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Networks to model dependencies between
genetic markers

Raphael Mouradf, Christine Sinoquett, Philippe Lerayf

raphael.mourad,christine.sinoquet,philippe.leray@univ-nantes.fr

Abstract

We propose a novel probabilistic graphical model dedictiedpresent the statistical dependencies between genetic
markers, in the Human genome. Our proposal relies on bagildiforest of hierarchical latent class models. It is
able to account for both local and higher-order dependsnruogtween markers. Our motivation is to reduce the
dimension of the data to be further submitted to statistisalociation tests with respect to diseased/non diseased
status. A generic algorithm, CFHLC, has been designed kbetéite learning of both forest structure and probability
distributions. A first implementation of CFHLC has been shaw be tractable on benchmarks describirig
variables for2000 individuals.






1 Introduction

Genetic markers such as SNPs are the key to dissecting tieéigsusceptibility of complex diseases:
they are used for the purpose of identifying combinationgesfetic determinants which should accumu-
late among affected subjects. Generally, in such comlgingtieach genetic variant only exerts a modest
impact on the observed phenotype, the interaction betweratig variants and possibly environmental
factors being determining in contrast. Decreasing genotyposts now enable the generation of hun-
dreds of thousands of genetic variants, or SNPs, spannimdevwiuman genome, accross cohorts of
cases and controls. This scaling up to genome-wide assntitidies (GWAS) makes the analysis of
high-dimensional data a hot topic. Yet, the search for agsons between single SNPs and the variable
describing case/control status requires carrying ouiggelaumber of statistical tests. Since SNP patterns,
rather than single SNPs, are likely to be determining for glemdiseases, a high rate of false positives
as well as a perceptible statistical power decrease, nqeaksof untractability, are severe issues to be
overcome.

The simplest type of genetic polymorphism, Single Nuct®®olymorphism (SNP), involves only
one nucleotide change, which occurred generations aganwtitie DNA sequence. To fix ideas, we
emphasize that one single individual can be uniquely defnednly 30 to 80 independent SNPs and
unrelated individuals differ in abot1% of their 3.2 billion nucleotides. Compared with other kinds of
DNA markers, SNPs are appealing because they are abundarticgénstable and amenable to high-
throughput automated analysis. Consistently, advandaigimthroughput SNP genotyping technologies
lead the way to various down-stream analyses, including G8VA

Exploiting the existence of statistical dependencies betwSNPs, also called linkage disequilibrium
(LD), is the key to association studies achievement (Bal¢®906)). Indeed, a causal variant may not be
a SNP. For instance, insertions, deletions, inversionsapg-number polymorphisms may be causative
of disease susceptibility. Nevertheless, a well-desigitedy will have a good chance of including one
or more SNPs that are in strong LD with a common causal varianhe latter case, indirect association
with the phenotype, say affected/unaffected status, willdvealed (see Figufg.
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Figure 1: a) Direct association between a genetic markertla@ghenotype. b) Indirect association
between a genetic marker and the phenotype.

Interestingly, LD is also the key to reduce data dimensional GWASs. In eukaryotic genomes,
LD is highly structured into the so-called "haplotype blstkucture” (Patiet al. (2001)): regions where
correlation between markers is high alternate with shaggions characterized by low correlation (see
Figure2). Relying on this feature, various approaches were prapts@chieve data dimensionality
reduction: testing association with haplotypés.( inferred data underlying genotypic data) (Schaid
(2004)), partitioning the genome according to spatial@ation (Pattaret al. (2008)), selecting SNPs
informative about their context, or SNP tags (Hztral. (2008)) (for other references, see Liagigal.
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(2008) for example). Unfortunately, these methods do i tato account all existing dependencies
since they miss higher-order dependencies.

>

v, ’, p ¢ P
L *Y o ©
, %
N\ “
./’Q (’/ v
.
v

‘.\.. v
alf
\."Wé/t »

R

‘o, SN

R TR
pPoT:inad

/-
S

Yy

Figure 2: LD plot (matrix of pairwise dependencies betweenegic markers or linkage disequilibrium).
Human genome, chromosorgregion [234 357kb - 234 457kb]. For a pair of SNPs, the costhade is
all the darker as the correlation between the two SNPs is high

Probabilistic graphical models offer an adapted framewiorka fine modelling of dependencies be-
tween SNPs. Various models have been used for this peculipope, mainly Markov fields (Verzilli
et al. (2006)) and Bayesian networks (BNs), with the use of hidriaet latent BNs (embedded BNs
(Nefian (2006)); two-layer BNs with multiple latent (hidderariables (Zhang and Ji (2009)). Although
modelling SNP dependencies through hierarchical BNs iubtkdly an attractive lead, there is still
room for improvement. Notably, scalability remains a cali@sue.

