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44306 Nantes Cedex 3, France,
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Raphaël Mourad†, Christine Sinoquet‡, Philippe Leray†

Learning a forest of Hierarchical Bayesian Net-
works to model dependencies between genetic mark-
ers
26p.

Les rapports de recherche du Laboratoire d’Informatique deNantes-Atlantique sont
disponibles aux formats PostScript® et PDF® à l’URL :
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raphael.mourad,christine.sinoquet,philippe.leray@univ-nantes.fr

Abstract

We propose a novel probabilistic graphical model dedicatedto represent the statistical dependencies between genetic
markers, in the Human genome. Our proposal relies on building a forest of hierarchical latent class models. It is
able to account for both local and higher-order dependencies between markers. Our motivation is to reduce the
dimension of the data to be further submitted to statisticalassociation tests with respect to diseased/non diseased
status. A generic algorithm, CFHLC, has been designed to tackle the learning of both forest structure and probability
distributions. A first implementation of CFHLC has been shown to be tractable on benchmarks describing10
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variables for2000 individuals.





1 Introduction

Genetic markers such as SNPs are the key to dissecting the genetic susceptibility of complex diseases:
they are used for the purpose of identifying combinations ofgenetic determinants which should accumu-
late among affected subjects. Generally, in such combinations, each genetic variant only exerts a modest
impact on the observed phenotype, the interaction between genetic variants and possibly environmental
factors being determining in contrast. Decreasing genotyping costs now enable the generation of hun-
dreds of thousands of genetic variants, or SNPs, spanning whole Human genome, accross cohorts of
cases and controls. This scaling up to genome-wide association studies (GWAS) makes the analysis of
high-dimensional data a hot topic. Yet, the search for associations between single SNPs and the variable
describing case/control status requires carrying out a large number of statistical tests. Since SNP patterns,
rather than single SNPs, are likely to be determining for complex diseases, a high rate of false positives
as well as a perceptible statistical power decrease, not to speak of untractability, are severe issues to be
overcome.

The simplest type of genetic polymorphism, Single Nucleotide Polymorphism (SNP), involves only
one nucleotide change, which occurred generations ago within the DNA sequence. To fix ideas, we
emphasize that one single individual can be uniquely definedby only 30 to 80 independent SNPs and
unrelated individuals differ in about0.1% of their3.2 billion nucleotides. Compared with other kinds of
DNA markers, SNPs are appealing because they are abundant, genetically stable and amenable to high-
throughput automated analysis. Consistently, advances inhigh-throughput SNP genotyping technologies
lead the way to various down-stream analyses, including GWASs.

Exploiting the existence of statistical dependencies between SNPs, also called linkage disequilibrium
(LD), is the key to association studies achievement (Balding (2006)). Indeed, a causal variant may not be
a SNP. For instance, insertions, deletions, inversions andcopy-number polymorphisms may be causative
of disease susceptibility. Nevertheless, a well-designedstudy will have a good chance of including one
or more SNPs that are in strong LD with a common causal variant. In the latter case, indirect association
with the phenotype, say affected/unaffected status, will be revealed (see Figure1).

Figure 1: a) Direct association between a genetic marker andthe phenotype. b) Indirect association
between a genetic marker and the phenotype.

Interestingly, LD is also the key to reduce data dimensionality in GWASs. In eukaryotic genomes,
LD is highly structured into the so-called ”haplotype blockstructure” (Patitet al. (2001)): regions where
correlation between markers is high alternate with shorterregions characterized by low correlation (see
Figure2). Relying on this feature, various approaches were proposed to achieve data dimensionality
reduction: testing association with haplotypes (i.e. inferred data underlying genotypic data) (Schaid
(2004)), partitioning the genome according to spatial correlation (Pattaroet al. (2008)), selecting SNPs
informative about their context, or SNP tags (Hanet al. (2008)) (for other references, see Lianget al.

fig1_direct_indirect_association.eps
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(2008) for example). Unfortunately, these methods do not take into account all existing dependencies
since they miss higher-order dependencies.

Figure 2: LD plot (matrix of pairwise dependencies between genetic markers or linkage disequilibrium).
Human genome, chromosome2, region [234 357kb - 234 457kb]. For a pair of SNPs, the colourshade is
all the darker as the correlation between the two SNPs is high.

