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Abstract

We introduce a typed functional programming language LPL(acronym for Light

linear Programming Language) in which all valid programs run in polynomial

time, and which is complete for polynomial time functions. LPL is based on

lambda-calculus, with constructors for algebraic data-types, pattern matching and

recursive definitions, and thus allows for a natural programming style. The validity

of LPL programs is checked through typing and a syntactic criterion on recursive

definitions. The higher order type system is designed from the ideas of Light linear

logic: stratification, to control recursive calls, and weak exponential connectives §,

!, to control duplication of arguments.

1 Introduction

Implicit computational complexity (ICC).

This line of research aims at characterizing complexity classes not by external mea-

suring conditions on a machine model, but instead by investigating restrictions on

programming languages or calculi which imply a complexity bound. So for instance

characterizing the class PTIME in such a framework means that all the programs of

the framework considered can be evaluated in polynomial time (soundness), and that

conversely all polynomial time functions can be represented by a program of the frame-

work (extensional completeness).

The initial motivation was to provide new characterizations of complexity classes of

functions to bring some insight on their nature [BC92, Lei91, LM93, Gir98]. In a sec-

ond step, e.g. [Hof99, MM00], the issue was raised of using these techniques to design

some ways of statically verifying the complexity of concrete programs. Some efforts in

this direction have been done following other approaches, e.g. [HP99, HJ03, CW00].

For this point of view it is quite convenient to consider a general programming lan-

guage or calculus, and to state the ICC condition as a criterion on programs, which

can be checked statically, and which ensures on the validated programs a time or space

complexity bound. In this respect the previous extensional completeness is of limited
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interest, and one is interested in designing criteria which are intensionally expressive,

that is to say which validate as many interesting programs as possible. Note that fors

a Turing-complete language the class of PTIME programs is non recursively enumer-

able, and so an intensionally complete criterion would not be decidable. Actually we

think that three aspects should be taken into consideration for discussing intensional

expressivity:

1. what are the algorithmic schemes that can be validated by the criterion,

2. what are the features of the programming language: e.g. higher-order functional

language, polymorphism, exceptions . . .

3. how effective is the criterion: what is the complexity of the corresponding deci-

sion problem.

Result and methodology.

The main contribution of the present work is the definition of LPL (acronym for Light

linear Programming Language), a typed functional programming language inspired by

Light linear logic satisfying an ICC criterion ensuring a PTIME bound. LPL improves

with respect to previous PTIME linear logic inspired languages in aspect 1 and 2 above,

since it combines the advantages of a user-friendly and expressive language and of

modular programming. The distinguishing feature of LPL is the combination of

• higher-order types by means of a typed λ-calculus,

• pattern-matching and recursive definitions by means of a LetRec constructor,

• a syntactic restriction avoiding intrinsically exponential recursive definitions and

a light type system ensuring duplication control,

in such a way that all valid typed programs run in polynomial time, and all polynomial

time functions can be programmed by valid typed programs.

A difficulty in dealing with λ-calculus and recursion is that we can easily combine ap-

parently harmless term to obtain exponential time programs like the following

λx.x(λy. mul 2 y)1
where mul is the usual recursive definition for multiplication. Such a term is apparently

harmless, but for each Church numeral n = λs.λz.sn
z this programs return the (stan-

dard) numeral 2n. In order to prevent this kind of programs, to achieve polynomial time

soundness, a strict control over both the numbers of recursive calls and beta-reduction

steps is needed. Moreover, the extension to higher order in the context of polynomial

time bounded computations is not trivial. Consider the classical foldr higher order

function; its unrestricted use leads to exponential time programs. E.g. let ListOf2

be a program that given a natural number n returns a list of 2 of length n. Then, the

following program is exponential in its argument:

λx.foldr mul 1 (ListOf2 x)
For these reasons, besides the syntactic restriction avoiding intrinsically exponential

recursive definitions, we impose a strict typing discipline inspired by the ideas of Light

linear logic. In λ-calculus, Light linear logic allows to bound the number of beta-steps,

using weak exponential connectives ! and § in order to control duplication of arguments

and term stratification in order to control the size. The syntactic restriction of function

definitions limits the number of recursive steps for one function call. But this is not
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enough since function calls appear at run time and the size of values can increase dur-

ing the computation. Our type system addresses these issues, and a key point for that

is the typing rule for recursive definition. In particular, we mean a function of type

N ⊸ N to be such that it can increase the size of its input by at most a constant, while

a function of type N ⊸ §N to be such that it can increase it at most quadratically.

For a recursive definition of the shape f t = M{f t′}, the typing rule ensures that the

context M does not increase the size too much, and it types the function f accordingly.

Therefore the type system allows to bound both the number of beta-steps and the size

of values, and together with the syntactic restriction this results in a PTIME bound on

execution.

The typing restrictions on higher order functions are not too severe. Indeed, we can

write in a natural way some interesting programs using higher order functions without

exponential blow up. E.g. consider again the foldr function, we can type a term rep-

resenting one of its classical use as

λx.foldr add 0 x
About the methodology we use, we stress that we do not aim at proving the proper-

ties of LPL by encoding it into Light linear logic. Instead, we take inspiration from it

and we adapt the abstract structure of its PTIME soundness proof to our new setting.

Moreover, our guideline is to follow a gradual approach: we propose a strict criterion,

that has the advantage of handling naturally higher-order. We hope that once this step

has been established we might study how the criterion can be relaxed in various ways.

Indeed, the choice of using a combined criterion, i.e. a first condition ensuring termina-

tion, and a second one dealing with controlling the size, will be an advantage for future

works. In particular, by relaxing either one of the two conditions one can explore gener-

alizations, as well as different criteria to characterize other complexity classes. Finally

we think that the ICC criterion we give can be effectively checked since this is the case

for λ-calculus [ABT06], but we leave the development of this point for future work.

Related works.

Higher-order calculi: linear logic and linear type systems. Linear logic [Gir87] was

introduced to control in proof theory the operations of duplication and erasing, thanks

to specific modalities !, ?. Through the proofs-as-programs correspondence it pro-

vided a way to analyze typed λ-calculus. The idea of designing alternative weak ver-

sions of the modalities implying a PTIME bound on normalization was proposed in

[GSS92] and led to Light Linear Logic (LLL) in [Gir98] and Soft Linear Logic (SLL)

in [Laf04]. Starting from the principles underlying these logics different PTIME term

languages have been proposed in [Ter01] for LLL and in [BM04] for SLL. In a second

step [Bai02] type systems as criteria for λ-calculus were designed out of this logic,

like the system DLAL [BT09] and STA [GRDR07]. This approach completely fits

in the proofs-as-programs paradigm, thereby offering some advantages from the pro-

gramming language point of view (point 2 above): it encompasses higher-order and

polymorphism. The drawback is that data are represented in λ-calculus and so one is

handling encodings of data-types analogous to Church integers. Moreover the kinds of

algorithms one can represent is very limited (point 1). However testing the criterion can

be done efficiently (point 3): one can decide in polynomial time if a (system F typed)

λ-term is typable in DLAL [ABT06] and if a pure λ-term is typable in (propositional)

STA [GR08].

In [BNS00] the authors propose a language for PTIME extending to higher-order the

characterizations based on ramification [BC92, Lei91]. The language is a ramified vari-



2 LPL 4

ant of Gödel’s system T where higher-order arguments cannot be duplicated, which is

quite a strong restriction. Moreover, the system T style does not make it as easy to pro-

gram in this system as one would like. Another characterization of PTIME by means

of a restriction of System T in a linear setting has been studied in [DLMR03, DL09].

In [Hof99], Hofmann proposed a typed λ-calculus with recursor (essentially a vari-

ant of Gödel’s system T), LFPL, overcoming the problems of ramification and which

allows to represent non-size-increasing programs and enjoys a PTIME bound. This

improves on point 1 by allowing to represent more algorithms and by featuring higher-

order types. However, the restriction on higher-order argument is similar to the one

in [BNS00] and the system T programming style make it far from ordinary functional

languages.