In this paper, we propose to use a forest of Hierarchicalrta$ass models (HLCMSs) to reduce the
dimension of the data to be further submitted to associaésts. Basically, latent variables capture the
information born by underlying markers. To their turn, ldteariables are clustered into groups and,
if relevant, such groups are subsequently subsumed byi@uilitatent variables. Iterating this process
yields a hierarchical structure. First, the great advamtagcGWASSs is that further association tests will
be chiefly performed on latent variables. Thus, a reducedieuiof variables will be examined. Second,
the hierarchical structure is meant to efficiently condefined association testing: zooming in through
narrower and narrower regions in search for stronger aassociwith the disease ends pointing out the
potential markers of interest.

However, most algorithms dedicated to HLCM learning faé #talability criterion when data de-
scribe thousands of variables and a few hundreds of indN$du The contribution of this paper is
twofold: (i) the modelling of dependencies between clust#rSNPS, (ii) the design of a tractable al-
gorithm, CFHLC, fitted to learn a forest of HLCMs from spabjadependent variables. In the line of a
hierarchy-based proposal of Hwang and collaborators (Hgveaml. 2006), our method yet implements
data subsumption, meeting two additional requirementsadire flexible thus more faithful modelling of
underlying reality, (ii) control of information decay due subsumption. Section 2 motivates the design
of HLCMs. Section 3 points out the few anterior works devdteHLCM learning. Then, after an unfor-
mal description of the FHLC model, Section 4 focuses on tmeg# outline of the method proposed for
FHLCM learning. In Section 5, we give the sketch of algoritBfFHLC. Section 6 presents experimental
results and discusses them.
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2 Motivation for HLC modelling

From now on, we will restrain to discrete variables (eitheserved or latent).

A Latent Class Model (LCM) is defined as containing a unigueritvariable connected to each of
the observed variables. The latent variable influenceshaléved variables simultaneously and hence
renders them dependent. In the LCM framework, an underlggsgimption states that the observed vari-
ables are pairwise independent, conditional on the latenable (Zhang (2004)). Since each state of
the latent variable corresponds to a class of individuhls,dassumption, also called local independence
(LI), can be restated as pairwise independency, conditiomdatent class membership. The intuition
behind LI is that the latent variable is the only reason fer dependencies between observed variables.
However, this assumption is often violated for observed d& tackle this issue, HLCMs were proposed
as a generalization of LCMs. HLCMs are tree-shaped BNs wieafenodes are observed while internal
nodes are not. In a Bayesian network, local dependency batwaziables may be modelled through the
use of an additional latent variable (see FigByeAt a larger scale, multiple latent variables organized
in a hierarchical structure allow high modelling flexibjlitFigure4 illustrates the ability of HLCMs to
depict a large variety of relations encompassing local ghéi-order dependencies.

Figure 3: (a) Latent Bayesian network modelling a local aefemcy between B and C nodes. (b) Mod-
elling of the local dependency between B and C nodes throlaieat hierarchical model.
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Figure 4: Hierarchical latent lodel. The light shade intksathe observed variables whereas the dark
shade points out the latent variables.