Probabilistic graphical models offer an adapted frameworkfor a fine modelling of dependencies be-
tween SNPs. Various models have been used for this peculiar purpose, mainly Markov fields (Verzilli
et al. (2006)) and Bayesian networks (BNs), with the use of hierarchical latent BNs (embedded BNs
(Nefian (2006)); two-layer BNs with multiple latent (hidden) variables (Zhang and Ji (2009)). Although
modelling SNP dependencies through hierarchical BNs is undoubtedly an attractive lead, there is still
room for improvement. Notably, scalability remains a crucial issue.

In this paper, we propose to use a forest of Hierarchical Latent Class models (HLCMs) to reduce the
dimension of the data to be further submitted to associationtests. Basically, latent variables capture the
information born by underlying markers. To their turn, latent variables are clustered into groups and,
if relevant, such groups are subsequently subsumed by additional latent variables. Iterating this process
yields a hierarchical structure. First, the great advantage to GWASs is that further association tests will
be chiefly performed on latent variables. Thus, a reduced number of variables will be examined. Second,
the hierarchical structure is meant to efficiently conduct refined association testing: zooming in through
narrower and narrower regions in search for stronger association with the disease ends pointing out the
potential markers of interest.

However, most algorithms dedicated to HLCM learning fail the scalability criterion when data de-
scribe thousands of variables and a few hundreds of individuals. The contribution of this paper is
twofold: (i) the modelling of dependencies between clusters of SNPs, (ii) the design of a tractable al-
gorithm, CFHLC, fitted to learn a forest of HLCMs from spacially-dependent variables. In the line of a
hierarchy-based proposal of Hwang and collaborators (Hwang et al. 2006), our method yet implements
data subsumption, meeting two additional requirements: (i) more flexible thus more faithful modelling of
underlying reality, (ii) control of information decay due to subsumption. Section 2 motivates the design
of HLCMs. Section 3 points out the few anterior works devotedto HLCM learning. Then, after an unfor-
mal description of the FHLC model, Section 4 focuses on the general outline of the method proposed for
FHLCM learning. In Section 5, we give the sketch of algorithmCFHLC. Section 6 presents experimental
results and discusses them.

fig2_ldplot.eps
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2 Motivation for HLC modelling

From now on, we will restrain to discrete variables (either observed or latent).

A Latent Class Model (LCM) is defined as containing a unique latent variable connected to each of
the observed variables. The latent variable influences all observed variables simultaneously and hence
renders them dependent. In the LCM framework, an underlyingassumption states that the observed vari-
ables are pairwise independent, conditional on the latent variable (Zhang (2004)). Since each state of
the latent variable corresponds to a class of individuals, this assumption, also called local independence
(LI), can be restated as pairwise independency, conditional on latent class membership. The intuition
behind LI is that the latent variable is the only reason for the dependencies between observed variables.
However, this assumption is often violated for observed data. To tackle this issue, HLCMs were proposed
as a generalization of LCMs. HLCMs are tree-shaped BNs whereleaf nodes are observed while internal
nodes are not. In a Bayesian network, local dependency between variables may be modelled through the
use of an additional latent variable (see Figure3). At a larger scale, multiple latent variables organized
in a hierarchical structure allow high modelling flexibility. Figure4 illustrates the ability of HLCMs to
depict a large variety of relations encompassing local to higher-order dependencies.

Figure 3: (a) Latent Bayesian network modelling a local dependency between B and C nodes. (b) Mod-
elling of the local dependency between B and C nodes through alatent hierarchical model.

Figure 4: Hierarchical latent lodel. The light shade indicates the observed variables whereas the dark
shade points out the latent variables.

3 Background for HLC model learning

Various methods have been conceived to tackle HLCM learning. These approaches differ by the follow-
ing points: (i) structure learning; (ii) determination of the latent variables’ cardinalities; (iii) learning of
parameters,i.e. unconditional and conditional probabilities; (iv) scalability; (v) main usage.

