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Abstract—Formal methods are very useful in softwareindus-
try and are becoming of paramount importancein practical en-
gineering techniques. They involve the design and the modeling
of various system aspects expressed usually through different
paradigms. In this paper, we propose to combine two modeling
formalisms in order to express both functional and security
timed requirements of a system. First, the system behavior is
specified based on its functional requirements using TEFSM
(Timed Extended Finite State Machine) formalism. Second, this
model is augmented by applying a set of dedicated algorithms
to integrate timed security requirements specified in Nomad
language. This language is well adapted to express security
properties such as permissions, prohibitions and obligations
with time considerations. The resulting secure model can be
used for several purposes such as code generation, specification
correctness proof, model checking or automatic test generation.
In this paper, we applied our approach to a France Tele-
com(France Telecom is the main telecommunication company
in France) Travel servicein order to demonstrate its feasibility.

Keywords-Formal Methods; Timed Extended Finite State
Machines, Nomad Language; Test Generation;

I. INTRODUCTION

Security and reliability are important issues in designing
and building systems with time constraints because any
security failure can be risky for users, their business and/or
their environment. Currently, software engineers developing
systems, with time constraints, are not only confronted to
their functional requirements but they also have to man-
age other aspects concerning security issues. We mean by
“functional requirements’ the services that a system offers
to end users. Whereas, security rules denote the properties
(restrictions) that a system has to fulfill to be always in a
safe state, or also to guarantee good quality of services it
provides. For instance, a file system may have to specify
the prohibition for a user to access to a specific document if
he/she is not authenticated or if his/her session of 10 minutes
has been expired. More generally, a security rule expresses
the obligation, permission or interdiction to perform an
action under given conditions called context.

Complex systems are often incrementally designed. They
are evolutionary where new requirements may appear during
its life cycle and then have to be integrated to its initial
specification. In this paper, we deal with a particular kind
of requirements denoting security properties. Basically, we
provide a formal approach to integrate elaborated security
rules involving time constraints into a system specification
based on communicating extended timed automata called
TEFSM specification [1].

The analysis of security issues led researchers and security
experts to define of a big number of security languages
and models that provide a formal representation of system’s
security policies. With the great majority of these models,
security rules are specified using modalities like permission,
prohibition and obligation that express some constraints on
the system behavior. Among these models, we can mention
for instance the Policy Description Language (PDL) [2],
Ponder [3], RBAC (stands for Role Based Access Control)
[4] and Nomad [5] (stands for Non atomic actions and
deadlines). This latter is the one we have chosen since
it allows to easily expressing security policies with time
constraints.

In the literature, previous work dealt with secure systems
specifications based on integration methodology. The authors
of [6] and [7] for instance proposed formal procedures that
let it possible to augment a functional description of a system
with security rules expressed with OrBAC language [8]
(stands for Organizationnal Based Access Control language).
In both work, they described security rules that specify the
obligation, permission or interdiction for a user to perform
some actions under a given context. However, this context
does not involve time aspects. In fact, they only specified
rules without time considerations. Another work presented
in [9] proposed to translate security rules (always without
time constraints) into observers that can communicate with
the functional specification of a system specified in EFSM
formalism [10] (stands for Extended Finite State Machine) to
regulate its behavior. The proposal presented in this article
goes farther by considering time constraints that are very



relevant in the modern applications that are more and more
time-dependent. The main contributions of this paper are:

o The classification of the timed security rules into three
distinguished classes. The first two classes denote basic
rules including both atomic and non-atomic actions
with simple contexts. A simple context only includes a
single timed operator and neither logical nor structural
connectors. The third class is general and deals with
elaborated security rules that include more complex
contexts involving several logical or/and structural con-
nectors.

o The algorithms to integrate security rules within a
TEFSM specification. These algorithms consist in
adding or modifying guards, transitions and even states
to make the execution instance of a given action possi-
ble only under a specific clock valuation. The produced
TEFSM is called a secured TEFSM since it takes the
timed security rules into account.

o The correctness proof of one integration algorithm
which demonstrates the accuracy of our approach.

« An application of the proposed approach on an indus-
trial case study provided by France Telecom company.

