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Abstract—Vision systems are nowadays very promising for
many on-board vehicles perception functionalities, like obstacles
detection/recognition and ego-localization. In this paper, we
present a 3D visual odometric method that uses a stereo-vision
system to estimate the 3D ego-motion of a vehicle in outdoor road
conditions. In order to run in real-time, the studied technique
is sparse meaning that it makes use of feature points that are
tracked during several frames. A robust scheme is also employed
to reject outliers that are detected on moving objects of the
environment. Moreover, efforts have been spent on the real-
time implementation of the method. In this article, we describe
the key stages of the method: features extraction and tracking,
quadrifocal constraints, optimization solver and robustification.
Real experiments are reported to compare the performance of
this approach with GPS data and 2D-wheel-based odometry.

Index Terms—3D Visual odometry, Quadrifocal tensor con-
straint, Optical flow.

I. INTRODUCTION

Stereo vision systems are affordable nowadays and provide
high information bandwidth. They can serve as the basis for
many Intelligent Vehicle (IV) applications involving detection
and recognition tasks (for instance, roadsigns, pedestrians,
obstacles...). Cameras can be also suitable for 3D odometry
since they can provide estimates of the complete 6 DOF of
the mobile platform starting from a known pose (position and
attitude) [1], [2]. This approach can be complementary to the
use of more usual techniques relying on Inertial Measurement
Units (IMU) and Wheel Speed Sensors (WSS) subject to wheel
slippage [3]. In a multi-sensor context, it can also help in
increasing the accuracy and the integrity of the perception
system.

In this work, the main question we address is what is the
performance of a real-time stereo visual odometric system
under quasi-urban road applications? Visual odometry relies
on the assumption of a static environment. So, a first goal
of this research is to evaluate the impact of a dynamic
scene corresponding to a road driving situation where cars,
pedestrians, shadows, and lighting changes occur frequently. A
second issue deals with real-time implementation. Indeed, real-
time visual odometry needs to find a positive balance between
the following criteria:
• Dense (all the images pixels) or sparse (features points)

strategy. In this last case, how many of them?
• How to manage the key images?
• What is the parametrization and the solver of the under-

lying optimization problem?

• How to robustify the processing in order to handle the
dynamics of scene?

In the sequel, we present the model considered for the stereo
vision system (section II). Then the proposed approach which
combines the advantages of several simple classical methods
in one optimization criterion (stereo vision, optical flow, multi-
view geometric constraints) is summarized in section III.
The algorithm and the real-time system implementation are
then presented (section IV). We report a real experiment and
we compare the performance of the optical odometry to a
proprioceptive odometry that exploits speed and yaw rate
measurements from the CAN bus of the vehicle. The results
are also compared to GPS data (see section V).

Figure 1. The stereo vision system installed on board the experimental
vehicle. In the left-down section, a zoomed view of the stereo vision system

II. STEREO VISION SYSTEM

The model considered for carrying out our tests, is a stereo
vision system composed by two projective camera models
rigidly joined, aligned in the x-axis direction and separated
by baseline b as illustrated in Figure 2. This aligned config-
uration of the cameras composing the stereo vision system
aim to speed up the stereo association process which will be
detailed in section (III-A). For obtaining this configuration in
real conditions, it is necessary to use classical stereo image
rectification methods [4], [5], [6].

A. Projective Camera Model

A classical pinhole model is considered for the sensor
representation. Let be K, the intrinsic calibration matrix of
each camera in the stereo system (see Figure 2)



Figure 2. Stereo vision model

K =

 f 0 u0

0 f v0
0 0 1

 (1)

where is f the focal length of the camera in pixels units and
[u0, v0]T the image coordinates of the principal point. The
principal point is considered to be the centre of the image.

III. 3D VISUAL ODOMETRY METHOD

A. Features Extraction and Stereo Matching

The first step of the implemented method consists in ex-
tracting n features by image of the stereo image pair denoted
as p∗lnand p∗

′
rnat t, ∀ ln <= n and rn <= n. These features

points corresponds to the pixel coordinates of maximum con-
volution response between image and predefined masks. We
use Speeded-Up Robust Features [7] for repeatability, robust-
ness and stability on the stereo matching and tracking process.
Once the features are extracted, a sparse stereo association
process [8] is performed. The sparse stereo matching consists
in associating features which validate the following constraints
in the both directions (left image features with respect to the
right ones and vice versa):
• The two features must validate the epipolar constraint [9]
• An upper and lower disparity threshold
• The ZNCC ( Zero-Mean Normal Cross Correlation )

correlation [10] value, estimated in a window of N ×N
(typically N = 9 to 11 ) pixels around the features
which must be sufficiently higher to avoid ambiguous
matching. It is obtained as follows:

ZNCC =

∑N,N
i,j=1

[
Il(i, j)− Īl

] [
Ir(i, j)− Īr

]√∑N,N
i,j=1

[
Il(i, j)− Īl

]2∑N,N
i,j=1

[
Ir(i, j)− Īr

]2 (2)

where Il and Ir are left and right grayscale image features to
be matched and Īl,Īr are respectively the left and right mean
intensity values of the images Il and Ir.