First-order calculi and interpretations. Starting from the ICC characterizations based

on ramification such as [BC92, Lei91], a progressive work of generalization was car-

ried out by Marion and collaborators, trading first primitive recursion for termina-

tion orderings on constructor rewrite systems [Mar03], and then ramification for no-

tions of quasi-interpretation [MM00, BMM01] and sup-interpretation [MP08, MP09]

over a first-order functional language with recursion and pattern-matching. Quasi-

interpretations and sup-interpretations are a semantic notion inspired from polynomial

interpretations, and which essentially statically provides a bound on the size of the val-

ues computed during the evaluation. If a program admits both a termination ordering

and a quasi-interpretation or sup-interpretation of a certain shape, then it admits a com-

plexity bound. The main advantage of this method is its intensional expressivity, since

more algorithms are validated (point 1) than in the ramification-based frameworks.

Outline.

In Section 2 we introduce LPL. We present its syntax, its type system and the syntactic

criterion that its program should meet. In Section 3 we show some programming ex-

amples in LPL. In Section 4 we introduce an extended language, named eLPL, where

the stratification measures inherited by the type system are explicit. Moreover, we give

a translation of each LPL programs in it. Then, in Section 5 we give the translations in

eLPL of the examples of Section 3.

In Section 6 we prove the polynomial time soundness of LPL programs by means of

their translation in eLPL. The proof shows that a depth-by-depth strategy normalize

LPL programs in polynomial time in the size of their input. Finally, in Section 7 we

briefly outline how to extend the language in order to achieve PTIME completeness.

2 LPL

We introduce the language LPL, an extension of λ-calculus by constants, pattern match-

ing and recursive function definitions. In order to limit the computational complexity

of programs we need to impose some restrictions. To achieve polynomial time proper-

ties two key ingredient are used: a syntactic criterion and a type system.

The syntactic criterion imposes restrictions to recursive schemes in order to avoid the

ones which are intrinsically exponential. The type system allows through a stratifica-

tion over terms to avoid the dangerous nesting of recursive definition.
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p ::= M | LetRec dF in p program definition

v ::= c v1 · · · vn value definition

t ::= X | c t1 . . . tn pattern definition

dF ::= F t1 . . . tn = N | dF, dF function definition

M, N ::= x | c | X | F | λx.M | MM | term definition

Table 1: LPLterm language definition

2.1 The syntax

Let the set Var be a denumerable set of variables, the set PVar be a denumerable set

of pattern variables, the set Cst be a denumerable set of constructors and the set Fct
be a denumerable set of function symbols. Each constructor c ∈ Cst and each function

symbol F ∈ Fct has an arity n ≥ 0: the number of arguments that it expects. In partic-

ular a constructor c of arity 0 is a base constant.

The programs syntax is given in Table 1 where x ∈ Var, X ∈ PVar, c ∈ Cst and

F ∈ Fct. Among function symbols we distinguish a subset of symbols which we will

call basic functions and denote as F, G, ... We use the symbol κ to denote either a vari-

able or a pattern variable. Observe that values and patterns are a subset of terms.

The size |M| of a term M is the number of symbols occurring in it. The size of pat-

terns and programs are defined similarly. We denote by no(κ, M) the number of occur-

rences of κ in M. Let s ∈ Cst ∪ Fct be a symbol of arity n, then we will often write

s(M1, . . . , Mn) or s(
−→
M ) instead of s M1 . . . Mn.

Example. The set Cst includes the usual constructors s of arity one and the base

constant 0 for natural numbers, the constructor : of arity two and the base constant

nil for lists of natural numbers, node of arity three and the base constant ǫ for binary

trees with node natural numbers.

A function definition dF for the function symbol F of arity n is a sequence of defi-

nition cases of the shape F(t1, · · · , tn) = N where F is applied to patterns t1, . . . , tn,

the free variables of N are a subset of the free variables of t1, . . . , tn (thus pattern vari-

ables), and N is normal for the reduction (which will be given in Def. 7). Moreover, in

a definition case:

1. if F is a basic function G, then N does not contain any function symbol,

2. if F is not a basic function, then (i) N does not contain any basic function symbol,

and (ii) every occurrence of F in N appears in subterms of the form F(t11, . . . , t
1
n), . . . ,

F(tk1, . . . , t
k
n); these subterms are called the recursive calls of F in N.

Patterns are linear in the sense that a pattern variable X cannot appear several times in a

given pattern. Moreover we assume that patterns t1, . . . , tn in the l.h.s. of a definition

case have distinct sets of pattern variables.

Remark. Note that the condition 1 above implies that definition cases of basic func-

tions do not contain any recursive calls. The condition 2(i) is merely a technical as-

sumption which will make it easier to obtain the complexity bound, but we expect that

it could be dropped.

The notion of sub-term is adapted to patterns: we denote by t′ ≺ t the fact that t′

is a strict sub-pattern of t. As usual � is the reflexive closure of ≺. Patterns t and t′
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such that t � t′ and t′ � t are incomparable.

A program is a term M without free pattern variables preceded by a sequence of function

definitions dF1 , . . . , dFn defining all the function symbols occurring in M. Moreover we

ask that every function definition dFi
uses only the function symbols F1, . . . , Fi−1. We

usually write a program of the shape LetRec dF1 in · · · LetRec dFn in M simply as

LetRec dF1 , . . . , dFn in M. As usual programs are considered up to renaming of bound

variables.

A substitution σ is a mapping replacing variables by terms. The notion of substitution

can be used to define the notion of matching which is essential in defining the reduction

mechanism of our language.

Definition 1. Given a term M and a pattern t we say that M matches t if and only if there

exists a substitution σ such that M = σ(t). Analogously, given a term M and a definition

case of the shape F(t1, . . . , tn) = N we say that M matches it if and only if there exists

a substitution σ such that M = F(σ(t1), . . . , σ(tn)).

Definition 2. A sequence d1, . . . , dn of function definition cases for the function sym-

bol F of arity n is exhaustive if for every sequence of values V1, . . . , Vn such that

F(V1, . . . , Vn) is typable, there exists a unique di in d1, .., dn such that F(v1, . . . , vn)
matches the l.h.s. of di.

A program p is well defined if and only if all the function definitions in it are exhaustive.

2.2 Syntactic Criterion

As we have already stressed, the first ingredient to ensure the intended complexity

properties for LPL programs is a syntactic criterion.

Definition 3. Let F(t1, . . . , tn) = M be a definition case for the function symbol F. It

is recursive if it contains some recursive calls F(t11, . . . , t
1
n), . . . , F(tm1, . . . , t

m
n) of F in

M. It is base otherwise.

Note that basic funtions by definition only have base definition cases. We now need

the following notion of safe definition cases.

Definition 4 (Safe definition case). Let F(t1, . . . , tn) = M be a definition case for the

function symbol F. It is safe if for every recursive call F(t11, . . . , t
1
n), . . . , F(tm1, . . . , t

m
n)

of F in M

(i) ∀k,∀i : tk
i � ti ,

(ii) ∀k,∃j : tk
j ≺ tj ,

(iii) ∀j,∀k 6= l, tk
j � tl

j and tl
j � tk

j .

Note that this condition is trivially satisfied by base definition cases, and thus by

basic functions. The syntactic criterion for LPL program can now be defined using the

notion of safe definition case.

Definition 5 (Syntactic Criterion). An LPL program M satisfies the syntactic criterion

if and only if every definition case in it is safe.

We now state some definitions and properties that will be useful in the sequel.
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Definition 6 (Matching argument). Let F(t1, . . . , tn) = M be a definition case for the

function symbol F. Every position of index j such that tj is not a pattern variable X is

a matching position.

The set R(F) is the set of matching positions in some definition case of F. The matching

arguments of a function symbol F are the arguments in a matching position of R(F).