3 Background for HLC model learning

Various methods have been conceived to tackle HLCM learniihgse approaches differ by the follow-
ing points: (i) structure learning; (ii) determination bktlatent variables’ cardinalities; (iii) learning of
parameterd,e. unconditional and conditional probabilities; (iv) scalayp; (v) main usage.
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As for general BNs, besides learning of parametéysife. unconditional and conditional probabil-
ities, one of the tasks in HLCM learning is structut® {nference. The HLCM learning methods fall
into one of two categories. The first category, structurgldetation Maximization (SEM), successively
optimizesf | S andS | §. Amongst few proposals, hill-climbing guided by a scoringdtion was
designed (Zhang (2003)): the HLCM space is visited throwtgiteon or removal of latent nodes alter-
nating with addition or dismissing of states for existinglas. Other authors adapted a SEM algorithm
combined with simulated annealing to learn a two-layer Bhvmultiple latent variables (Zhang and
Ji (2009)). Alternative approaches implement ascendiagphéhical clustering (AHC). Relying on pair-
wise correlation strength, Wang and co-workers first buildreary tree; then they apply regularization
and simplification transformations which may result in suhing more than two nodes through a latent
variable (Wanget al. (2008)). Hwang and co-workers’ approach confines the HLCltdespace to
binary trees augmented with possible connections betwibéngs (nodes sharing the same parent into
immediate upper layer) (Hwarg al. (2006)). Moreover, they constrain latent variables’ atdtyinarity.
However, the latter approach is the only one we are awarab$titceeds in processing high-dimensional
data: in an application dealing with a microarray datasetethans000 genes have been processed for
around60 samples. To our knowledge, no running time was reportechferstudy.

Nevertheless, the twofold binarity restriction and thélatcontrol for information decay as the level
increases are severe drawbacks to achieve realistic SN#hdepcy modelling and subsequent associa-
tion study with sufficient power.

4 Constructing the FHLC model

4.1 The FHLC model

The HLCMs offer several advantages for GWASs. Beside dateedsionality reduction, they allow a
simple test of direct dependency beween an observed vardaidl a target variable such as the pheno-
type, conditional on the latent variable, parent of the ol variable. Note that the phenotype variable
is not included in the HLCM. In the context of GWASS, this tlslps finding the markers which are
directly associated with the phenotype, i.e. causal marlkhiould there be any. Second, the hierarchical
structure allows zooming in through narrower and narrowegians in search for stronger association
with the disease. This zooming process ends pointing oypdkential markers of interest. Thirdly, the
latent variables may be interpreted in a biological meankuy instance, in the case of haplotypes, that
is, phased genotypes, the latent variables are likely teesemt the so-called haploblock structure of LD.

However, SNP dependencies would rather be more wisely read#irough a Forest of HLCMs
(FHLCM), best accounting for possible higher-order degamies on the genome. Indeed, in the case
of a forest, higher-order dependencies are captured oniynwélevanti.e when meeting a strength cri-
terion. Also, not the least advantage over the HLC modelifigbat variables are not constrained to be
dependent upon one another, either directly or indiredlyerefore, FHLCMs allow to model a larger
set of configurations than HLCMs do. Typically, an HLCM is ited to manage LD structure modelling
where clusters of close SNPs are dependent whereas no @ewgrekists between groups of distant
SNPs or SNPs located on different chromosomes. But reatigidelling requires a more flexible frame-
work. For instance, the six LD plots shown in Fig&rgive the intuition of the local dependency while
also illustrating various cases of inter-dependency betvetusters of SNPs.

An FHLCM consists of a Directed Acyclic Graph (DAG), also ledl the structure, whose non-
connected components are trees, angl tfie parameters (further defined). Fig6ridustrates a possible
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Figure 5: LD plot (matrix of LD measures for each pair of SNiPsjegions Encode ENr131.2g37.1
and ENm014.7q31.33 for the three populations YRI, CEU andBBEHPT of the HapMap project
(http://hapmap.ncbi.nim.nih.gov/). The darker the sh#uestronger the LD.

structure for an FHLCM.
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Figure 6: A forest of hierarchical latent models. This for@mnsists of two trees, of respective heights
ands3.

4.2 Principle

Our method takes as an input a matfx defined on a finite discrete domain, sgy, 1, 2} for SNPs,
describingr individuals througlp variables § = X, ..., X,,). Algorithm CFHLC yields an FHLCM,
that is a forest structure arty the parameters of a set afpriori distributions and local conditional
distributions allowing the definition of the joint probaibjldistribution. Two search spaces are explored:
the space of directed forests and the probability spacedditian, the whole set of latent variablés of
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the FHLCM is output, together with the associated imputed dzatrix.