B. Feature Tracking

The tracking stage has the purpose of measuring the 2D
image displacement of the stereo matched features between
two sampling times i.e. t and t + 1. The advantage of using
a tracking algorithm is to accelerate and to simplify the
association process of the features in an interval of time. This

is possible by avoiding a feature extraction step by each stereo
image sample. For this, a classical Lucas-Kanade tracking (for
short LK tracking) method [11] lets us measure the image
position of the features in t+ 1 by minimizing the following
error function [12]:

ε(v) =

x+N/2∑
i=x−N/2

x+N/2∑
j=y−N/2

(It(i, j)− It+1(i+ vx, j + vy))2 (3)

where v = [vx vy]T is the optical flow vector, It is the
grayscale image feature to be tracked centered at (x,y) and
It+1 is the grayscale image feature which position is estimated
as the minimum of the function. Thus, LK tracking is per-
formed independently in the left and the right image, without
any stereo and scene rigidity constraint. Then a sparse stereo
association process (also known as cross-consistency check)
[13], [14] is done with the tracked features obtained. Finally,
we keep only the tracked features that are associated in t+ 1
which were also associated in the same way in t.

Figure 3. 2D Feature tracking (LK)

C. Quadrifocal Parametrization

The 3D trajectory of a stereo vision system can be estimated
between two succeeding stereo image pairs (i.e. ego-motion)
as the estimated relative motion of the tracked features. This is
only possible if the tracked features lying in a rigid scene (i.e.
scene with non moving objects). This constraint of rigidity can
be parametrized by using a quadrifocal tensor [15] as stated by
Comport et al. in [1]. By simplicity, the quadrifocal tensor can
be decomposed into two trifocal tensors, which let us transfer
features from the view at time t into the view at t+1 under the
rigidity constraint [16]. This function is known as the stereo
warping operator: [

p̂

p̂′

]
=

[
p∗l′j

lT jk
i

p′∗lj
rT jk

i

]
(4)

where
l′j and lj are the lines passing through p′∗ and p∗ perpen-

dicular to the epipolar line respectively. lT jk
i , is the trifocal

tensor composed by the stereo image pair at time t and the



left image at time t+ 1 (i.e. cameras 1, 2, 3 in Figure 4). The
second tensor, rT jk

i , is composed by the stereo image pair at
time t and the right image at time t+ 1 (see cameras 2, 1, 4
in Figure 4) .

As presented in [9], the computation of the trifocal tensor
is given by:

T jk
i = aj

i b
k
4 − a

j
4b

k
i (5)

where
P = [I|0], P ′ = [ai

j ] and P ′′ = [bij ] are the canonical 3× 4
camera matrices. These camera matrices are computed with
respect to a camera reference. The reference for the trifocal
tensor lT jk

i , is the camera 1 and for rT jk
i is the camera 2

illustrated in Figure 4.
In Eq. (5), we can observe that trifocal computation is de-

pendent on relative camera positions. Knowing that the stereo
vision system is rigidly fixed, the only unknown parameters
for transferring the feature points extracted at time t into t+1
is the rigid transformation (i.e. R, rotation and t, translation)
defined previously as the ego-motion.

Figure 4. Trifocal constraints

D. Ego-motion estimation

Based on the warping function (see. Eq. 4) and the tracked
features (optical flow), the ego-motion estimation can be
resolved as an optimization problem. Therefore, we propose
to estimate the 6 degrees of freedom the 3D trajectory of
the stereo vision system by minimizing a non-linear objective
function which represents the error between the measured
motion obtained by the tracked features and the estimated
motion obtained by the warped features. This error func-
tion is minimized by using a Levenberg-Marquard Algorithm
(LM)[17], [18], [19].

ε =
k∑

i=1

W
[
||pi − p̂i||+ ||p′i − p̂′i||

]
(6)

where pi and p′i are the left and right tracked features at time
t+ 1 respectively. p̂i and p̂′i are the left and right features at
time t warped by the estimated motion (see Eq. 5). W is the

weighting matrix estimated by a M-estimator function (in our
experiments Beaton and Tukey function) [20], [21].