Note that in Definition 4 the condition (ii) asks that for every recursive call there

exists at least one recurrence argument. Every such recurrence argument is a match-

ing argument. Moreover conditions (iii) and (ii) imply that in safe definition cases

making recursion over integer or list there is at most one recursive call. This to avoid

exponential functions like the following

exp(s X) = (exp X) + (exp X)

Nevertheless, we have functions with more recursive calls over trees, for example:

Tadd(node(X, Y, Z), node(X′, Y′, Z′)) = node(X + X′, Tadd(Y, Y′), Tadd(Z, Z′))

Safe definition cases have the following remarkable property.

Lemma 1. Let F(t1, . . . , tn) = M be a safe definition case and let the recursive calls

of F in M be F(t11, .., t
1
n), . . . , F(t

m
1, .., t

m
n). Then

n
∑

i=1

|ti| >

m
∑

k=1

(

n
∑

i=1

|tk
i |)

Proof. The case m = 1 follows directly by conditions (i) and (ii) of Definition 4. In

the case m > 1 conditions (i) and (iii) of Definition 4 imply that for every i, the tk
i for

1 ≤ k ≤ m are pairwise disjoint subterms of ti, and thus |ti| ≥
∑m

k=1 |t
k
i |. Consider

k = 1, by (ii) there exists i1 such that t1
i1

≺ ti1 . It follows that |ti1 | >
∑m

k=1 |t
k
i1
|.

Therefore
∑n

i=1 |ti| >
∑n

i=1(
∑m

k=1 |t
k
i |).

2.3 Reduction

The computational mechanism of LPLwill be the reduction relation obtained by ex-

tending the usual β-reduction with rewriting rules for the LetRec construct.

We denote by M{} a context, that is to say a term with a hole, and by M{N} the result of

substituting the term N for the hole.

Definition 7. The reduction relation →L is the contextual closure of:

• the relation →β defined as: (λx.M)N →β M[N/x],

• the relation →γ defined for basic functions F by:

LetRec F(~t1) = M1, . . . , F(~tn) = Mn in M{F(
−→
N )} →γ

LetRec F(~t1) = M1, . . . , F(~tn) = Mn in M{σ(Mi)}

if there exists i s.t. σ(
−→
ti ) =

−→
N.

• and of the relation →Rec defined as →γ but for non-basic functions.
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⊢ c : T (c) ⊢ F : T (F)
1: Constructors and functions

; κ : A ⊢ κ : A
(Ax)

Γ1; ∆1 ⊢ M : B

Γ1, Γ2; ∆1, ∆2 ⊢ M : B
(W )

Γ, κ1 : A, κ2 : A; ∆ ⊢ M : B

Γ, κ : A; ∆ ⊢ M[κ/κ1, κ/κ2] : B
(C)

Γ; ∆, x : A ⊢ M : B

Γ; ∆ ⊢ λx.M : A ⊸ B
(⊸ I)

Γ1; ∆1 ⊢ M : A ⊸ B Γ2; ∆2 ⊢ N : A

Γ1, Γ2; ∆1, ∆2 ⊢ MN : B
(⊸ E)

Γ, x : A; ∆ ⊢ M : B

Γ; ∆ ⊢ λx.M :!A ⊸ B
(⇒ I)

Γ1; ∆ ⊢ M :!A ⊸ B ; Γ2 ⊢ N : A Γ2 ⊆ {κ : C}

Γ1, Γ2; ∆ ⊢ MN : B
(⇒ E)

; Γ, ∆ ⊢ M : A

Γ; §∆ ⊢ M : §A
(§I)

Γ1; ∆1 ⊢ N : §A Γ2; x : §A, ∆2 ⊢ M : B

Γ1, Γ2; ∆1, ∆2,⊢ M[N/x] : B
(§E)

2: Terms

Γ; ∆ ⊢ F(
−→
ti ) : §B Γ; ∆ ⊢ Ni : §B ⊲dF : §B

⊲(F(
−→
ti ) = Ni), dF : §B

(D)
Γ; ∆ ⊢ p : A ⊲dF : §B

Γ; ∆ ⊢ LetRec dF in p : A
(R)

3: Recursive definitions and programs

Table 2: LPL Typing rules

We write →γFi
(resp. →RecFi

) instead of →γ (resp. →Rec) when we want to stress

which function Fi (resp. Fi) has been triggered. As usual →∗
L denotes the reflexive and

transitive closure of →L.

Remark that the syntactic criterion alone implies that a program M satisfying it can-

not have an infinite →Rec reduction sequence.

2.4 Type system

The fundamental ingredient to ensure the complexity properties of LPL is the type

system. It allows to derive different kinds of typing judgments. One assigns types to

terms, another one assigns types to programs and the last one assigns types to function

definitions.

The types of LPL are defined starting from a set of ground types containing Bn, N,

Ln, L, T representing respectively finite types with n elements (for any n ≤ 1, unary

integers (natural numbers), lists over Bn, lists of unary integers and binary trees with

unary integers at the nodes. Ground types can also be constructed using products:

D1 ×D2. The elements of such a type are of the form (p d1 d2) where di is an element

of Di (i = {1, 2}. The constructor p has type D1 ⊸ D2 ⊸ D1 × D2. This set of

ground types could easily be extended to all the usual standard data types. Types are

defined by the following grammars:

D ::= Bn | N | Ln | L | T | D × D
A ::= D | A ⊸ B | !A ⊸ B | §A .

The type !A ⊸ B is the translation of the intuitionistic implication A ⇒ B in linear

logic. It uses the modality ! to manage typing of non-linear variable in a program. The

other modality §A is used in Light linear logic [Gir98] (and in DLAL) to guarantee a

PTIME bound normalization. A formula A is modal if it is of the form A = §B or !B.
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The intuitions behind modalities will be clarified by the type assignment system of LPL

(Table 2). Just keep in mind for the moment that in our types the ! modality is always

used in the left position of a linear implication. We write † for modalities in {!, §}, and

†nA = †(†n−1A), †0A = A.

The following definition gives types to constructors and functions:

Definition 8. To each constructor or (basic or non-basic) function symbol s, of arity

n, a fixed type is associated, denoted T (s):

• If s = c or F then: T (s) = D1 ⊸ · · · ⊸ Dn ⊸ Dn+1, where the Di for

1 ≤ i ≤ n + 1 are ground types.

• If s = F a non-basic function, then: T (F) =!i1§j1A1 ⊸ · · · ⊸!in§jnAn ⊸ §jA
where:

i) every Ai, for 1 ≤ i ≤ n, and A are non-modal formulas,

ii) j ≥ 1 and 0 ≤ ir ≤ 1 for any 1 ≤ r ≤ n,

iii) for 1 ≤ r ≤ n, if r ∈ R(F) then Ar is a ground type D and ir = jr = 0;

otherwise ir + jr ≥ 1.

Example. For the ground type N of natural numbers we have: T (0) = N, T (s) =
N ⊸ N. For the ground type L of finite lists of natural numbers we have: T (nil) = L,

T (:) = N ⊸ L ⊸ L. For the ground type T of finite binary trees with natural numbers

as node we have: T (ǫ) = T, T (node) = N ⊸ T ⊸ T ⊸ T.

The type assignment system we present here is a declarative one, that is to say it

is designed to favor simplicity, rather than to make type inference easy. In particular

the typing rules will not be syntax-directed. We could design an equivalent algorithmic

type system, meant to be used for type inference, but this is not our goal here.

Contexts are sets of assignments of either one of the following shapes x : A, X : A
where A is a type. Note in particular that function symbols and constructor symbols

will not occur in contexts. Contexts will be usually denoted as Γ,∆,Γ1, . . .
As already stressed we need different kinds of type judgments. In particular we have

type judgments for terms and programs that have the shape Γ; ∆ ⊢ M : A and Γ; ∆ ⊢
p : A respectively, where Γ and ∆ are two distinct contexts, M is a term and p is a

program, while A is a type. The context Γ is called non-linear, while ∆ is linear: the

type system will ensure that variables from ∆ occur at most once in the term M or the

program p. If ∆ is a context κ1 : A1, . . . , κn : An then §∆ will stand for the context

κ1 : §A1, . . . , κn : §An.