This paper is organized as follows. Section Il provides

the basic concepts used for the modeling of system behavior
from both functional and security point of view. In section
I11, we present an overview of the approach we have devel-
oped to augment a TEFSM specification with timed security
rules. Then, we describe the integration algorithm for basic
security rules in section IV. The proof of the proposed
algorithms is presented in section V. To demonstrate the
feasibility of the developed approach, we present in section
VI an industrial case study that deals with a business travel
reservation web application provided by France Telecom.
Finally, section VII concludes the paper.

Il. PRELIMINARIES
A. Modeling communicating systems using TEFSM model

The objective of modeling a system is to provide an oper-
ational specification of a system. This operational specifica-
tion may include time constraints. In particular, it provides
a better common understanding of the system. In addition,
this operational model can also be used as input to existing
validation tools, such as interactive or random simulators,
model-checkers or (conformance) test generation engines. In
our case, we rely in this paper on TEFSM model supported
by IF language [1] because it includes the main concepts to
design real-time systems. Moreover, several tools allowing
its simulation and the generation of test sequences exist and
are open source. A TEFSM modeling of a system consists
of a set of IF processes (i.e entities), each one denotes
a TEFSM that can communicate with other processes via
FIFO channels.

Definition 1: A TEFSM M is a 7-tuple M = < S, s,
I, O, Z, & Tr > where S is a finite set of dtates, sg is

the initial state, I is a finite set of input symbols (messages
possibly with parameters), O is a finite set of output symbols
(messages possibly with parameters), 2 is a vector denoting
a finite set of variables, ¢ is a vector denoting a finite
set of clocks and T'r is a finite set of transitions. Each
transition ¢r is a 4-tuple tr =< s;,s¢, G, Act > where
s; and sy are respectively the initial and final state of
the transition, G is the guard which denotes a predicate
(boolean expression) on variables ¥ and clocks ¢ and Act is
an ordered set (sequence) of atomic actions including inputs,
outputs, variable assignments, clock setting, process creation
and destruction.

The execution of any transition is spontaneous i.e. the
action(s) associated with this transition occur simultaneously
and take no time to complete. The time progress takes place
in some states before executing the selected transitions. More
details about time progress can be found in [11].

Figure 1. Example of a simple TEFSM with two states.

to =< So, So, P, (input a; T’ ; output =) >
t1 =< So, S1, P, (input a; T ; set Ck := 0 ; output =) >
to =< S1, S0, when Ck > 6, (input b; T” ; output y) >

We illustrate the notion of TEFSM through a simple
example depicted in Figure 1. This TEFSM is composed
of two states Sp, S1 and three transitions that are labeled
with two inputs a and b, two outputs x and ¥, one guard
(or predicate) P on variables, one clock C'k and three tasks
T, T' and T". The TEFSM operates as follows: starting
from state Sy, when the input a occurs, the predicate P is
checked. If the condition holds, the machine performs the
task T, starts clock Ck, triggers the output 2 and moves to
state S;. Otherwise, the same output x is triggered but it
is action 7" that is performed and the state loops on itself.
Once the machine is in state Sy, it can come back to state
So when the clock exceeds the value 6 and receives the
input b. If so, task 7" is performed and output y is triggered.

Notations: In the remainder of the paper, we need the
following notations. For each action a that belongs to the
sequence actions Act:

« before(a) denotes the actions of Act that are executed
before action a. before(a) is empty if action a is the
first action of Act.

o after(a) denotes the actions of Act that are executed
after action a. after(a) is empty if action a is the last
action of Act.

« The sequence of actions Act can be then denoted by:

(before(a);a;after(a)).



For instance, the action of transition ¢;, of Figure 1, can
be denoted by:

Act = (before(T); T;after(T))

where (before(T) = input a) and (after(T) = (set Ck
:= 0; output x)).

B. Security rules specification using Nomad language

We use the Nomad formal language to specify without any
ambiguity the set of security properties that the system has
to respect. The choice of this language is mainly motivated
by the Nomad features that provide a way to describe
permissions, prohibitions and obligations related to non-
atomic actions within elaborated contexts that takes into
account time constraints. By combining deontic and tempo-
ral logics, Nomad allows to describe conditional privileges
and obligations with deadlines, thanks to the time concept it
supports. Finally, it can also formally analyze how privileges
on non atomic actions can be decomposed into more basic
privileges on elementary actions.