To handle high-dimensional data, our proposal combinesstvadegies. The first strategy splits up
the genome-scale data into contiguous regions. In our saditing into (large) windows is not a mere
implementational trick; it meets biological grounds: thvewvhelming majority of dependencies between
genetic markers (including higher-order dependencieshserved for close SNPs. Then, an FHLCM is
learnt for each window in turn. Within a window, subsumptiemperformed through an adapted AHC
procedure: (i) at each agglomerative step, a partitioniethod is used to identify clusters of variables;
(ii) each such cluster is intended to be subsumed into antlaégiable, through an LCM. For each LCM,
parameter learning and missing data imputation (for ttentatariable) are performed.

4.3 Node patrtitioning

Following Martin and VanLehn (1995), ideally, we would pose to associate a latent variable with any
clique of variables in the undirected graph of dependeniafioms exhibiting pairwise dependencies of
strengths being above a given threshold (see Figurédowever, searching for such cliques is an NP-
hard task. Moreover, in contrast with the previous authobgctive, FHLCMs do not allow clusters to
have more than one parent each: non-overlapping cluseereguired for our purpose. Thus, an approxi-
mate method solvingpartitioning problem when provided pairwise dependency measures museie

Figure 7: (a) Three pairwise dependent variables (clig(®)Latent model: the three variables depend
on a common latent variable. The dark shade indicates thetlgariable designed to model the pairwise
dependency between the three variables.

4.4 Parameter learning and imputation

A steep task is choosing - ideally optimizing - the cardityatif each LCM’s latent variable. Instead
of using an arbitrary constant value common to all latenialdes, we propose that the cardinality be
adapted for each latent variable through a function of ttaetging cluster’s size. The underlying ratio-
nale for choosing this function is the following: the moredldmodes a latent variable has, the larger is
the number of latent class value assignments for the chiiésoTherefore, the cardinality of this latent
variable should depend on the number of child nodes. Notestheo keep the model complexity within
reasonable limits, a maximal cardinality is fixed.

Parameter learning is carried out step by step, each timergiémng additional latent variables and
imputing their values for each individual. At* step, this task simply amounts to performing parameter
learning for as many LC models as there are clusters of Vagadentified. We recall that the nodes in the
topology of an LCM reduce to a root and leaves. Thereforé]'attep, each LCM’s structure is rooted in
a newly created latent variable. When latent variables algsource nodes in a BN, parameter learning
may be performed through a standard EM procedure. This guvedakes as an input the cardinalities
of the latent variables and yields the probability disttibns: prior distributions for those nodes with no
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parents and distributions conditional to parents for tmeai@ing nodes. After imputing the missing data
corresponding to latent variables, new data are availabéeéd next step of the FHLCM construction:
latent variables identified through stewill be considered as observed variables during steq.

It has to be noted that designing an imputation method to théevalues of the latent variable for each
individual is in itself an investigation subject. Once firéor and conditional distributions have been esti-
mated for a given LCM, probabilistic inference in BNs may leefprmed. A straightforward way would
consist in imputing for each individual the latent variali@ue as follows:h* = argmax;{p(H =
h/X;, = zj,X;, = zj,,....X;. = z;,)}. However, in the framework of probabilistic models, this
deterministic approach is disputable. In contrast, a moreiacing alternative will draw a valuk for
latent variabled, knowing the probabilitep(H = h/X;, = z;,,X;, = zj,,..., X;, = z;,) for each
individual.

4.5 Controlling information decay

In contrast with Hwang and co-workers’ approach, which fya@iims at data compression, information
decay control is required: any latent variable candidaten stepi which does not bear sufficient in-
formation about its child nodes must be unvalidated. As asequence, such child nodes will be seen
as isolated nodes in stép+ 1. The information criterion¢, relies on average mutual informati@n It

is scaled through entrogy: C = i Sie cluster(H) m, with sy the size ofluster(H).

5 Sketch of algorithm CFHLC

The user may tune various parametessthe window size, specifies the number of contiguous SNPs
(i.e. variables) spanned per windowis meant to constrain information dilution to a minimal tsield
criterionC, described in Subsectigh5. Parameters, b andcard,,,., participate in the calculus of the
cardinality of each latent variable. Finally, parameRartitioningAlgenables flexibility in the choice of
the method devoted to cluster highly-correlated variaipissnon-overlapping groups.