Taking in to account that the ego-motion estimation can
be noisy and drifted by errors coming from stereo matching,
tracking and by conditions when the scene is not completely
rigid like urban environments. Thus, a robust M-estimator
function has been implemented on an iteratively re-weighted
least square (IRLS) [20] loop for coping with this errors.
The robust function let us estimate for each iteration the
corresponded weight for all the observations. This estimation
is robust under the hypothesis that a larger quantity (more than
50%) of features points are lying on static objects and only an
small quantity of them corresponds to matching and tracking
error and moving objects.

IV. 3D VISUAL ODOMETRY ALGORITHM

Algorithm 1 Real-time Visual Odometry Technique
1: while acquiring do
2: I Acquire a new stereo view pair
3: if tracking then
4: I LK tracking of reference view features {p, p′}r

where r is the number of tracked feature pairs
5: if Minimum tracked point pairs threshold< r then
6: I Initialization of the LM algorithm with

x0 = [∆R0 ∆t0]T, ∀ x0 ∈ R6

7: repeat
8: I Estimate x = [∆R ∆t]T, ∀ x ∈ R6 by

using LM algorithm
x = min(ε), see Eq.(6)

9: ICompute W using LM minimization residuals
(Re-weigthing process)

10: I δx⇐ ||xi − xi−1||
11: until (δx > Threshold) AND

(IterMaxThreshold) AND
(Outlier Percent < 50% ) //IRLS Loop

12: else
13: I Re-initialises algorithm, go to step 3
14: end if
15: end if
16: if initialization then
17: I Extraction of Reference View Features in left p∗

and right p∗
′

images {i.e. SURF features}
18: I Stereo matching process {p∗, p∗′}n
19: end if
20: Swap all t and t+ 1 variables
21: end while

V. EXPERIMENTAL RESULTS

We present the evaluation tests carried out in order to
estimate the accuracy and the integrity of the presented method
in simulated and real conditions. The method was implemented
in C/C++ using Intel OpenCV platform [22] and the levmar
implementation [23] for non linear minimization. The perfor-
mance illustrated has been obtained in a Intel Core 2 CPU 2.1
GHz running under Windows XP OS.



A. Synthetic data

Along the development of this work, it was not very
easy to find an error function which let us to calculate a
good motion estimation by ensuring an affordable time of
convergence for real time execution. For this, we carried out a
test using simulated data in similar quasi-urban conditions (for
instance, acquisition frequency, image resolution, 3D motion
and dynamic objects).

The considerations which were taken into account in the
simulation model correspond to a stereo pair image resolution
of 320×240 pixels at an acquisition frequency of 15fps. In
order to generate the synthetic stereo images (see Figure 5,
upper stereo image pair), the 3D camera motion was estimated
as a function of the vehicle velocity curve and the camera
acquisition frequency. Thus, the maximum 3D ego-motion
applied was of 0.92 cm and a minimum of 0.27 cm simulating
speeds of 50 Km/h and 15 Km/h respectively.

Figure 5. Simulation test with outliers

The simulation test was performed by including 20% of
features coming from moving objects in the simulated environ-
ment. The results which are illustrated in Figure 5 (see lower
image pair) show that the algorithm converges into a motion
solution which minimizes the optical flow error generated by
the static environment.

In Figure 6 (top) is illustrated the trajectory results obtained
under ideal conditions in image feature points extraction
and stereo matching steps. Then, some random stereo-feature
mismatching and a pixel σ noise was added obtaining the
trajectory shown in Figure 6 (bottom).

The error time evolution (see Figure 7) for this last trajectory
let us observe a drift generated particularly in sections where
there is an important rotation motion. This is because of
important ego-motions need more iterations for convergence.
The number of iterations is constrained because of real-time
execution.

B. Real time results

Experiments using real data were carried out thanks to
the experimental platform of the Heudiasyc laboratory (see

Figure 6. Trajectory obtained in simulated conditions

Figure 7. Error time evolution in simulation

Figure 1). This vehicle is equipped with a 47cm-baseline
Videre Stereo Vision System installed at the top. This system
is composed by CMOS cameras with 4.5mm lens that were
set to acquire gray-scale images with a resolution of 320×240
pixels at a frequency of 15 fps. The video sequence takes
place in a quasi-urban environment characterized by moving
objects (i.e. vehicles, cycles, pedestrians), buildings and trees.
The vehicle’s velocity was less than 60 Km/h. During the
experiment GPS and proprioceptive data were also acquired
in parallel by the same application.