1) Nomad syntax and semantics: To meet the require-
ments of the functional model of the system, we define an
atomic action in the Nomad language with the same concepts
as for TEFSM actions.

Definition 2: We define an atomic action as one of the
following actions: a variable assignment, a clock setting,
an input action, an output action, a process creation or
destruction.

Definition 3: (Formulae) If A is an action then start(A)
(starting A), and done(A) (finishing A) are formulae.

o If @ and § are formula then —a, (a A 58) and (a V )
are formula.

o If o is a formulae then O (a was true d units of
time ago if d < 0, « will be true after d units of time
if d > 0) is a formulae too.

o If a is a formulae then O<?q (within d units of time
ago, a was possibly true if d < 0, « will be possibly
true within a delay of d units of time if d > 0) is a
formulae.

o If @ and ~ are formula then («|v) is a formulae whose
semantics is. in the context v, the formulae « is true.

In the remainder of the paper, we respectively refer to

operators "O” and ”|” by timed and contextual operators.
We also use the notation O!=)? to cover both cases O¢
and O<?. Notice also that using Nomad formalism, we deal
with a discrete time. The choice of the unit of time can be
very important and depends on the studied system. In our
work, we use real time units like seconds, milliseconds or
microseconds depending on the desired precision.

Definition 4: (A security rule) If o and g are formulae,

R (a | B) is a security rule where R denotes one of the
following deontic operators: {P, F, O}. The security rule
P (a| B) (resp. F (o | B), O (« | B) ) means that it is

permitted (resp. prohibited, mandatory) to have « true when
context 3 holds.

2) Examples of security rules specification: We present
in this section some examples of security rules specifications
expressed in Nomad:

Example 1

P(start (input ReqWrite(user, file.doc))|
O=75% (done (output AuthOK (user))A
= done (output DisconnectOK (user)))

This rule expresses a permission granted to any user to
request to write in ‘file.doc’, if earlier within 5 seconds,
he/she was authenticated and his/her authentication is still
running.

Example 2:

O(start (output DisconnectOK (user))|
0<% (5 done (input Message(user)))A
O3 done(output AuthOK (user)))

According to this obligation rule, the system must
disconnect a running connection of any user if this latter
remains inactive for 30 minutes.

Example 3:
F(start ((output AuthOK (user)))|
0=7%9 done (output AuthOK (user)) A
(= done(output DisconnectOK (user))))

This prohibition rule means that it is forbidden that the
system manages more than two authentication requests in
the same millisecond.

IIl. SECURITY INTEGRATION METHODOLOGY

The integration of security rules into a TEFSM model
describing the behavioral aspects of a system leads to a
TEFSM specification that takes the security policy into
account: we call it ’secure functional specification’. The
integration process is twofold. At first, the algorithm seeks
for the rules to be applied on each transition of the TEFSM
specification. Then, it adds some states, transitions or up-
dates the guard of the related transition. These modifications
depend on the nature of the rule (prohibition, permission or
obligation) and its syntax format. To integrate security rules
into a TEFSM specification, we have to make the following
assumption: the security rules to integrate are consistent. We
assume that it does not contain any incoherent or redundant
rules. The consistency of the security policy is out of the
scope of this paper and we assume that it has already
been checked following different techniques (see for instance
[12]). Here is an example of an inconsistent security pol-
icy composed of two rules O(start(A)|O~%done(B)) and
F(start(A)|O~?done(B)). We cannot oblige the system to
perform action A in a context (C = O~%done(B)) if this
action is forbidden in the same context.



According to Nomad syntax, there are several possible
forms for security rules. It would obviously be tedious to
deal separately with each of these forms. Consequently, we
classify the Nomad security rules into two main classes
described hereafter:

(1) Basic security rules: we consider in this class security
rules of the form R (start(A)|O!<!4done(B)) where A
and B are actions and where R € {F, O, P}. To make
easier the integration of such rules, we also distinguish
two subclasses:

— Basic security rules with atomic actions: actions A
and B are atomic.

— Basic security rules with decomposable actions. A
or B or both are non-atomic actions.

(2) General security rules: a general security rule denotes
any rule that does not fit into the first class. This means
that the rule may contain several contextual or/and
timed operators or/and logical connectors. In [13], we
have demonstrated that such a rule can be decomposed
and rewritten into one or several basic rules. In this
way, integration algorithms developed for the first class
can be reused and applied to integrate general security
rules.