Within each successive window, the AHC process is initiditedh a first layer of univariate models.
Each such univariate model is built for any observed vagiablthe setiV; (lines4 to 6). The AHC
process stops if all clusters identified each reduce to desitare (linel0) or if no cluster of size strictly
greater tharl could be validated (lin@3). Each cluster of at least two nodes is subject to LCM leanin
followed by validation (linel3 to 22). In order to simplify the FHLCM learning, the cardinality the
latent variable is estimated as an affine function of the remolbvariables in the corresponding cluster
(line 14). Algorithm LCMLearningis plugged into this generic framework (lirié). After validation
through threshold (lines 16 and17), the LCM is used to enrich the FHLCM associated with current
window (line 18): (i) a specific merging process links the additional nodeexponding to the latent
variable to its child nodes; (ii) thprior distributions of the child nodes are replaced with disttitns
conditional to the latent variable. Ii¥;, clusters of variables are replaced with the corresponiditegt
variables; data matri®0[IW;] is updated accordingly (line) and20). In contrast, the nodes in unvali-
dated clusters are kept isolated for the next step. At lastcollection of forests, DAG, is successively
augmented with each forest built within a window (lia4). In parallel, due to assumed independency
between windows, the joint distribution of the final FHLCMrgerely computed as the product of the
distributions associated with windows (lige).
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Algorithm CFHLC(X, Dx, s, t, PartitioningAlg, a, b, ¢maq)

INPUT:
X, Dx: aset ofp variablesX = X1, ..., X, and the corresponding data observedifandividuals,
s: a window size,

t: a threshold used to limit information decay while buildihg FHLC,
a, b, cmax: parameters used to calculate the cardinality of latenakses.

OUTPUT:
DAG, 6: the DAG structure and the parameters of the FHLC model cocistd,
H, Dy the whole set of latent variables identified through thestarction(H = {H, ..., H,,}) and the corresponding data
imputed for then individuals.

1: numWin « p/s;

2: DAG «—0; 0 —0; H—0; Dy — 0

3: for i = 1to numWin

40 Wi {X(i 1)xat1s s Xixs}s DIWi] = D[(i —1) x s+ 114 x s)]
{Ujew, DAG univ;, Ujew, univ; } < LearnUnivariate Models(W;)
DAG,; — Ujew; DAG,”,,;,,,]; 0; — Ujew, (9,”,,,',,»7

7. step—1

8: while true

9: {Cy,...,Cyhe} < Partitioning(W;, DIW;], PartitioningAlg)
0: if all clusters have sizethen break end if

1 GG,
120 ney ., 0
13:  for k=110 necy

14: cardg — min(RoundInteger(a x NumberO fVariables(Cj,) + b, ¢max)

15:  {DAG;,.0;,,Hj,,DH; } — LCM Learning(Cj,, D[C;,|, cardy)

16: if (C(DAG),,D[C;,]UDH,,)>t) [*validation of current cluster - see Section 4.5 */
17: incr(nes, .,

18: DAG; — MergeDags(DAG;, DAG;,); 0; — MergeParams(0;,0;,)

19: He— HUH,; Dy — Dy UDH,,

20:  D[W;] — (D[W;]\ D[C;,]) UDH; ; Wi — (W;\ Cy,) U Hj,

— ClustersContainingAtLeast2Nodes(CY, ..., Cp.)

21:  endif
22:  endfor
23:  if (ney,,,,, = 0) then break end if

24:  DAG «— DAGUDAG;; 0 — 0 x 0;
25:  incr(step)
26: end while

27: end for

Algorithm LCM Learning(C,., D[Cy], cardg)

1: H, «— CreateNewLatentVariable()

2: DAG, < BuildNaiveStructure(H,, Cy)
3: 0, «— standardEM (DAG,, D(C,], cardy)
4: DH, — Imputation(0,, D|C,])

Table 1: Sketch of algorithm CFHLC.

6 Experimental results and discussion

Algorithm CFHLC has been implemented in C++, relying on theB™ library dedicated to BNs (http://
bayesian-programming.org). We have plugged into CFHLCrétjeaing method, CAST, designed by
Ben-Dor and co-authors (1999). CAST is a clique partitigrafgorithm originally developped for gene
expression clustering. As an input, it requires a simyamttrix and a similarity cutoff. The algorithm
contructs the clusters one at a time. The authors define tinéyaf:(z) of an element: to be the sum
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of similarity values betweem and the elements present in the current clustge,,. = is an element of
high affinity if a(z) > ¢|Copen|. Otherwisey is an element of low affinity. To summarize, the algorithm
alternates between adding high affinity element€’ig.,, and removing low affinity elements from it.
When the process stabilizes,,., is closed. A new cluster can be started.