Moreover we have type judgments for function definitions of the shape ⊲dF : A, where

dF is a definition of F (possibly not completed yet) and A is a type.

The typing rules for LPL are depicted in Table 2. We will now discuss the three classes

of rules (2.1, 2.2 and 2.3). In binary rules, like (⇒ E), the contexts of the two premises

are assumed to have disjoint sets of variables.

In Table 2.1, the rule for function symbols might seem a bit surprising at first sight

because the type of the function is assigned before the function is concretely defined,

but recall that this presentation is not tailored for type inference. The typing rules for

terms in Table 2.2 are not new and are essentially those of the type system DLAL

[BT09] for λ-calculus. A minor difference is that here we have both variables and

pattern variables.

The typing rules dealing with definitions are presented in Table 2.3 and together with
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the typing rule for function symbols are the main novelty of the present language. They

need some comments. The rule (D) serves to add a definition case to a partial definition

dF of F. The new definition typed is then d′F = (F(
−→
ti ) = Ni), dF.

The rule (R) then serves to form a new program from a program and a definition of a

function.

As usual the set Val of values corresponds to the typable terms of the algebra freely

generated (respecting the arity) by constructors.

By a straightforward adaptation of DLAL subject reduction we have:

Theorem 1 (Subject Reduction). Let p be a LPL program such that Γ; ∆ ⊢ p : A.

Then, p →∗
L q implies Γ; ∆ ⊢ q : A.

3 Some Examples

Before giving the details of LPL complexity properties, we give here some hints on

how to program in LPL. In particular more information about the typing can be found

in Section 5.

The standard recursive definition of addition turns in a function definition dA as:

Add(s(X), Y) = s(Add(X, Y)) ,
Add(0, Y) = Y

the first argument is a recurrence arguments, so dA is typable for example by taking

Add : N ⊸ §N ⊸ §N. Analogously, the standard recursive definition of multiplication

turns in a function definition dM as:

Mul(s(X), Y) = Add(Y, Mul(X, Y)) ,
Mul(0, Y) = 0

since the first is a recurrence argument and since Add : N ⊸ §N ⊸ §N we can type dM
by taking Mul : N ⊸!N ⊸ §§N and by typing accordingly the right-hand side of the

definition cases by means of rule (§I) and (§E).
We can also program a type coercion function for every data type. On numerals this

can be obtained by a function definition dC as:

Coer(s(X)) = s(Coer(X)) ,
Coer(0) = 0

typable by taking Coer : N ⊸ §N and by typing accordingly the right-hand side of

the definition cases by means of rule (§I) and (§E). The above coercion can be used

to define the usual Map function on lists of numerals. We have a function definition dP
as:

Map(Y, X : XS) = (Y(Coer(X))) : Map(Y, XS) ,
Map(Y, nil) = nil

that is typable by taking Map :!(N ⊸ N) ⊸ L ⊸ §L. Note that we have also a typing

for non linear function argument of Map. Using the function definitions we have just

defined we can write a program

Map (×2) (1 : 2 : 3 : 4)

that doubles all the elements of the given list (1 : 2 : 3 : 4) as follows

LetRec dA, dM, dC, dP in Map (λx.Mul(x, 2), (1 : 2 : 3 : 4))
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such a program is typable with type §§§L using Map :!(N ⊸ §§N) ⊸ L ⊸ §§§L.

Finally, by using again the coercions we can write a function definition dR for the

standard recursive definition of Foldr as:

Foldr (Y, Z, X : XS) = Y (Coer(X)) (Foldr(Y, Z, XS)) ,
Foldr(Y, Z, nil) = Z

such a function definition is typable by Foldr :!(N ⊸ N ⊸ N) ⊸ §N ⊸ L ⊸ §N
and again by typing accordingly the right-hand side of the definition cases by means

of rule (§I) and (§E). Note that we have also a typing Foldr :!(N ⊸ §N ⊸ §N) ⊸

§§N ⊸ L ⊸ §§N. So we can use foldr to write the program

Foldr (+) 0 (1 : 2 : 3)

that sums the values in the list (1 : 2 : 3) as

LetRec dA, dC, dR in Foldr ((λx.λy.Add(x, y)), 0, (1 : 2 : 3))

and this is typable with type §§N.

Finally we can also give some interesting programs over trees. For example we have

the following addition of trees. We have a function definition dT as:

Tadd(node(X, Y, Z), node(X′, Y′, Z′)) = node(Add(X, X′), Tadd(Y, Y′), Tadd(Z, Z′)) ,
Tadd(ǫ, X) = X ,
Tadd(X, ǫ) = X ,

we can type dT by taking Tadd : T ⊸ T ⊸ §T and by typing accordingly the right-

hand side of the definition cases by means of rule (§I) and (§E).

4 Translating LPL in eLPL

The proof of the polynomial time complexity bound for light linear logic [Gir98] and

light λ-calculus [Ter01] uses a notion of stratification of the proofs or λ-terms by

depths. To adapt this methodology to LPL we need to make the stratification explicit

in the programs. For that we introduce an intermediate language called eLPL, adapted

from light λ-calculus [Ter01], and where the stratification is managed by new con-

structions (corresponding to the modality rules). Note that the user is not expected to

program directly in eLPL, but instead he will write typed LPL programs, which will

then be compiled in eLPL. The polynomial bound on execution will then be proved for

a certain strategy of evaluation of eLPL programs.

The syntax of eLPL programs is depicted in Table 3. An eLPL term λx.let x be !y in M[y/x],
where y is fresh, is abbreviated by λ!x.M. We will give a translation of type derivations

of LPL programs to type derivations of eLPL programs, which will leave almost un-

changed the typing part, and act only on the terms part of LPL programs.

The contexts of typing judgements for eLPL terms and programs can contain a new

kind of type declaration, denoted x : [A]§, where A is a type, which corresponds to

a kind of intermediary status for variables with type §A. In particular [A]§ does not

belong to the type grammar and these variables cannot be abstracted. This kind of dec-

larations is made necessary by the fact that eLPL is handling explicitly stratification. If

∆ = x1 : A1, . . . , xn : An then [∆]§ is x1 : [A1]§, . . . , xn : [An]§. The typing rules

are are given in Table 4. Note that declarations x : [A]§ are introduced by (§ I) rules,
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program definition p ::= M | LetRec dF in p
value definition v ::= c(v1, · · · , vn)
pattern definition t ::= X | c(t1, . . . , tn)
function definition dF ::= F(t1, . . . , tn) = N | dF, dF
term definition M, N ::= x | c | X | F | λx.M | MM | !M | §M | let M be !x in M | let M be §x in M

Table 3: eLPL term language definition

constructors and functions rules, (Ax), (W ), (C), (⊸ I), (⊸ E), (D), (R) : as in Table 2

; Γ, ∆ ⊢ M : A

Γ; [∆]§ ⊢ §M : §A
(§I)

Γ, x : A; ∆ ⊢ M : B

Γ; ∆ ⊢ λ!
x.M :!A ⊸ B

(⇒ I)
Γ, κ : A; ∆ ⊢ M : B x fresh

Γ, κ : A; ∆ ⊢ let κ be !x in M[x/κ] : B
(l!)

Γ1; ∆1 ⊢ N : §A Γ2; x : [A]§, ∆2 ⊢ M : B

Γ1, Γ2, ∆1; ∆2,⊢ let N be §x in M : B
(§E)

Γ1; ∆ ⊢ M : (!A) ⊸ B ; Γ2 ⊢ N : A Γ2 ⊆ {κ : C}

Γ1, Γ2; ∆ ⊢ M!N : B
(⇒ E)

Table 4: eLPL type system

and eliminated by (§ E) rules. Observe that if λx.M is a well typed eLPL term, then

no(x, M) ≤ 1.