For sake of space, only algorithms to integrate prohibition
and obligation timed security rules with basic actions are
presented. A more complete description of the algorithms
to deal with rules that include non-atomic actions several
contextual or/and timed operators or/and logical connectors
can be found in [14].

IV. INTEGRATION OF BASIC SECURITY RULES
INVOLVING ATOMIC ACTIONS

This section describes the integration of basic security
rules of the form R(start(A|O=4done(B)) where R €
{F,0,P}, Aand B denote atomic actions . Since we deal
with a timed context, we need to define a global clock gck
to manage the temporal aspect of the rules.

A. Prohibitions integration: F(start(A|O<1%done(B)))

The prohibited action A is usually related to an already
existing action in the initial system. A simple way to enforce
the prohibition rule would be to disable all transitions con-
taining action B (resp. A). In this way, there is no transition
perfoming action B (resp. action A) anymore and the rule
is obviously taken into account and respected. However,
the main drawback of this solution is that it eliminates
some behaviors that do not violate the security rule. In
fact, the semantics of the rule does not forbid the execution
of action A if action B is executed, for instance, (d + 1)
units of time ago. Consequently, the key idea of integrating
such prohibition rule in a TEFSM model is to check the
rule context before performing the prohibited action. If this
context is verified, the prohibited action A must be skipped.

Otherwise, if the context is not valid, the action is performed
without any rule violation.

Algorithm 1 Prohibitions Integration

Require: The TEFSM model M =< S,s9,1,0,%,¢Tr > and the
prohibition security rule F (start(A) | O[<]=4 done(B))
1. for each (transition ¢r such that
(tr € Tr ANtr =< S;,5;,G, Act >)) do
2: if (B € Act) then

3: tr = < S;,8;,G, {before(B), B, Update(Prohib(A)),
after(B)} >;
4: if (A € after(B)) then
5: Ptr = < 8;,8;5,G,{before(B), B, after(B)N
before(A), A,after(A)} >*/
6: [*Create a new state S’ and a new transition tr’*/
7 tr:=<8S;,5,G,
{before(B), B,after(B) Nbefore(A)} >;
8: tr' = < S;, 85,
{when (=Prohib(A))}{A,after(A)} >;
9: end if
10: else
11: if (A € Act) then
12: tr ;= < S;,8;,G A {when (—Prohib(A))}, Act >;
13: end if
14: end if
15: end for

To achieve this goal, we have to define a table Prohib to
store all the instants where it is prohibited to execute a given
action. These instants are denoted by a predicate on clock
gck which is a global clock for the system lauched in its
initial state. For instance, a predicate ((gck < 10) V (gck =
15)) means that the execution of action A is forbidden till the
tenth period of time and also at the fifteenth. We also defines
the function val(gck) that provides the value of clock gck
at a specific moment. Table Prohib is updated as follows:

« After each occurrence of B in the TEFSM transitions,
value of Prohib(A) is updated by adding a predicate
on the instant(s) when the execution of action A is
prohibited. The new value of Prohib(A) is defined by:

Prohib(A) V (gck < val(gck) + d),
for]-_(start(A)\O<7ddone(B))

Prohib(A) V (gck = val(gck) + d),
forF(start(A)|O~ “done(B))

Prohib(A) =

« Before performing the prohibited action A, we check
whether the value val(gck) satisfies (Prohib(A)) to
deduce if A can be performed or not.

The prohibition integration methodology is described in
pseudo-code in Algorithm 1. To illustrate this algorithm, we
present an example of a prohibition rule integration in Figure
2. In the left, the initial functional system contains several
occurrences of the atomic actions A and B. We want to
integrate the rule F (start(A) | O<~¢ done(B)) that stipulates
that it is forbidden to perform action A if within d units
of time ago, B was performed. Applying Algorithm 1, we
obtain the secure system depicted in Figure 2.b.
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Figure 2.