fig3_local_dependency.eps
fig4_hlcm.eps
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As for general BNs, besides learning of parameters (θ), i.e. unconditional and conditional probabil-
ities, one of the tasks in HLCM learning is structure (S) inference. The HLCM learning methods fall
into one of two categories. The first category, structural Expectation Maximization (SEM), successively
optimizesθ | S andS | θ. Amongst few proposals, hill-climbing guided by a scoring function was
designed (Zhang (2003)): the HLCM space is visited through addition or removal of latent nodes alter-
nating with addition or dismissing of states for existing nodes. Other authors adapted a SEM algorithm
combined with simulated annealing to learn a two-layer BN with multiple latent variables (Zhang and
Ji (2009)). Alternative approaches implement ascending hierarchical clustering (AHC). Relying on pair-
wise correlation strength, Wang and co-workers first build abinary tree; then they apply regularization
and simplification transformations which may result in subsuming more than two nodes through a latent
variable (Wanget al. (2008)). Hwang and co-workers’ approach confines the HLCM search space to
binary trees augmented with possible connections between siblings (nodes sharing the same parent into
immediate upper layer) (Hwanget al. (2006)). Moreover, they constrain latent variables’ arityto binarity.
However, the latter approach is the only one we are aware of that succeeds in processing high-dimensional
data: in an application dealing with a microarray dataset, more than6000 genes have been processed for
around60 samples. To our knowledge, no running time was reported for this study.

Nevertheless, the twofold binarity restriction and the lack of control for information decay as the level
increases are severe drawbacks to achieve realistic SNP dependency modelling and subsequent associa-
tion study with sufficient power.

4 Constructing the FHLC model

4.1 The FHLC model

The HLCMs offer several advantages for GWASs. Beside data dimensionality reduction, they allow a
simple test of direct dependency beween an observed variable and a target variable such as the pheno-
type, conditional on the latent variable, parent of the observed variable. Note that the phenotype variable
is not included in the HLCM. In the context of GWASs, this testhelps finding the markers which are
directly associated with the phenotype, i.e. causal markers, should there be any. Second, the hierarchical
structure allows zooming in through narrower and narrower regions in search for stronger association
with the disease. This zooming process ends pointing out thepotential markers of interest. Thirdly, the
latent variables may be interpreted in a biological meaning. For instance, in the case of haplotypes, that
is, phased genotypes, the latent variables are likely to represent the so-called haploblock structure of LD.

However, SNP dependencies would rather be more wisely modelled through a Forest of HLCMs
(FHLCM), best accounting for possible higher-order dependencies on the genome. Indeed, in the case
of a forest, higher-order dependencies are captured only when relevant,i.e when meeting a strength cri-
terion. Also, not the least advantage over the HLC model liesin that variables are not constrained to be
dependent upon one another, either directly or indirectly.Therefore, FHLCMs allow to model a larger
set of configurations than HLCMs do. Typically, an HLCM is limited to manage LD structure modelling
where clusters of close SNPs are dependent whereas no dependency exists between groups of distant
SNPs or SNPs located on different chromosomes. But realistic modelling requires a more flexible frame-
work. For instance, the six LD plots shown in Figure5 give the intuition of the local dependency while
also illustrating various cases of inter-dependency between clusters of SNPs.

An FHLCM consists of a Directed Acyclic Graph (DAG), also called the structure, whose non-
connected components are trees, and ofθ, the parameters (further defined). Figure6 illustrates a possible
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Figure 5: LD plot (matrix of LD measures for each pair of SNPs)in regions Encode ENr131.2q37.1
and ENm014.7q31.33 for the three populations YRI, CEU and CHB+JPT of the HapMap project
(http://hapmap.ncbi.nlm.nih.gov/). The darker the shade, the stronger the LD.

structure for an FHLCM.

Figure 6: A forest of hierarchical latent models. This forest consists of two trees, of respective heights2
and3.

4.2 Principle

Our method takes as an input a matrixDX defined on a finite discrete domain, say{0, 1, 2} for SNPs,
describingn individuals throughp variables (X = X1, ..., Xp). Algorithm CFHLC yields an FHLCM,
that is a forest structure andθ, the parameters of a set ofa priori distributions and local conditional
distributions allowing the definition of the joint probability distribution. Two search spaces are explored:
the space of directed forests and the probability space. In addition, the whole set of latent variablesH of

fig5_plots_hapmap.eps
fig6_fhlcm.eps
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the FHLCM is output, together with the associated imputed data matrix.
To handle high-dimensional data, our proposal combines twostrategies. The first strategy splits up

the genome-scale data into contiguous regions. In our case,splitting into (large) windows is not a mere
implementational trick; it meets biological grounds: the overwhelming majority of dependencies between
genetic markers (including higher-order dependencies) isobserved for close SNPs. Then, an FHLCM is
learnt for each window in turn. Within a window, subsumptionis performed through an adapted AHC
procedure: (i) at each agglomerative step, a partitioning method is used to identify clusters of variables;
(ii) each such cluster is intended to be subsumed into an latent variable, through an LCM. For each LCM,
parameter learning and missing data imputation (for the latent variable) are performed.