Note that all the rules in Table 4, but the rule (l!), are the same rules as in Table

2 but for the terms being the subjects of each rule and for the distinction between §A
and [A]§. This suggests that we can give a translation on type derivation inducing a

translation on typable terms. From this observation we have the following:

Definition 9. Let M be an LPL term and Π be a type derivation in LPL proving the type

judgement Γ; ∆ ⊢ M : B. Then, Π∗ is the type derivation in eLPL proving Γ; ∆ ⊢ M∗ :
B obtained by:

• substituting to each rule (X) of LPL in Π the corresponding rule (X) in eLPL

and changing accordingly the subject,

• adding at the end: for each variable κ ∈ Γ (resp. each x : [A]§ in ∆) an

occurrence of the rule (l!) (resp. of the rule (§ E) with a l.h.s. premise of the

form ; y : §A ⊢ y : §A).

Note that the above translation leaves the contexts Γ and ∆ and the type B, the same

as in the source derivation. The above mapping can be straightforwardly extended to

function definitions:

Definition 10. Let F(
−→
ti ) = Ni, dF be an LPL function definition and Π be its type

derivation in LPL ending as:

Γ; ∆ ⊢ F(
−→
ti ) : §B Γ; ∆ ⊢ Ni : §B ⊲dF : §B

⊲F(
−→
ti ) = Ni, dF : §B

(D)

Then, Π∗ is the type derivation in eLPL ending as:

Σ1 : Γ;∆ ⊢ F(
−→
ti ) : §B Σ∗

2 : Γ;∆ ⊢ N∗i : §B Σ∗ : ⊲dF
∗ : §B

⊲F(
−→
ti ) = N∗i , dF

∗ : §B
(D)



4 TRANSLATING LPL IN ELPL 13

Note that in the above translation we do not translate the left hand-side of a defini-

tion case, we keep it to be exactly the same as in LPL.

Now we can extend the translation to LPL programs.

Definition 11. Let p = LetRec dF1 , . . . , dFn in M be an LPL program and let Π be a

type derivation in LPL proving the judgment Γ; ∆ ⊢ LetRec dF1 , . . . , dFn in M : B.

Then, Π∗ is the type derivation in eLPL proving Γ; ∆ ⊢ LetRec dF1
∗, . . . , dFn

∗ in M∗ :
B obtained by replacing every derivation Σi : ⊲dFi : §B in Π by the derivation

Σ∗
i ⊲ dFi

∗ : §B and by replacing the derivation Σ : Γ;∆ ⊢ M : B by the derivation

Σ∗ : Γ;∆ ⊢ M∗ : B.

The above translation is not exactly syntax directed; the reason is that we want the

following remarkable property:

Lemma 2. Let M be an LPL term and Π be a type derivation for it. Then the term M∗

obtained by the derivation Π∗ is such that no(κ, M∗) ≤ 1 for each κ ∈ FV(M∗).

Proof. Easy.

Because of the new let constructions for modalities, the reduction rules are ex-

tended as follows:

Definition 12. The reduction relation →I is the contextual closure of the relations

→Rec, →γ (as in Def. 7) and of the reductions →β , →!, →§, →com1 ,→com2 and →com3

for † ∈ {!, §} defined as:

(λx.M)N →β M[N/x], let !N be !x in M →! M[N/x], let §N be §x in M →§ M[N/x],

M(let U be †x in V) →com1 let U be †x in (MV),

(let U be †x in V)M →com2 let U be †x in (VM),

let (let U be †x in V) be †y in W →com3 let U be †x in (let V be †y in W).

As usual →∗
I denotes the reflexive and transitive closure of →I.

We write →com for anyone of the three commutation reductions →comi
. Note that:

• in →β and →§ at most one occurrence of x is substituted in M (linear substitu-

tion),

• the reduction rules →!, →Rec, →γ are the only ones inducing non-linear substi-

tutions.

In fact, a →β step in LPL is decomposed in eLPL into a (linear) →β step followed by

a →! step.

We write let M be †nx in N to denote let M be †x1 in (let x1 be †x2 in (. . . (let xn−1 be †xn in N) · · · ).
Now, to reason about the stratification we define the notion of depth.

Definition 13. Let M be an eLPL term and N be an occurrence of a subterm in it. The

depth of N in M, denoted d(N, M) is the number of § or ! symbols encountered in the

syntax tree of M when going from the root of M to the root of N . It is inductively defined

as:

d(N, N) = 0 d(N, λx.P) = d(N, P) d(N, †P) = d(N, P) + 1

d(N, let P be †x in Q) = d(N, PQ) =

{

d(N, P) if N occurs in P

d(N, Q) if N occurs in Q

The degree of an eLPL term M, denoted by d(M), is the maximal depth of any subterm

in it.
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In what follows we write N ∈i M to denote the fact that N is a subterm of M at depth

i, i.e. d(N, M) = i. We write ni
o(κ, M) (respectively |M|i, FV(M)i and FO(M)i) to denote

the restriction of no(κ, M) (respectively |M|, FV(M) and FO(M)) at depth i.
In the sequel we will use the following characterization of eLPL terms shape in order

to reason about them.

Lemma 3 (eLPL term shape). Let Γ; ∆ ⊢ M : A then it is of the following shape:

M = λx1 . . . xnξM1 · · · Mm where ξ could be:

• a symbol c or a symbol F, in these cases m is less than or equal to the arity of ξ.

• a term of the shape †N, in this case m = 0.

• a variable κ, or a term of either the shape (λx.P)Q or let P be †x in Q.

Now we can state some important properties of typing on eLPL terms.

Lemma 4 (Variable occurrences). Let Γ; ∆ ⊢ M : A. Then:

i) if κ ∈ dom(∆) then no(κ, M) ≤ 1.

ii) if no(κ, M) > 1 then κ ∈ dom(Γ) and d(κ, M) = 1.

iii) if κ ∈ dom(Γ ∪ ∆) we have n0
o(κ, M) ≤ 1.

Proof. By induction on the derivation proving Γ; ∆ ⊢ M : A.

We can now state a

Lemma 5 (Generation Lemma).

1. Let Γ; ∆ ⊢ λx.M : C, then either C = A ⊸ B or C = A ⇒ B.

2. Let Γ; ∆ ⊢ ct1 . . . tn : D, then each X ∈ FV(ti) is such that X : D′ for some D′

and d(X, ti) = 0.

3. Let ⊲F(t1, . . . , tn) = N be a definition case for the function symbol F such that

Γ; ∆ ⊢ F(t1, . . . , tn) : §B and Γ; ∆ ⊢ N : §B. If X ∈ dom(Γ) ∪ dom(∆), then

d(X, F(t1, . . . , tn)) = d(X, N). If X ∈ FV(ti) and ti is a matching argument,

then d(X, F(t1, . . . , tn)) = 0.

4. Let F(M1, . . . , Mn) be a subterm in M. Then d(F(M1, . . . , Mn), M) = d(M1, M) =
· · · = d(Mn, M).

Lemma 6. Let F(t1, . . . , tn) = N be a recursive definition case for the function sym-

bol F and let F(t11, . . . , t
1
n), . . . , F(t

m
1, . . . , t

m
n) be the recursive calls of F in N. Then,

d(F(ti
1, . . . , t

i
n), N) = 0.

Proof. By definition, N should be in normal form, so in particular for every F(tj1, . . . , t
j
n)

there is a t
j
k corresponding to a matching argument such that ⊢ t

j
k : D, and t

j
k should

have at least one free variable X. By Lemma 5.4 and Lemma 5.2 d(F(tj
1, . . . , t

j
n), N) =

d(tj
k, N) = d(X, N). Moreover, since t

j
k ≺ tk, we have X ∈ FV(tk), by Lemma 5.4

and Lemma 5.3 the conclusion follows
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5 Revisiting the examples

We now come back to the examples of Section 3. We give some possible translations

in eLPL. Besides showing how the translations works, this should clarify the way such

programs can be typed.