B. Obligations integration

Since several obligation rules related to action A may
be defined, we have to take the possible dependencies that
may exist between them. In fact let us consider for instances
rules O (start(A) | O~5 done(B)) and O (start(A) | O<—1°
done(C)) where action C' is executed 3 units of times (less
than 5 units of times) after the execution of B. The execution
of action A five minutes later the execution of B permits
to satisfy both rules at the same time. The idea behind this
simple example is to check if it necessary to execute the
mandatory rule for each execution of the context action. To
integrate an obligation security rule in the TEFSM based
system specification, we rely on a new process RH P that
ensures the execution of the mandatory action. If the related
mandatory action is not executed by the initial specification,
the process has the task to execute it itself. We assume
that the initial system S is not secure with respect to each
obligation rule of the form O (start(A) | O~ done(B)),
that is, it does not perform the action A, d units of time
after executing B. This task is then performed by the RH P
process. The integration methodology follows these steps for
arule that is in form of O (start(A) | O!=]=¢ done(B)) where
d>0:

o A boolean variable wait 4 is defined. It allows to know
whether we are waiting for the execution of an instance
of action A or not. This variable is set to true at the
execution of each action B for which an obligation rule
O (start(A) | Ol=1=¢ done(B)), and set to false when
action A is executed.

o The definition of a new process that can be created n
times by the initial functional specification. n is the
maximum number of occurrences of action B in the
initial TEFSM specification. This new process has two
parameters. The first parameter, equal to (val(gck)+d),
states the instant when (resp. before which) action A
should be executed if we deal with the O~ timed op-
erator (resp. O<~%). The second parameter exactTime
is a boolean intended to know whether action A must
be executed at (gck + d) (for a rule of the form O
(start(A) | O~ done(B))) units of times or before this
moment (for a rule of the form O (start(A) | O<—¢

B;Prohib(A):=
Prohib(A) or (val(gck)<d)

(Provided(A),

(b) Secure System Specification

Prohibition Rule Integration : F (start(A) | O[<I=¢ done(B))

done(B))). The process has to wait until the deadline
of execution of action A is reached. This deadline and
the actions to perform (deadline, Action) depend on
the type of the rule and whether we are waiting for an
execution of action A:

(deadline, Action) =
for O(start(A)|O~4done(B)):
(gck = gck + d, A; (waita := false); stop)
for O(start(A)|O<~%done(B)):
((gck = gck + d) V ~wait 4, i fwait athenA; stop)

The complete algorithm that permits to integrate an
obligation rule of the form O (start(A) | O~ done(B))
L is as follows:

Algorithm 2 Obligations Integration
Require: The TEFSM model M =< S, s0,1,0, &,
the obligation security rule O (start(A) | O<~¢
1: In the initial state of M, waita := 0
2. for each (transition ¢r such that
(tr € Tr Ntr =< S5, Sj, G, Act >)) do
3 if (B € Act) then
4: tr 1= < Sy, S5,G, (before(B); B;waita := true;
fork RHP(gck + d,true); after(B)) >

¢, Tr > and
done(B))

5. end if
6 if (A€ Act) then
7. tr =< 85;,5;5,G,

(before(A); A;waita := false;after(A)) >
8 endif
9: end for
10: for RHP process (v, exactTime) do
11:  Define two states S; and S
12:  Define five transitions ¢ry, tre, trs, trq and trs
13: try = < So, S1, {when exactTime},_ >
14: tre := < So, S2, {when not exactTime},_ ) >
[*We should execute action A even if an other instance of
this action has already been executed */
15: trs 1= < S, _, {when gck = v},
(waita := flase; A; stop) >
/*We should execute action A only if no instance has been
executed before (v = gck + d)*/
16:  try =< S2,_, {when gck = v}, (i f(waita)A); stop)) >
17: trs := < So, _, {when gck = v},
(if (not(waita))y; stop)) >
18: end for

LFor an obligation rule of the form O (start(A) | O[<—¢ done(B)), we
have just to replace the second parameter of process RHP with false.



B, fork RHP(gck+d, true);
© =i C)
sk RHP(gck+d, true);
QaItA>RYe

waitA:=true;
A;waitA:=falsq

Figure 3.

In Figure 3, we present the integration of an obligation
rule within the initial system depicted in Figure 2.a. In this
functional system, we can find several occurrences of the
atomic action B.

V. CORRECTNESS PROOF OF THE INTEGRATION
APPROACH

To ensure the correctness of the approach we have pro-
posed to integrate security rules, we have to prove all the
algorithm we have developed. For sake of space, we only
present here the correctness of algorithm 1 for rules of the
form F (start(A) | O<~? done(B)). Other correctness proofs
are similar and can be found in [13].