We have generated simulated genotypic data using softwaRSHVIU (http://l.web .umkc.edu/ liu-
jian/). The default values for HAPSIMU parameters have desmpt. They are recapitulated in Talfle

disease prevalence 0.01
disease model parameters genotype relative risk 1.5
frequency of disease susceptible allele  nfirt;, max:0.3
proportion of YRI in cases 0.4
. groportion of YRI in controls 0.6
population structure model parameter: .
number of generations 5
frequency difference mir0.1, max: 0.3
sample size (number of individuals) 2000
. . proportion of cases in total sample 0.5
simulation parameters . L
simulating times 1
genotype missing rate 0

Table 2: Parameter value adjustment for the generationnudfilated genotypic data through software
HAPSIMU.

CFHLC was run on a standard PC (3.8 GHz, RAM 3.3 Go). Three kasipes were chosen to
evaluate the scalability with respect to the number of olesevariables1k, 10k and100k (In all cases,
the number of individuals is set #900). For the first round of experimentations, a rough adjustroén
the CFHLC parameters has been performed. Hereafter, thealtisétting for CFHLC parameters is the
following: a = 0.2, b = 2, ¢, = 20, t = 0.5. On the following figures, boxplots have been produced
from 20 benchmarks (exceptionallyin the 100k case of Figure).

6.1 Temporal complexity

In the hardest casd {0k), Figure8 shows that onlyl5 hours are required with a window sizeset to
100. The previous figure highlights very low variances, indéchthrough boxplots. For the same dataset
processed in the cases = 200" and “s = 600", running times ar0.5 h and62.5 h, respectively. For
the same number of OV4{0k), Wanget al. report running times in the order of two months. Figure
9 more thoroughly describes the influence of window size iaseeon running time. In the current ver-
sion of CFHLC algorithm, successive windows are contigudttr a given window size, the temporal
complexity of CFHLC is expected to be linear with respecti® number of variables. However, on the
basis of an execution time @b mn for 1000 SNPs whers is set t0100, one would expect a running
time of about33 h for 10> SNPs. Following the same rationale, the expected running for window
size200 should be around2 h (in comparison to the observed execution time@H h). For window
size600, the expected running time to be compared to the observednutime of62.5 h is 92 h. The
corresponding values for the ratio of observed running tismexpected running time are the following
ones:15/33 = 0.45 (s = 100); 20.5/ 42 = 0.49 (s = 200); 62.5/ 92 = 0.68 (s = 600). The existence
of such ratios lead us to think that compression data maydsgidwithin many windows: the density of
the dependency relations along the genome is heterogeneous
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s=100,a=0.2,b=2,cmax=20and t=0.5
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Figure 8: Running time versus number of variables. Low varég are highlighted through the boxplots
drawn.
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Figure 9: Impact of window size on running time.

6.2 Spacial complexity

We observe a dramatical decrease of the number of laterablesi per layer (over the whole FHLCM)
with the layer. FigurelO exhibits this decrease in the case= 100". A percentage 064% of the latent
variables are present in the first layer. In particular, therdase between first and second layers amounts
to 60%. It has to be noted that although the number of latent vagsaisl reduced, compared to Hwang
and co-workers’ algorithm, additional memory allocatisméquested to account for the distributions of
the non binary latent variables. However, the datasetzefl§0k could be managed by our algorithm.

6.3 Impact of window size

Interestingly, Figurell highlights the decrease in the number of variables to bedefstr association
with the disease (from000 observed variables to less th2@0 forest roots in the cases“= 1007). In
this case, algorithm CFHLC allows a reduction in the numbiieadables of more thaR0%.


fig8_running_time_versus_number_of_snps.eps
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1000 SNPs, s =100,a=0.2,b=2,cmax=20and t = 0.5
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Figure 10: Number of latent variables per layer over the wiidiiLC model.
Like the number of latent variables, the number of layersdases with the window size, as shown
in Figures12 and13. This increase with window size is due to the fact that moghéi-order interac-

tions are taken into account. In average, aroRn@ latent variables and to 6 layers are reported for
the case § = 100", whereas aroun840 latent variables angllayers are identified for the case == 600”.
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Figure 11: Impact of window size on the number of roots.
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Figure 12: Impact of window size on the number of latent \a&s.
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1000 SNPs,a=0.2,b=2,cmax=20and t=0.5
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Figure 13: Impact of window size on the number of layers.