4.3 Node partitioning

Following Martin and VanLehn (1995), ideally, we would propose to associate a latent variable with any
clique of variables in the undirected graph of dependency relations exhibiting pairwise dependencies of
strengths being above a given threshold (see Figure7). However, searching for such cliques is an NP-
hard task. Moreover, in contrast with the previous authors’objective, FHLCMs do not allow clusters to
have more than one parent each: non-overlapping clusters are required for our purpose. Thus, an approxi-
mate method solving apartitioningproblem when provided pairwise dependency measures must beused.

Figure 7: (a) Three pairwise dependent variables (clique).(b) Latent model: the three variables depend
on a common latent variable. The dark shade indicates the latent variable designed to model the pairwise
dependency between the three variables.

4.4 Parameter learning and imputation

A steep task is choosing - ideally optimizing - the cardinality of each LCM’s latent variable. Instead
of using an arbitrary constant value common to all latent variables, we propose that the cardinality be
adapted for each latent variable through a function of the underlying cluster’s size. The underlying ratio-
nale for choosing this function is the following: the more child nodes a latent variable has, the larger is
the number of latent class value assignments for the child nodes. Therefore, the cardinality of this latent
variable should depend on the number of child nodes. Nonetheless, to keep the model complexity within
reasonable limits, a maximal cardinality is fixed.

Parameter learning is carried out step by step, each time generating additional latent variables and
imputing their values for each individual. Atith step, this task simply amounts to performing parameter
learning for as many LC models as there are clusters of variables identified. We recall that the nodes in the
topology of an LCM reduce to a root and leaves. Therefore, atith step, each LCM’s structure is rooted in
a newly created latent variable. When latent variables are only source nodes in a BN, parameter learning
may be performed through a standard EM procedure. This procedure takes as an input the cardinalities
of the latent variables and yields the probability distributions:prior distributions for those nodes with no

fig7_pairwise_dependence_clique.eps
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parents and distributions conditional to parents for the remaining nodes. After imputing the missing data
corresponding to latent variables, new data are available to seed next step of the FHLCM construction:
latent variables identified through stepi will be considered as observed variables during stepi + 1.

It has to be noted that designing an imputation method to infer the values of the latent variable for each
individual is in itself an investigation subject. Once theprior and conditional distributions have been esti-
mated for a given LCM, probabilistic inference in BNs may be performed. A straightforward way would
consist in imputing for each individual the latent variablevalue as follows:h∗ = argmaxh{p(H =
h/Xj1 = xj1 , Xj2 = xj2 , ..., Xjc

= xjc
)}. However, in the framework of probabilistic models, this

deterministic approach is disputable. In contrast, a more convincing alternative will draw a valueh for
latent variableH , knowing the probabilitiesp(H = h/Xj1 = xj1 , Xj2 = xj2 , ..., Xjc

= xjc
) for each

individual.

4.5 Controlling information decay

In contrast with Hwang and co-workers’ approach, which mainly aims at data compression, information
decay control is required: any latent variable candidateH in stepi which does not bear sufficient in-
formation about its child nodes must be unvalidated. As a consequence, such child nodes will be seen
as isolated nodes in stepi + 1. The information criterion,C, relies on average mutual informationI. It
is scaled through entropyH: C = 1

sH

∑
i ∈ cluster(H)

I(Xi,H)
min (H(Xi), H(H)) , with sH the size ofcluster(H).

5 Sketch of algorithm CFHLC

The user may tune various parameters:s, the window size, specifies the number of contiguous SNPs
(i.e. variables) spanned per window;t is meant to constrain information dilution to a minimal threshold
criterionC, described in Subsection4.5. Parametersa, b andcardmax participate in the calculus of the
cardinality of each latent variable. Finally, parameterPartitioningAlgenables flexibility in the choice of
the method devoted to cluster highly-correlated variablesinto non-overlapping groups.