By proving the correctness of algorithm 1, we precisely
demonstrate that the integration of prohibition rule of the
form : F (start(A) | Ol<=¢ done(B)) where d > 0 produces
to a secure TEFSM specification. To achieve this goal, we
define for each occurrence of action B:

e tp as the instant of the execution action B.

o k as the time elapsed after the execution of action B.

o gck isaglobal clock of the system that gives the current
time at each moment.

We have to prove that we can not perform the action
A within d units of time after the execution of action B.
Mathematically, we have to establish that for each positive
integer k the following predicate holds:

((k < d) A (val(gek) =tp + k)) = —start(A) )

To prove that action A cannot be executed at the moment
(val(gck) = tp + k), it is sufficient to prove that at
this moment all the transitions T'r of the secure system
labeled by action A are impassable. That is all the guards
of the transitions T'r are false. In the secure system, the
algorithms 1 adds the guard (when (—Prohib(A))) before
each execution of A. Thus, we have to prove, for each
positive integer k, that:

((k < d) A (val(gck) = tp + k)) = Prohib(A) 2

Predicate Prohib(A) is a disjunction of predicates to
which predicate (gck < wal(gck) + d) has been added
when action B has been executed at instance ¢g. The added
predicate is equivalent to (gck < tp + d) (See algorithm 1).
Consequently, it is sufficient to establish that:

Process RHP(v, exactTime)

when gck=v,
waitA:=false; A

Obligation Rule Integration : O (start(A) | O—< done(B)).

((k < d) A (val(gek) =t + k)) = val(gck) < tp +d 2
which is obviously true.

VI. CASE STUDY: TRAVEL WEB APPLICATION
A. Travel application functional description

To prove the effectiveness of our framework we carried
out a case-study using a Travel application which is an
internal service used by France Telecom company to manage
‘missions’ (business travels) carried out by its employees. In
our case study we only consider, at first, a simple Travel
application where a potential traveler can connect to the
system (using a dedicated URL) to request a travel ticket
and a hotel reservation during a specific period according to
some business purposes (called mission). This request can be
accepted or rejected by his/her hierarchical superior (called
validator). In the case it is accepted, the travel ticket and
hotel room are booked by contacting a travel agency. The
specification of this Travel Web application is performed
using the IF language that relies on TEFSM model.

B. Security integration for travel Web system

Further, we defined some specific security rules to boost
the system security. These security rules are inspired from
France Telecom’s security test campaign in the context
of POLITESS project’>. The security rules are formally
specified using the Nomad model.

1) Travel security specification using Nomad language:
France Telecom proposed a preliminary version of the case
study Travel in which some informal security requirements
are provided. Based on these requirements, we formally
specified a set of 34 security rules using the Nomad lan-
guage. For matter of space, we only present the following
three:

« Rule 1:

F (start (output req_create_mission(t))|
O==2min done (output req_create_mission(t)))
This first prohibition rule expresses that two missions
requests of the same traveler must be separated by at
least 2 minutes. This request can be performed in the

basic_traveler process.
o Rule 2:

Zhttp://www.rnrt-politess.info/



P (start (output req_proposition_list(t,m))|
O=719min done (output req_proposition_list(t,m)))
This permission rule expresses that a traveler can
request for another list of travel propositions within
a delay of 10 minutes if he/she already asked for a
first list of travel propositions. This request can be

performed in the traveler_mission process.
o Rule 3:

O (start (output req_validation())|
O~10080min done (output req_validation()) A
O=10080min (( done (input recv_validate-

_notification()))
A (= done (input recv_unvalidate_notification()))))
This obligation rule expresses that if a traveler re-
quested for the validation of his/her mission and if
he/she did not received an answer, the system must
send, as a reminder, another request to the potential
mission validator. This reminder is sent within a delay
of (10080 min = 7 days). The requests and answers are
made in the travel_mission process.

2) Rulesintegration results: A securuity rules integration
module based on the integration methodology described in
section 1V has been implemented using C language. The
table | shows some metrics about the modifications after
the integration of some specific rules: the modified and
added transitions (M&A Transitions), the added variables
and clocks (Added Var & Ck), the added processes (Added
Proc).