Figure 14 provides a more thorough insight of the distributions oétdtvariables between layers.
Figurel14(a) shows the impact of window size on the number of latenebées in a given layer while
Figure 14(b) plots the ratios of the number of latent variables peetay the total number of latent
variables. Again, we observe a constant result: for allisgecept the first one, the numbers (and ratios)
are all the higher as the window size is larger. The excepétative to first layer is explained as follows:
for a constant parameter setting of the partitioning atharj when the number of observed variables
increases, that is when the window size increases, the mohblisters identified is smaller (with larger
sizes).

1000 SNPs, a=0.2,b =2, cmax =20 and t =0.5 1000 SNPs,a=0.2,b=2,cmax=20and t=0.5
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Figure 14: (a) Average number of latent variables per layer the whole FHLC model; impact of
window size. (b) Average ratio of the number of latent valeatper layer to the total number of latent
variables; impact of window size.

6.4 Quality of the model

Figurel5, 16 and17 display how information fades while the layer number inse=a Regarding window
size600, the four first layers show average values arotud, 0.60, 0.59 and0.58 for the scaled mutual
information-based scoi@ (see Figurel5). In the highest layers, average scaled mutual informasia
least equal td).52 and0.56 for the cases$ = 100" and “s = 600" respectively. Therefore, not only
is a major point reached regarding tractability, inforroatdilution is also controlled in an efficient way.
The increasing variance is explained by the decreasing euofllatent variables involved in the average
calculation (see FigurgQ). In the highest layers, this sampling effect is all the marete, entailing such


fig12_number_of_layers_versus_window_size.eps
fig14_number_of_latent_variables_versus_layer_impact_of_s.eps
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legend_s.eps

17

variations as that observed for layeand window size&50. In the latter case, a unique latent variable has
been considered to compute the mean; it happened that theahinfiormation-based score calculated
was outstandingly high in comparison with other values.

1000 SNPs,a=0.2,b=2,cmax=20andt=0.5
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Figure 15: Average scaled mutual information per layer ¢hewhole FHLC model; impact of window
size.
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Figure 16: Average scaled mutual information per layer ¢éivemwhole FHLC model; impact of parame-
tersa andb.

As expected, average scaled mutual information raisespeitametera andb because latent vari-
ables with larger cardinalities allow to capture more infation about their child nodes, in the FHLCM
(see Figurdl6). Besides, in the absence of information decay control,ighahen threshold is set to0,
the average criterio@ shows a particular trend: it first decreases throughout teetfiree layers then it
increases while traversing fourth layer to highest lay&yfe17). Up to the third layer, a latent variable
captures less and less information about its child nodessdayer number rises: a loss of information is
therefore observed. In contrast, latent variables in hitgyers subsume but a few number of child nodes
since clusters are smaller. Hence, these latent variablegasily provide sufficient information about
their child variables. In addition, we observe that criteid never goes down lower th&n36. Expecting
the constant conservation of more than a third of sharedrimdton between child and parent nodes was
not foreseeable. Nonetheless, this observation advatet@aportance of controlling information decay.
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1000 SNPs, s =100, cmax =20and t=0
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Figure 17: Average scaled mutual information per layer dlverwhole FHLC model; absence of infor-
mation decay controk(= 0).

A refined optimization of the adjustment of parameteesdb justifies in itself a thorough study and
therefore lies beyond the scope of the present work. Firgtnga dataset, some investigations in wider
ranges of values fot andb parameters must be performed: theoretically, the optidhizéues would
ensure the lowest information dilution over the whole csp@nding FHLCM constructed. In practice,
for efficiency, a discretized search will have to be adapted.