Within each successive window, the AHC process is initiatedfrom a first layer of univariate models.
Each such univariate model is built for any observed variable in the setWi (lines 4 to 6). The AHC
process stops if all clusters identified each reduce to a single node (line10) or if no cluster of size strictly
greater than1 could be validated (line23). Each cluster of at least two nodes is subject to LCM learning
followed by validation (line13 to 22). In order to simplify the FHLCM learning, the cardinality of the
latent variable is estimated as an affine function of the number of variables in the corresponding cluster
(line 14). Algorithm LCMLearningis plugged into this generic framework (line15). After validation
through thresholdt (lines 16 and17), the LCM is used to enrich the FHLCM associated with current
window (line 18): (i) a specific merging process links the additional node corresponding to the latent
variable to its child nodes; (ii) theprior distributions of the child nodes are replaced with distributions
conditional to the latent variable. InWi, clusters of variables are replaced with the correspondinglatent
variables; data matrixD[Wi] is updated accordingly (lines19 and20). In contrast, the nodes in unvali-
dated clusters are kept isolated for the next step. At last, the collection of forests, DAG, is successively
augmented with each forest built within a window (line24). In parallel, due to assumed independency
between windows, the joint distribution of the final FHLCM ismerely computed as the product of the
distributions associated with windows (line24).
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Algorithm CFHLC(X, DX , s, t, PartitioningAlg, a, b, cmax)

INPUT:
X,DX: a set ofp variablesX = X1, ..., Xp and the corresponding data observed forn individuals,
s: a window size,
t: a threshold used to limit information decay while buildingthe FHLC,
a,b, cmax: parameters used to calculate the cardinality of latent variables.

OUTPUT:
DAG, θ: the DAG structure and the parameters of the FHLC model constructed,
H, DH : the whole set of latent variables identified through the construction(H = {H1, ..., Hm}) and the corresponding data

imputed for then individuals.

1: numWin← p/s;
2: DAG← ∅; θ ← ∅; H ← ∅; DH ← ∅
3: for i = 1 to numWin
4: Wi ← {X(i−1)×s+1, ..., Xi×s}; D[Wi]← D[(i− 1)× s + 1 : i× s)]
5: {∪j∈Wi

DAGunivj
, ∪j∈Wi

θunivj
} ← LearnUnivariateModels(Wi)

6: DAGi ← ∪j∈Wi
DAGunivj

; θi ← ∪j∈Wi
θunivj

7: step← 1
8: while true
9: {C1, ..., Cnc} ← Partitioning(Wi, D[Wi], PartitioningAlg)

10: if all clusters have size1 then break end if

11: Cj1 , ..., Cjnc2
← ClustersContainingAtLeast2Nodes(C1, ..., Cnc)

12: nc2valid
← 0

13: for k = 1 to nc2

14: cardH ← min(RoundInteger(a ×NumberOfV ariables(Cjk
) + b, cmax)

15: {DAGjk
, θjk

, Hjk
, DHjk

} ← LCMLearning(Cjk
, D[Cjk

], cardH)
16: if (C(DAGjk

, D[Cjk
] ∪DHjk

) ≥ t) /* validation of current cluster - see Section 4.5 */
17: incr(nc2valid

)
18: DAGi ←MergeDags(DAGi, DAGjk

); θi ←MergeParams(θi, θjk
)

19: H ← H ∪Hjk
; DH ← DH ∪DHjk

20: D[Wi]← (D[Wi] \D[Cjk
]) ∪DHjk

; Wi ← (Wi \ Cjk
) ∪Hjk

21: end if
22: end for
23: if (nc2valid

= 0) then break end if

24: DAG← DAG ∪DAGi; θ ← θ × θi

25: incr(step)
26: end while

27: end for

Algorithm LCMLearning(Cr, D[Cr], cardH)

1: Hr ← CreateNewLatentV ariable()
2: DAGr ← BuildNaiveStructure(Hr, Cr)
3: θr ← standardEM(DAGr , D[Cr ], cardH)
4: DHr ← Imputation(θr, D[Cr])

Table 1: Sketch of algorithm CFHLC.