Table |
IF TRAVEL SYSTEM MODIFICATIONS ACCORDING TO EACH RULE
Rule | M&A Transitions | Added Var & Ck | Added Proc
1 1+1 1 0
2 2+1 1 0
3 443 1 1

C. Test Generation

To automatically generate test cases from the secure
specification of Travel, we use the TestGen-IF [15] test
generation tool. This tools implements a timed test genera-
tion algorithm based on a Hit-or-Jump exploration strategy
[16]. This algorithm efficiently constructs test sequences
with high fault coverage, avoiding the state explosion and
deadlock problems encountered respectively in exhaustive
or exclusively random searches. It allows to produce a set
of test scenarios according to a set of test purposes. The
automatic test generation only targets security issues and, as
a result, it is less time consuming.

To reach this aim we used, for Travel test generation,
two users (one being the validator) and two missions. We
also defined adequate interval values for data variables in
order to reduce the accessibility graph size and to avoid
state explosion problems.

A set of timed test cases are generated based on the IF
specification of Travel Web application and the timed test

purposes for each rule, using TestGen-IF. These test cases
are then filtered according to the observable actions (input,
output and delays) relating to the system under test. Some
metrics about this test generation relating to three rules are
presented in Table I1.

D. Test Cases Instantiation and Execution

In order to execute the generated test cases to a real Web
application, they need to be transformed into an executable
script capable of communicating via http (or https) with the
implementation under test. In this work, we automatically
translated the abstract test case into tcl script that is used by
the tclwebtest tool [17] to execute the designed tests.

The test cases execution was performed on a prototype
implementation of the Travel Web application (developed
on OpenACS platform) to verify that the specified security
requirements are respected. It is important to highlight that
some time settings in this prototype have been changed so
that the application of the tests where faster than in the
real system. For example, we changed 10080 minutes (7
days) in the third rule to 3 minutes to avoid waiting so
long. Therefore in this case study we verify the behavior of
the system concerning this rule using a delay of 3 minutes
rather than using 7 days.

The execution of the test cases is performed using a
dedicated testing tool proposed by the OpenACS community
[18]. This tool is called the ACS-Automated-Testing tool that
allows executing the instantiated test cases, interacting with
the Web-based application under test and, also, displaying
the verdict of each test case. The ACS-Automated-Testing
tool is, in itself, a Web application but we will refer to it
just as the tester to avoid confusions between this system
and the Web application to be tested.

As a result of the execution of the designed test cases
on the prototype, we obtained positive verdicts for thirty
test objectives, while, four test objectives were violated (fail
verdict). For example, a problem has been detected accord-
ing to the system respect to the first rule that expresses a
prohibition. If a potential traveler requests for a first mission
and then waits for 2 minutes, he/she is not allowed by
the system to request for another mission. We analyzed the
implementation of the Web-based system and noticed that a
mistake was encrusted in the code. Instead of 2 minutes, the
Travel system waited much longer before allowing a second
mission request.

The Travel application was analyzed to detect the four
error sources. Once the mistakes corrected, all the test cases
were applied again on the Web application. This time, all
the verdicts were positive which demonstrates the efficiency
of our methodology.

VII. CONCLUSION

In this paper, we have presented a formal approach
to integrate timed security rules, expressed according to



Table Il
SOME TEST GENERATION METRICS

Rule | Strategy | Maxdepth | Jumps | Test Case Length | Visited States | Duration
1 BFS 10 0 9 291 0.2s
2 BFS 10 1 16 7844 10s
3 BFS 10 2 23 26552 1m25s

Nomad language, into a TEFSM specification of a system.
Roughly speaking, a security rule denotes the prohibition,
the obligation or the permission for the system to perform
an action in a specific timed context. To meet this objective,
we have described a set of algorithms that allows to add them
to a TEFSM specification describing the behavior aspect of
a system. A proof that demonstrates the correctness of the
prohibition integration algorithms is given. These algorithms
are implemented in a tool and the methodology has been
applied on several real-size applications that gave very
promising results. Finally, the complexity of the algorithms
presented in this paper are linear (in O(n)) since it is
directly proportional to the number of rules in the policy.
In practical experience, the modification of an initial system
is not sizeable since the number of rules is not in general
huge. In most transitions, only some changes in predicates
are applied.
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