Consider the function definition dC for the program Coer typable as Coer : N ⊸ §N.

The expected type derivation can be translated in eLPL as

Coer(s(X)) = let Coer(X) be §z in §s(z) ,
Coer(0) = §0

Consider the function definition dA for the program Add typable as Add : N ⊸ §N ⊸

§N. The expected type derivation can be translated in eLPL as

Add(s(X), Y) = let Add(X, Y) be §z in §s(z) ,
Add(0, Y) = Y

Consider the function definition dM for the program Mul typable as Mul : N ⊸!N ⊸

§§N. The expected type derivation can be translated in eLPL as

Mul(s(X), Y) = let Y be !r in let Mul(X, !r) be §z in §Add(r, z) ,
Mul (0, Y) = §§0

Consider the function definition dP for the program Map typable as Map :!(N ⊸

§§N) ⊸ L ⊸ §§§L. The expected type derivation can be translated in eLPL as

Map(Y, X : XS) = let Y be !y in let Map(!y, XS) be §§§z in let Coer(X) be §x in
§(let y(x)be §§r in (r : z)) ,

Map Y nil = §§§nil

Then the program

LetRec dA, dM, dC, dP in Map (λx.Mul(x, 2), (1 : 2 : 3 : 4))

can be translated in eLPL as

LetRec d∗A , d
∗
M , d

∗
C , d

∗
P in Map (!(λx.Mul(x, !(2)), (1 : 2 : 3 : 4))

Analogously, consider the function definition dR for the program Foldr typable as

Foldr :!(N ⊸ §N ⊸ §N) ⊸ §§N ⊸ L ⊸ §§N. The expected type derivation can be

translated in eLPL as

Foldr(Y, Z, X : XS) = let Y be !y in let Coer(X) be §x in let Foldr(!y, Z, XS)
be §r in §(y x r) ,

Foldr(Y, Z, nil) = Z

Then the program

LetRec dA, dC, dR in Foldr ((λx.λy.Add(x, y)), 0, (1 : 2 : 3))

can be translated in eLPL as

LetRec d∗A , d
∗
C , d

∗
R in Foldr (!(λx.λy.Add(x, y)), §§0, (1 : 2 : 3))
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are done.

1.(ii).

redexes

Figure 1: Term size variations at fixed depth i by a standard reduction step and round

at same depth.

Finally consider the program Tadd summing trees, typable as Tadd : T ⊸ T ⊸ §T.

With a type coercion function for T data type, the expected type derivation can be

translated in eLPL as:

Tadd(node(X, Y, Z), node(X′, Y′, Z′)) = let Add(X, X′) be §x in
let Tadd(Y, Y′) be §y in let Tadd(Z, Z′)be §z in §node(x, y, z)

Tadd(X, ǫ) = Coer(X)
Tadd(ǫ, X) = Coer(X)

6 Polynomial Time soundness

We here show that LPL programs can be effectively evaluated in polynomial time in

the size of the input with the degree of the polynomial, as usual, given by the structure

of program. We show this by working on the translation of programs in eLPL. For sim-

plicity we consider LPL without basic functions, but the proof can be easily extended

to the whole LPL. We consider now only well typed and translated eLPL programs.

Similarly to the polynomial soundness proof for LLL, we prove that the evaluation of

eLPL programs can be done in polynomial time using a specific depth-by-depth strati-

fied strategy. The polynomial soundness proof for the depth-by-depth strategy in LLL

relies on the following key facts:

1. reducing a redex at depth i does not affect the size at depth j < i

2. a reduction at depth i strictly decreases the size at depth i

3. a reduction at depth i increases the size at depth j > i at most quadratically

4. the reduction does not increase the degree of a term

Unfortunately for eLPL facts 2, 3 and 4 above do not hold due to the presence of

LetRec, hence some adaptations are needed.

In order to adapt these facts we need to impose a rigid structure on the reductions at a

fixed depth. We consider a notion of standard reduction round at a fixed depth i, de-

noted ⇒i and a notion of standard reduction step at a fixed depth i denoted ։i
RecF

for

each function symbol F of the program. A standard reduction step ։i
RecF

is an alter-

nating maximal sequence of →RecF and →∗
com steps at depth i as represented in Figure

1.(i). It is maximal in the sense that in the step →∗
com all the possible commutations are

done. Note that, during a standard reduction step the size of the term at depth i might

grow as depicted in Figure 1.(i), i.e. →∗
com steps leave the size unchanged while →RecF

steps can make the size at depth i grow. So, by introducing some new measures on
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matching arguments, we show that this growth is polynomial in the size of the initial

term, i.e. Lemma 29.

A standard reduction round ⇒i is a sequence of maximal reduction steps as repre-

sented in Figure 1.(ii). Every reduction step is maximal in the sense that it reduces all

the possible redexes of the intended kind. Note that, also during a standard reduction

round the size of the term at depth i might grow as depicted in Figure 1.(ii), i.e. →∗
β,com

and →∗
† steps make the size decrease while ։i

RecFj
steps can make the size grow as

discussed above. So, by using the bound on a standard reduction step and by the fact

that the number of standard reduction steps depends on the shape of the program, we

adapt fact 2 above by showing that this growth is polynomial in the size of the initial

term, i.e. Theorem 2. Moreover, by similar arguments we adapt fact 3 above by show-

ing that a standard reduction round at depth i can increase the size at depth j > i at

most polynomially, Lemma 30.

Finally, in order to adapt fact 4 to our framework, we introduce the notion of potential

degree. This correspond to the maximal degree a term can have during the reduc-

tion and it can be statically determinated. We show that a standard reduction, i.e. a

sequence of standard reduction rounds of increasing depth, does not increase the po-

tential degree, Lemma 32.

Summarizing, what we obtain can be reformulated for eLPL as:

1. reducing a redex at depth i does not affect depth j < i

2. a standard reduction round at depth i strictly decreases some measures on match-

ing arguments and increases the size at depth i at most polynomially

3. a standard reduction round at depth i increases the size at depth j > i at most

polynomially

4. the standard reduction does not increase the potential degree of a term

Now, from these new key facts, the polynomial soundness, Theorem 3, will follow.

6.1 Preliminary properties

For a given a program p = LetRec dF1 , . . . , dFn in M we need to introduce the following

static constants:

KFi = max{|N|j | Fi(t1, . . . , tn) = N ∈ dFi} and K = max{KFi | 1 ≤ i ≤ n}

We show simple properties about eLPL term depths.

We have built eLPL in such a way to keep depth properties similar to those of light

logics. One of the most important ones, directly adapted from [Ter01], is:

Lemma 7. Let M be a com-normal at depth i ≥ 0. If M →∗
† M′ at depth i then for j > i

we have |M′|j ≤ |M|j×|M|i. Moreover it does not create redexes at depth j ≤ i.

The following properties hold for eLPL well-typed terms.

Lemma 8. 1. Let λx.M be a well typed term. Then no(x, M) ≤ 1 and d(x, M) = 0.

2. Let let M be†x in N be a well typed term. Then x ∈ FV(N) implies that for each

occurrence xi of x in N, d(xi, N) = 1.

Proof. Easy by depth definition and by typing rules.
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The last point above does not hold in general for non matching arguments, but it holds

for translated function definition cases. Furthermore every redex is at the same depth

of its arguments:

Lemma 9. 1. Let (λx.M)N be a β-redex in p. Then d((λx.M)N, p) = d(λx.M, p) =
d(N, p).

2. Let let M = †x in N be a †-redex in p. Then d(let M = †x in N, p) = d(M, p) =
d(N, p).

3. Let F(M1, . . . , Mn) be a rec-redex in p. Then d(F(M1, . . . , Mn), p) = d(M1, p) =
· · · = d(Mn, p).

Proof. Trivial.