6 Experimental results and discussion

Algorithm CFHLC has been implemented in C++, relying on the ProBT library dedicated to BNs (http://
bayesian-programming.org). We have plugged into CFHLC a partitioning method, CAST, designed by
Ben-Dor and co-authors (1999). CAST is a clique partitioning algorithm originally developped for gene
expression clustering. As an input, it requires a similarity matrix and a similarity cutofft. The algorithm
contructs the clusters one at a time. The authors define the affinity a(x) of an elementx to be the sum
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of similarity values betweenx and the elements present in the current clusterCopen. x is an element of
high affinity if a(x) ≥ t|Copen|. Otherwise,x is an element of low affinity. To summarize, the algorithm
alternates between adding high affinity elements toCopen and removing low affinity elements from it.
When the process stabilizes,Copen is closed. A new cluster can be started.

We have generated simulated genotypic data using software HAPSIMU (http://l.web .umkc.edu/ liu-
jian/). The default values for HAPSIMU parameters have beenkept. They are recapitulated in Table2.

disease model parameters
disease prevalence 0.01
genotype relative risk 1.5
frequency of disease susceptible allele min:0.1, max:0.3

population structure model parameters

proportion of YRI in cases 0.4
proportion of YRI in controls 0.6
number of generations 5
frequency difference min:0.1, max:0.3

simulation parameters

sample size (number of individuals) 2000
proportion of cases in total sample 0.5
simulating times 1
genotype missing rate 0

Table 2: Parameter value adjustment for the generation of simulated genotypic data through software
HAPSIMU.

CFHLC was run on a standard PC (3.8 GHz, RAM 3.3 Go). Three sample sizes were chosen to
evaluate the scalability with respect to the number of observed variables:1k, 10k and100k (In all cases,
the number of individuals is set to2000). For the first round of experimentations, a rough adjustment of
the CFHLC parameters has been performed. Hereafter, the default setting for CFHLC parameters is the
following: a = 0.2, b = 2, cmax = 20, t = 0.5. On the following figures, boxplots have been produced
from 20 benchmarks (exceptionally5 in the100k case of Figure8).

6.1 Temporal complexity

In the hardest case (100k), Figure8 shows that only15 hours are required with a window sizes set to
100. The previous figure highlights very low variances, indicated through boxplots. For the same dataset
processed in the cases “s = 200” and “s = 600”, running times are20.5 h and62.5 h, respectively. For
the same number of OVs (100k), Wanget al. report running times in the order of two months. Figure
9 more thoroughly describes the influence of window size increase on running time. In the current ver-
sion of CFHLC algorithm, successive windows are contiguous. For a given window size, the temporal
complexity of CFHLC is expected to be linear with respect to the number of variables. However, on the
basis of an execution time of20 mn for 1000 SNPs whens is set to100, one would expect a running
time of about33 h for 105 SNPs. Following the same rationale, the expected running time for window
size200 should be around42 h (in comparison to the observed execution time of20.5 h). For window
size600, the expected running time to be compared to the observed running time of62.5 h is 92 h. The
corresponding values for the ratio of observed running timeto expected running time are the following
ones:15 / 33 = 0.45 (s = 100); 20.5 / 42 = 0.49 (s = 200); 62.5 / 92 = 0.68 (s = 600). The existence
of such ratios lead us to think that compression data may be drastic within many windows: the density of
the dependency relations along the genome is heterogeneous.
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Figure 8: Running time versus number of variables. Low variances are highlighted through the boxplots
drawn.
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Figure 9: Impact of window size on running time.

6.2 Spacial complexity

We observe a dramatical decrease of the number of latent variables per layer (over the whole FHLCM)
with the layer. Figure10exhibits this decrease in the case “s = 100”. A percentage of64% of the latent
variables are present in the first layer. In particular, the decrease between first and second layers amounts
to 60%. It has to be noted that although the number of latent variables is reduced, compared to Hwang
and co-workers’ algorithm, additional memory allocation is requested to account for the distributions of
the non binary latent variables. However, the datasets of size100k could be managed by our algorithm.

6.3 Impact of window size

Interestingly, Figure11 highlights the decrease in the number of variables to be tested for association
with the disease (from1000 observed variables to less than200 forest roots in the case “s = 100”). In
this case, algorithm CFHLC allows a reduction in the number of variables of more than80%.

fig8_running_time_versus_number_of_snps.eps
fig9_running_time_versus_window_size.eps
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Figure 10: Number of latent variables per layer over the whole FHLC model.