Figure 8. Features points during real-time odometry estimation, � : Outliers
� : Inliers

In Figure 8, the indexed stereo feature point pairs which



are classified as inliers (i.e. empty squares) for ego-motion
estimation are shown. It is also worth to mention it, that almost
all the stereo feature points lying in the moving vehicle are
classified as outliers (i.e. filled squares) by the robust function.

As can be noticed in Figure 9, some objects like tree’s leaves
are an important source of mismatching. This reveals some
complex scenes of the test. However, we have remarked that
the rejection of moving objects performs quite well.

Figure 9. Feature points lying in moving objects � : Outliers � : Inliers

No ground truth localization system was available dur-
ing this experiment, particularly for the attitude estimates.
Therefore, we report here only the comparison of the visual
odometry trajectory with a Septentrio PolaRx2c GPS receiver
(Figure 10 and 13) and proprioceptive sensors (IMU-WSS) 2D
Odometry (Figure 10). As the key characteristic of any dead-
reckoning system is its drift with respect to the traveled dis-
tance, the low accuracy (absolute error) of the GPS used here
is not a matter (the GPS was used in differential SBAS mode -
Satellite Based Augmentation System): the atmospheric effects
that often bias the pseudo-ranges are subject to slow variation.
So, the precision (relative error) is very good in open sky
conditions (less than one meter typically). Unfortunately, it
remains multi-path effects and satellites outages than introduce
jumps. Therefore, using a GPS for comparison is meaningful
keeping in mind that this approach doesn’t allow estimating
the real errors, only differences.

The visual odometry position was initialized using the first
GPS point and the attitude using the median of the first
50 points heading. With a 790 m long trajectory, 3.9% 2D-
odometry (x-z plane) and 0.25% vertical (y-axis direction)
drifts were obtained by using the visual odometry. These
differences correspond to the ratio of the position error over the
total traveled distance. The 2D-odometry difference evolution
is shown in Figure 11.

These results highlight a quite good visual odometry drift
which is caused principally by scenes where an important
quantity of features lying in vehicles exceed the features points
lying in the static scene. This is one of the main drawback of
the sparse approach.

The experiment with real data has also shown situations
where very few points were tracked in the process. Please
note that this situation which didn’t appear in the simulated
conditions. Since this phenomenon is a crucial issue in real
conditions. Figure 10 shows in green crosses when the visual
odometry is reinitialized for re-extracting new features points.

As expected, the algorithm re-initializes frequently in turns.

Figure 10. 2D estimated trajectory using GPS, proprioceptive sensors and
visual odometry

Figure 11. Difference evolution between GPS and Visual Odometry

Figure 12 shows a zoomed part of the trajectory recon-
structed in Figure 10, highlighting a drift start. By observing
the left stereo corresponding image, one can see that some
features points present a sliding motion (left sidewalk) and
poor texture surfaces (for example reflective pattern on top-
right building) induce a bias on the optical flow. In addition,
there is not an uniform feature dispersion in the image.

If one can conclude that visual odometry doesn’t improve
the 2D accuracy compared to WSS odometry on good quality
roads, it should be noticed that it provides the full 6 degrees
of freedom which is not possible to obtain using wheel-
based odometry. Figure 13 plots the 3D estimated trajectory
obtained using visual odometry and GPS. The GPS jumps are
particulary visible in this plot are mainly due to the satellites
changes. One can notice that the 3D trajectory obtained using
the visual odometry is quite smooth. This an interesting feature
for integrity monitoring since a smoothed prediction of the
pose is crucial to eliminate GPS outliers. Finally, the altitude
drift is very small (less than 0.3% of the traveled distance)
which is a very nice feature.

Finally, Figure 14 presents a time execution histogram of
the algorithm revealing that convergence time is not constant.
This is caused by the non homogeneous vehicle motion and by



Figure 12. Observed drift caused by critical conditions

Figure 13. 3D estimated trajectory (local frame coordinates)

the variability of scene complexity (i.e. outliers/inliers ratio).
However, approximately a half of the ego-motion estimations
has been performed in less than 100ms which illustrates a
good real-time implementation.

VI. CONCLUSION

A real-time visual odometry approach has been presented
and experimentally studied. The core of the method combines
in one non linear criterion the ego-motion estimation based
on sparse optical flow and quadrifocal tensor warping. An
experiment under quasi-urban conditions illustrates the good
performance of the optical odometry with respect to GPS and
proprioceptive ones. The obtained real-time results show a
good trade-off between precision and execution time thanks to
a sparse feature approach. However, this experiment revealed
that an important degradation source of the visual odometry
performance is due to high rotational speed mouvements like
90° turns and roundabouts. The management of these critical
conditions and the reduction of the drift in a multi-sensor
context constitute the main perspective of this research.
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