We now give some interesting properties of the reduction. Like in [Ter01], we have:

Lemma 10. At depth i ≥ 0, a →† reduction for † ∈ {!, §} or a →β reduction strictly

decreases the term size at depth i, and the number of com-reductions in M →∗
com M′ is

bounded by (|M|i)
2.

Proof. Easy, by using Lemma 8.2 and Lemma 5.3.

Corollary 11. At depth i≥0 the number of (β, †)-reductions in M →∗
β,† M

′ is bounded

by |M|i.

6.2 Bound the number of steps at a fixed depth

We need to define a measure, denoted SAF
j (M), that will be used to bound the number of

rec-reduction steps at depth j. For that we will first introduce an intermediary notion:.

Definition 14 (External constructor size). The external constructor size of a term M at

depth j, denoted ‖M‖j , is the number of constructors of M at depth j which are not in an

argument of a function, of a let or of a variable at depth j. This is inductively defined

as:

‖†M′‖0 = 0 ‖†M′‖j+1 = ‖M′‖j

‖F(M1, . . . , Mn)‖0 = ‖yM1 · · · Mn‖0 = 0 ‖cM1 · · · Mn‖0 =

n
∑

i=1

‖Mi‖0 + 1

‖F(M1, . . . , Mn)‖j+1 = ‖yM1 · · · Mn‖j+1 = ‖cM1 · · · Mn‖j+1 =

n
∑

i=1

‖Mi‖j+1

‖(let N1 be †x in N2)M1 · · · Mn‖0 = ‖N2‖0 +

n
∑

i=1

‖Mi‖0

‖(let N1 be †x in N2)M1 · · · Mn‖j+1 = ‖N1‖j+1 + ‖N2‖j+1 +

n
∑

i=1

‖Mi‖j+1

‖(λx.M′)M1 · · · Mn‖j = ‖M′‖j +

n
∑

i=1

‖Mi‖j

The external constructor size measure enjoys the following remarkable property.
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Lemma 12. Let F(t1, . . . , tn) = N be a safe definition case and let the recursive calls

of F in N be F(t11, .., t
1
n), . . . , F(t

m
1, .., t

m
n). Then

∑

r∈R(F)

‖tr‖0 >

m
∑

k=1

∑

r∈R(F)

‖tk
r‖0

Proof. By induction on m by using Lemma 6 and Definition 4.

Lemma 13. If Γ; ∆ ⊢ M : †A and M is (β, com)-normal at depth 0, then ‖M‖0 = 0.

Proof. By induction on the structure of M.

Lemma 14. If Γ; ∆ ⊢ M : A and M is (β, com)-normal at depth 0 and M →RecF M′ at

depth 0, then ‖M′‖0 = ‖M‖0.

Proof. By hypothesis we have M = M1{F(σ(t1), . . . , σ(tn))} →RecF M1{σ(N)} = M′.

By Definition 14 we have ‖M‖0 = ‖M1{x}‖0+‖F(σ(t1), . . . , σ(tn))‖0 = ‖M1{x}‖0 for

a fresh variable x. Analogously it is easy to verify that ‖M′‖0 = ‖M1{x}‖0+‖σ(N)‖0 for

a fresh variable x. By typing constraints we have Γ1; ∆1 ⊢ σ(N) : §B for some Γ1,∆1

and B. So by Lemma 13 we have ‖σ(N)‖0 = 0 and so the conclusion follows.

Note that the above lemma applies on each typable term. This means that for each

(β, com)-normal term M the measure ‖M‖0 is invariant under RecF function calls.

Definition 15. We call SAF
j (M) the sum of the external constructor sizes of the matching

arguments at depth j of the function F in M. It is inductively defined as:

SAF
0(†M

′) = 0 SAF
j+1(†M

′) = SAF
j (M

′)

SAF
0(F(M1, . . . , Mn)) =

n
∑

i=1

SAF
0(Mi) +

∑

r∈R(F)

‖Mr‖0

SAF
j+1(F(M1, . . . , Mn)) =

n
∑

i=1

SAF
j+1(Mi)

SAF
j (sM1 · · · Mn) = SAF

j (G(M1, . . . , Mn)) =

n
∑

i=1

SAF
j (Mi) if s ∈ {y, c}

SAF
j ((λx.M

′)M1 · · · Mn) = SAF
j (M

′) +

n
∑

i=1

SAF
j (Mi)

SAF
j ((let N1 be †x in N2)M1 · · · Mn) = SAF

j (N1) + SAF
j (N2) +

n
∑

i=1

SAF
j (Mi)

Lemma 15. We have ‖M‖0 +
∑

{SAG
0(M) | G ∈ M} 6 |M|0. Moreover for i ≥ 0 we have

∑

{SAG
i (M) | G ∈ M} ≤ |M|i.

Proof. By induction on i ≥ 0 and on the structure of M.

Remark that this lemma gives a bound for all the recursive functions defined in a

program, but often we use it to give a bound only for one function symbol : SAF
i (M) 6

|M|i.
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Lemma 16. We have for all j ≥ 0: SAF
j (M) =

∑

r∈R(F){‖Mr‖0 | F(M1, . . . , Mk) ∈j M}.

Proof. By induction on the structure of M and on j.

Now comes the key Lemma for which we have introduced SAF
i (M):

Lemma 17. If M is a well typed (β, com)-normal term and M →RecF M
′ at depth i then

SAF
i (M

′) < SAF
i (M).

Proof. Let M{F(σ(t1), . . . , σ(tn))} →RecF M{σ(N)} = M′. We proceed by induc-

tion on the shape of the context M{}. The most interesting case is when M{} =
F(M1, . . . , C{}, . . . , Mn) where C{} is the k-th argument of F. We proceed by induc-

tion on depth i, by using Definition 15 and Lemma 14.

The above lemma will be useful to show that the number of Rec-reductions is

bound. Before, we need some properties on Rec-redexes w.r.t. other redexes.

Lemma 18. Reducing a Rec-redex at depth i cannot introduce a β-redex at depth i.

Proof. Let M{F(σ(
−→
t ))} →RecF M{σ(N)} by applying a definition case of the shape

F(
−→
t ) = N. By typing constraints we have both Γ,∆ ⊢ F(

−→
t ) : §B and Γ,∆ ⊢ σ(N) :

§B, so in particular by Lemma 5.1, N cannot be a term of the shape λx.P, so it cannot

create itself a β-redex. Since N by definition is normal, the only way to create a β-redex

at depth i is by the substitution σ to a variable X in a subterm of N of the shape XQ at

depth i. But in particular X ∈ dom(Γ) ∪ dom(∆), so by typing constraints X should

have type §B and so it cannot be the case. So, the conclusion follows.

Corollary 19. If M is β-normal at depth i and M →Rec M
′ at depth i then M′ is β-normal

at depth i.

Lemma 20. Reducing a com-redex at depth i cannot introduce a Rec-redex at depth i.

Proof. Easy, by the shape of the reduct in a com-reduction.

From the above lemma we have directly the following:

Corollary 21. If M is RecF-normal at depth i and M →com M′ at depth i then M′ is

RecF-normal at depth i.

In order to show that the number of Rec-reductions is bound, we now need to

consider the behaviour of Rec-reductions on Rec-redexes of other function symbols.

Lemma 22. Let p = LetRec dF1 , . . . , dFn in M be a program. Then, reducing RecFi
redexes in M at depth d can introduce only Fj for j ≤ i function symbols and the

occurrences introduced are at a depth inferior or equal to d + max{d(Nj) | Nj body in

a definition case of Fi}.

Proof. Easy as substitution are done at depth d of terms with depth bounded by

max{d(Nj) | Nj body in a definition case of Fi}.

Lemma 23. Let p = LetRec dF1 , . . . , dFn in M be a program with M being (β, com)-
normal. Then, reducing a RecFi redex in M at depth d cannot introduce a recFj -redex

for n ≥ j > i at depth d.