Like the number of latent variables, the number of layers increases with the window size, as shown
in Figures12 and13. This increase with window size is due to the fact that more higher-order interac-
tions are taken into account. In average, around270 latent variables and5 to 6 layers are reported for
the case “s = 100”, whereas around340 latent variables and8 layers are identified for the case “s = 600”.
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Figure 11: Impact of window size on the number of roots.
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Figure 12: Impact of window size on the number of latent variables.
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Figure 13: Impact of window size on the number of layers.

Figure14 provides a more thorough insight of the distributions of latent variables between layers.
Figure14(a) shows the impact of window size on the number of latent variables in a given layer while
Figure 14(b) plots the ratios of the number of latent variables per layer to the total number of latent
variables. Again, we observe a constant result: for all layers except the first one, the numbers (and ratios)
are all the higher as the window size is larger. The exceptionrelative to first layer is explained as follows:
for a constant parameter setting of the partitioning algorithm, when the number of observed variables
increases, that is when the window size increases, the number of clusters identified is smaller (with larger
sizes).
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Figure 14: (a) Average number of latent variables per layer over the whole FHLC model; impact of
window size. (b) Average ratio of the number of latent variables per layer to the total number of latent
variables; impact of window size.

6.4 Quality of the model

Figure15, 16and17display how information fades while the layer number increases. Regarding window
size600, the four first layers show average values around0.62, 0.60, 0.59 and0.58 for the scaled mutual
information-based scoreC (see Figure15). In the highest layers, average scaled mutual informationis at
least equal to0.52 and0.56 for the cases “s = 100” and “s = 600” respectively. Therefore, not only
is a major point reached regarding tractability, information dilution is also controlled in an efficient way.
The increasing variance is explained by the decreasing number of latent variables involved in the average
calculation (see Figure10). In the highest layers, this sampling effect is all the moreacute, entailing such

fig12_number_of_layers_versus_window_size.eps
fig14_number_of_latent_variables_versus_layer_impact_of_s.eps
fig14bis_percentage_of_latent_variables_versus_layer_impact_of_s.eps
legend_s.eps
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variations as that observed for layer8 and window size50. In the latter case, a unique latent variable has
been considered to compute the mean; it happened that the mutual information-based score calculated
was outstandingly high in comparison with other values.
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Figure 15: Average scaled mutual information per layer overthe whole FHLC model; impact of window
size.
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Figure 16: Average scaled mutual information per layer overthe whole FHLC model; impact of parame-
tersa andb.

As expected, average scaled mutual information raises withparametersa andb because latent vari-
ables with larger cardinalities allow to capture more information about their child nodes, in the FHLCM
(see Figure16). Besides, in the absence of information decay control, that is when thresholdt is set to0,
the average criterionC shows a particular trend: it first decreases throughout the first three layers then it
increases while traversing fourth layer to highest layer (Figure17). Up to the third layer, a latent variable
captures less and less information about its child nodes as the layer number rises: a loss of information is
therefore observed. In contrast, latent variables in higher layers subsume but a few number of child nodes
since clusters are smaller. Hence, these latent variables can easily provide sufficient information about
their child variables. In addition, we observe that criterionC never goes down lower than0.36. Expecting
the constant conservation of more than a third of shared information between child and parent nodes was
not foreseeable. Nonetheless, this observation advocatesthe importance of controlling information decay.

fig12_average_scaled_mi_versus_layer.eps
legend_s.eps
fig17_average_scaled_mi_versus_layer_impact_of_a_and_b.eps
legend_a_and_b.eps
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Figure 17: Average scaled mutual information per layer overthe whole FHLC model; absence of infor-
mation decay control (t = 0).

A refined optimization of the adjustment of parametersa andb justifies in itself a thorough study and
therefore lies beyond the scope of the present work. First, given a dataset, some investigations in wider
ranges of values fora andb parameters must be performed: theoretically, the optimized values would
ensure the lowest information dilution over the whole corresponding FHLCM constructed. In practice,
for efficiency, a discretized search will have to be adapted.