Conversely, for a more refined analysis of the informatiotegethrough layers, we plan to run com-
plementary tests on various datasets, undestme parameter settingf a, b and¢. Besides, Hwang
and co-workers have published a figure similar to FiglbgHwanget al (2006), Figure 3(a)), where
the four first layers respectively exhilgitvalues around.65, 0.55, 0.52 and0.51. Acknowledging the
bias due to the differences in the datasets used by theserawathd in our experimentations (see Figure
15), we observe similar orders of magnitude. In contrast todsied AHC, CFHLC allows flexible thus
early node clustering; therefore, if ever existing in the binarydal and the FHLCM, the latent variable
subsuming a given cluster of nodes should be harboured at=a level in our approach than in standard
AHC,; it follows that information dilution is expected to beldyed when using CFHLC. To thoroughly
check this point, in the future, we will compare both decesasfC in a systematic study, running Hwang
and co-workers’ algorithm and ours on the same datasets.

6.5 Examples of FHLC networks

Finally, Figurel8, 19and20display examples of DAGs of FHLCMs obtained for window sigesto100,

200 and600, respectively. The software Tulip (http://tulip.labriFulipDrupal/) was chosen to visualize
the DAGs, meeting both high representation quality and @wtpess requirements. For all window
sizes, several trees of various sizes are observed, anthfjgnee observe that the SNPs which share the
same parent are close on DNA. Thereby, the large trees myirgg high correlation regions, whereas
trees with only one or two SNPs correspond to low correlatégions of LD, also called recombination
hotspots. Algorithm CFHLC discoveBs 4 and6 layers of dependencies for window sizé¥), 200 and
600 respectively. As expected, the larger the window, the mefiaed the LD modelling is.


fig18_average_scaled_mi_versus_layer_t_equal_0.eps
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Figure 18: Directed acyclic graph of the FHLC model learr@dWindow sizel00. Observed variables
are named "snfi’ whereas latent variables are denoted ‘IHivhere : enumerates the different latent
variables belonging to a same layer drgpecifies the layer number.
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Figure 19: Directed acyclic graph of the FHLC model learnedwindow size200. See Tablel8 for
node nomenclature.


fig20_DAG_of_the_CFHLCM_200SNPs_orange.eps

nnnnnnnnnnnnnnnnn


fig21_DAG_of_the_CFHLCM_600SNPs_orange.eps

22

7 Conclusion and perspectives

Our contribution in this paper is twofold: (i) a variant oBthLC model, the FHLC model, has been de-
scribed; (ii) CFHLC, a generic algorithm dedicated to lesuch models, has been shown to be efficient
when run on genome-scaled benchmarks.

To our knowledge, our hierarchical model is the first one shtovachieve fast model learning for
genome-scaled data sets while maintaining satisfyingmnétion scores. Whereas Hwang and collabo-
rators’ purpose is data compression, we are faced with a deranding challenge: allow a sufficiently
powerful down-stream association analysis. Relaxingwioddld binarity restriction of Hwang and col-
laborators’ model (binary trees, binary latent variablésy FHLC model is an appealing framework for
GWASs: in particular, flexibility in the cluster size redsdde number of latent variables.

A bottleneck currently lies in the clustering method chosenich forbids window sizes encompass-
ing more thar600 observed variables. In addition to investigating alteueatlustering methods, a lead
to cope with this bottleneck may be to adapt some specificgssing at the limits of contiguous windows
or use overlapping windows.

Regarding node partitioning and imputation for latentablés, one of our current tasks is examining
which plug-in methods are most relevant, especially forpihigose of GWASs. Also, in complement to
this work-on progress paper, the next step will consist incrdugh analysis of the impact of the crite-
rion designed to control information dilution. Finally, well evaluate CFHLC as a promising algorithm
enhancing genome wide genetic analyses, including studyualization of linkage disequilibrium,
mapping of disease susceptibility genetic patterns ardysitipopulation structure.
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Abstract

We propose a novel probabilistic graphical model dedictiedpresent the statistical dependencies between genetic
markers, in the Human genome. Our proposal relies on bgildiforest of hierarchical latent class models. It is
able to account for both local and higher-order dependsnoétween markers. Our motivation is to reduce the
dimension of the data to be further submitted to statistisalociation tests with respect to diseased/non diseased
status. A generic algorithm, CFHLC, has been designed kbetéioe learning of both forest structure and probability
distributions. A first implementation of CFHLC has been shaw be tractable on benchmarks describirig
variables for2000 individuals.
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