were estimated. The results obtained
are presented in table I. The precision of the calibration
method increase proportionally to the number of poses.

Results of the Test No. 1 (Using only 6 poses)
Relative Position error (millimeters) 46.1059
Relative Orientation error (degrees) 3.4362
Iterations 401

TABLE I
PRECISION ACHIEVED UNDER A MINIMAL NUMBER OF POSES

2) Test No. 2: For evaluating the behavior of the method
with regard to a noise increase, a second simulation test
was performed. In the same way as the first simulation
test, 100 trials using 7 poses were generated for each level
of the Gaussian white noise added in a range between
1 to 3 pixels of standard deviation. In order to compare
the results obtained by the robust non-linear minimization
of the 3D poses (see III-C ) we have also executed an
iterative closest point algorithm (ICP) [18] as a reference of a
classical registration of 3-D point sets. Results are illustrated
in Figure 4(a) and Figure 4(b). By the same, in Figure 4(c)
the translation error behavior was estimated by changing the
number of poses at a Gaussian white noise of 1 pixel of
standard deviation.

3) Test No. 3: Thirdly, we present the results obtained
in a test of consistency computed from the estimations of
the rigid transformations and the confidence intervals using
7 poses in the calibration process. The Figure 5 illustrates as
an example, the evolution of a rotation parameter over the
y-axis in the lidar frame, β. The robust non linear algorithm
improves the results and it has a good statistical efficiency

(a) Translational error (mm.) (b) Orientation error (degrees)

(c) Error behavior by poses

Fig. 4. Relative errors

but its convergence is not guaranteed as observed at the 53th,
69th and 88th trials.

Fig. 5. Consistency test for β at 2σ

B. Real data
Experiments using real data were made thanks to the

experimental platform of the Heudiasyc laboratory (see Fig-
ure 6(a)). This vehicle is equipped with an IBEO Alasca
XT and a camera Sony DFW-VL500. The resolution of
the camera was set to 640 × 480 pixels. We have used
a calibration target with 2 concentric circles of radii 25
cm. and 20 cm. A number of 20 scans were taken into
account for each pose in the calibration process. Only 8 poses
were used to estimate the initial guess solution for the rigid
transformation. The real tests highlight some imprecisions
of the target pose estimation in the camera frame, cNi and
cĈi. These imprecisions were observed in presence of high
image noise levels. This problem was solved by minimizing
the ellipse parameters error between the target image and the
2-D projection of the 3-D target estimation of the camera,
which optimizes cNi and ||cĈi||. After the convergence of
the non-linear minimization algorithm (see section III-C.2)
the computed extrinsic parameters are presented in table II
illustrating the good results obtained.



Fig. 6. Experimental platform: Lidar (left), Camera (right)

Results of the Test using Real Data
Computation time 460.912 seconds
Translation Confidence interval
tx -0.1423 m ± 0.0628 m
ty 0.8398 m ± 0.1043 m
tz 1.6994 m ± 0.0105 m
Rotation angles Confidence interval
Rx 88.2011◦ ± 1.5871◦

Ry -4.5321◦ ± 0.9449◦

Rz 90.7852◦ ± 1.5587◦

TABLE II
RESULTS ACHIEVED WITH REAL DATA

By using the rigid transformation, a projection of the
multi-layer measurements into the scene image was made
and illustrated in Figure7 and Figure 8. Some occlusions are
revealed in Figure 8 which is coherent with respect to the
observed scene.

Fig. 7. Projection image of lidar data

VI. CONCLUSION

A new extrinsic calibration method for a common sensor
configuration in vehicle applications has been proposed. By
using a circle-based calibration target, extrinsic calibration
and intrinsic camera calibration can be effectuated simul-
taneously. The results obtained in real data tests illustrate
an appropriate and accurate projection of the lidar data.
The estimation of the confidence intervals in the calibration
method allows taking into account the error propagation
in data sensor fusion applications. The integration of a
less-constrained camera model can improve the calibration
method. It constitutes a perspective of this research.
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Zürich; 1994.

[14] K. Arun, T. Huang and S. Blostein, “Least-squares Fitting of Two 3-D
Point sets,” IEEE Trans. Pattern Anal. Mach. Intell.,Vol. 9, No. 5, pp.
698-700; 1987.

[15] G. H. Golub and C. Van Loan, “Matrix Computations,” The Johns
Hopkins University Press. Third Edition; 1996.

[16] C. V. Stewart, “Robust Parameter Estimation in Computer Vision,”
Society for Industrial and Aplied Mathematics, Vol. 41, pp. 513-537;
1999.

[17] R. Lupton, “Statistics in Theory and Practice,” Princeton University
Press; 1993.

[18] P. Besl and N. McKay, “A Method for registration of 3-D Shapes,”
Trans. Pattern Analysis and Machine Intelligence, Vol. 14, No. 2;
1992.