Conversely, for a more refined analysis of the information decay through layers, we plan to run com-
plementary tests on various datasets, under thesame parameter settingof a, b andt. Besides, Hwang
and co-workers have published a figure similar to Figure15 (Hwanget al (2006), Figure 3(a)), where
the four first layers respectively exhibitC values around0.65, 0.55, 0.52 and0.51. Acknowledging the
bias due to the differences in the datasets used by these authors and in our experimentations (see Figure
15), we observe similar orders of magnitude. In contrast to standard AHC, CFHLC allows flexible thus
early node clustering; therefore, if ever existing in the binary model and the FHLCM, the latent variable
subsuming a given cluster of nodes should be harboured at a lower level in our approach than in standard
AHC; it follows that information dilution is expected to be delayed when using CFHLC. To thoroughly
check this point, in the future, we will compare both decreases ofC in a systematic study, running Hwang
and co-workers’ algorithm and ours on the same datasets.

6.5 Examples of FHLC networks

Finally, Figure18, 19and20display examples of DAGs of FHLCMs obtained for window sizesset to100,
200 and600, respectively. The software Tulip (http://tulip.labri.fr/TulipDrupal/) was chosen to visualize
the DAGs, meeting both high representation quality and compactness requirements. For all window
sizes, several trees of various sizes are observed, and generally, we observe that the SNPs which share the
same parent are close on DNA. Thereby, the large trees represent the high correlation regions, whereas
trees with only one or two SNPs correspond to low correlationregions of LD, also called recombination
hotspots. Algorithm CFHLC discovers3, 4 and6 layers of dependencies for window sizes100, 200 and
600 respectively. As expected, the larger the window, the more refined the LD modelling is.

fig18_average_scaled_mi_versus_layer_t_equal_0.eps
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Figure 18: Directed acyclic graph of the FHLC model learned for window size100. Observed variables
are named ”snpi” whereas latent variables are denoted ”Hil” where i enumerates the different latent
variables belonging to a same layer andl specifies the layer number.

fig19_DAG_of_the_CFHLCM_100SNPs_orange.eps
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Figure 19: Directed acyclic graph of the FHLC model learned for window size200. See Table18 for
node nomenclature.

fig20_DAG_of_the_CFHLCM_200SNPs_orange.eps
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Figure 20: Directed acyclic graph of the FHLC model learned for window size600. See Table18 for
node nomenclature.

fig21_DAG_of_the_CFHLCM_600SNPs_orange.eps


22

7 Conclusion and perspectives

Our contribution in this paper is twofold: (i) a variant of the HLC model, the FHLC model, has been de-
scribed; (ii) CFHLC, a generic algorithm dedicated to learnsuch models, has been shown to be efficient
when run on genome-scaled benchmarks.

To our knowledge, our hierarchical model is the first one shown to achieve fast model learning for
genome-scaled data sets while maintaining satisfying information scores. Whereas Hwang and collabo-
rators’ purpose is data compression, we are faced with a moredemanding challenge: allow a sufficiently
powerful down-stream association analysis. Relaxing the twofold binarity restriction of Hwang and col-
laborators’ model (binary trees, binary latent variables), the FHLC model is an appealing framework for
GWASs: in particular, flexibility in the cluster size reduces the number of latent variables.

A bottleneck currently lies in the clustering method chosen, which forbids window sizes encompass-
ing more than600 observed variables. In addition to investigating alternative clustering methods, a lead
to cope with this bottleneck may be to adapt some specific processing at the limits of contiguous windows
or use overlapping windows.

Regarding node partitioning and imputation for latent variables, one of our current tasks is examining
which plug-in methods are most relevant, especially for thepurpose of GWASs. Also, in complement to
this work-on progress paper, the next step will consist in a thorough analysis of the impact of the crite-
rion designed to control information dilution. Finally, wewill evaluate CFHLC as a promising algorithm
enhancing genome wide genetic analyses, including study and visualization of linkage disequilibrium,
mapping of disease susceptibility genetic patterns and study of population structure.
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Abstract

We propose a novel probabilistic graphical model dedicatedto represent the statistical dependencies between genetic
markers, in the Human genome. Our proposal relies on building a forest of hierarchical latent class models. It is
able to account for both local and higher-order dependencies between markers. Our motivation is to reduce the
dimension of the data to be further submitted to statisticalassociation tests with respect to diseased/non diseased
status. A generic algorithm, CFHLC, has been designed to tackle the learning of both forest structure and probability
distributions. A first implementation of CFHLC has been shown to be tractable on benchmarks describing10
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