Proof. Easy: blocked function symbols remain blocked by Lemma 22 and Lemma 14.
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From Lemma 17 we directly have the following:

Corollary 24 (RecF-reductions bound). Let M be (β, com)-normal at depth i. If M →k
RecF

M′ at depth i then k ≤ SAF
i (M).

Now we also need to control the term’s size increase during a Rec-reduction step:

Lemma 25 (Size lemma). If M →RecF M
′ at depth i then for all j ≥ i we have |M′|j ≤

|M|j + KF.

Proof. Let M = M1{F(σ(t1), . . . , σ(tn))} →RecF M1{σ(N)} = M′. By definition we

have |M′|j = |M1{}|j+|σ(N)|j−i and |M|j+KF = |M1{}|j+KF+|F(σ(t1), . . . , σ(tn))|j−i.

What we need to show is that |σ(N)|j−i ≤ KF + |F(σ(t1), . . . , σ(tn))|j−i. We con-

sider the following two cases: j − i = 0 or j − i > 0. In the case j − i = 0 we

have

|σ(N)|0 = |N|0 +
∑

X∈0FO(N)

(|σ(X)|0 − 1)

|F(σ(t1), . . . , σ(tn))|0 = 1 +
n

∑

k=1

|tk|0 +
∑

X∈0FO(
−→
t )

(|σ(X)|0 − 1)

By definition |N|0 ≤ KF, moreover by definition FV(N) ⊆ FV(
−→
t ) and by Lemma 2

every X ∈ FV(
−→
t ) occurs at most once in N at depth 0. So we have

∑

X∈0FO(N)(|σ(X)|0−

1) ≤
∑

X∈0FO(
−→
t )(|σ(X)|0 − 1). So the conclusion follows for this case. In the case

j− i = h > 0 we have the same by Lemma 2: the pattern variables of
−→
t occur linearly

in N at depth 0.

It remains to observe that com-reductions preserve our term measures.

Lemma 26. Let M →com M′ then we have: (i) d(M) = d(M′), (ii) |M′|i = |M|i for each

i ≤ d(M), and (iii) SAF
i (M) = SAF

i (M
′) for every F and every i ≤ d(M).

Proof. Easy by induction on the shape of M.

We precisely describe the reduction strategy at a fixed depth used to bound the

number of reduction steps of well typed eLPL programs, in the following definitions:

Definition 16 (standard reduction round). Let p = LetRec dF1 , . . . , dFn in M be a

program. Then:

• a standard reduction step at depth i, denoted R ։i
RecF

R′, is a sequence of reduc-

tions at depth i of the shape:

R →RecF T →∗
com R1 →RecF T1 →∗

com · · · →RecF Tk →∗
com Rk ≡ R′

such that every Ri is com-normal, and Rk does not contain any RecF-redex..

• a standard reduction round at depth i, denoted M ⇒i M′, is the following sequence

of reductions at depth i:

M →∗
(β,com) M0 ։

i
RecFn

M1 ։
i
RecFn−1

· · · ։
i
RecF1

Mn →∗
† M

′

such that M0 is (β, com)-normal and M′ is †-normal.
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When we need to stress the number k of reduction steps in a standard reduction round

we simply write it as M ⇒i
k M′.

In order to show that the relation ։i is well defined we need to prove that all the

reductions are finite. First we need the following.

Lemma 27. A sequence of reductions →RecF→
∗
com at depth i cannot introduce a β-

redex at depth i.

Proof. As in the proof of Lemma 18 we know that the substitution σ of the RecF step

is applied to variables X which have as type either a data-type D, or a type §B. By

Definition 12 of the com-reduction rules, only the rule (com2) can introduce a beta-

redex in the situation where V is of the form V = λy.W. But a subterm of the form

(let U be †x in λy.W) cannot be created by a (com1), (com2) or (com3) reduction

step and cannot also be created by the (RecF) step either, because its type is not D or

§B.

From the above lemma we have directly the following:

Corollary 28. If M is β-normal at depth i and M →RecF→
∗
com M′ at depth i then M′ is

β-normal at depth i.

Now we can prove that the relation ։i is well defined.

Lemma 29 (Bound on standard reduction step at depth i). Let M be (β, com)-normal

at depth i. If M ։i
RecF

M′ then M′ is (β, com, RecF)-normal at depth i, the number of

reductions is bounded by

2 × (|M|i)
3 × (KF + 1)2 and for j ≥ i, |M′|j ≤ |M|j + |M|i × KF.

Proof. Let M be (β, com)-normal at depth i such that M ։i
RecF

M′. By definition we have

M ≡ R →RecF T1 →∗
com R1 →RecF T2 →∗

com · · · →RecF Tk →∗
com Rk ≡ M′

By Lemma 17 since R is (β, com)-normal and R →RecF T1 at depth i we have SAF
i (R) >

SAF
i (T1). By Lemma 10 we have T1 →∗

com R1 normalizes at depth i in a number of steps

bounded by (|T1|i)
2. Moreover, by Lemma 26.iii we have SAF

i (T1) = SAF
i (R1). So if

R is (β, com)-normal and R →RecF T1 →∗
com R1 at depth i then SAF

i (R) > SAF
i (R1).

Moreover by Corollary 28 and by the definition we have R1 is (β, com)-normal. So

we can repeatedly apply the hypothesis. This shows that k ≤ SAF
i (M) and that M′ is

(β, com, RecF)-normal at depth i.
Now we prove the size bound on such a standard reduction step at depth i. By lemma

26.ii the size of a term at depth i is unchanged by com-reductions, so we just need

to consider RecF-reductions. By Lemma 25 if N →RecF N′ at depth i then |N′|i ≤
|N|i + KF so since we have at most SAF

i (M) steps of RecF-reduction, by Lemma 15 we

can conclude

|M′|i ≤ |M|i + KF × SAF
i (M) ≤ |M|i × (KF + 1)

Now we can complete the proof for the bound on the total number of steps. As stressed

above, the number of RecF-reductions is bounded by |M|i, so we just need to count the

number of com-reductions. By Corollary 10 we have that for each reduction Tm →∗
com

Rm for 1 ≤ m ≤ k the number of step is bounded by (|Tm|i)
2. Since by reasoning as

above we have |Tm| ≤ |M|i + KF × m ≤ |M|i × (KF + 1), we can conclude that for each

m the number of com-reduction step in Tm →∗
com Rm for 1 ≤ m ≤ k is bounded by

(|M|i)
2 × (KF + 1)2. So, we globally have at most k + k × ((|M|i)

2 × (KF + 1)2) ≤
2 × (|M|i)

3 × (KF + 1)2 steps.
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With this bound on standard reduction steps at fixed depth, we now state what we

obtain whenever a standard round is done at fixed depth.

Theorem 2 (Bound on standard round at depth i ). Let p = LetRec dF1 , . . . , dFn in M
be a program. Let M ⇒i

k M′ be a standard reduction round at depth i ≥ 0. Then M′ is

normal at depth i and we have

|M′|i ≤ |M|i × (K + 1)n and k ≤ 3 × (|M|i)
3 × (K + 1)3n+2

Proof. Let M ⇒i
k M′ be a standard reduction round at depth i ≥ 0. First we prove that

it terminates in normal form. By definition we have

M →∗
(β,com) M0 ։

i
RecFn

M1 ։
i
RecFn−1

· · · ։
i
RecF1

Mn →∗
† M

′

By Corollary 11 and Lemma 10 we have M0 is (β, com)-normal at depth i and the num-

ber of steps is bounded by (|M|i)
2 . So by lemma 29 all the Mj for 1 ≤ j ≤ n are also

(β, com)-normal at depth i.
Note that a standard reduction round is composed by a fixed number of standard reduc-

tion steps given by the number of function definitions. Consider Mj ։i
RecFn−j

Mj+1 for

0 ≤ j ≤ n − 1.

By lemma 29 we have Mj+1 is RecFn−j
-normal at depth i. Moreover by Lemma 22

such a standard reduction step can introduce only Fn−u function symbols for n − j ≥
n − u ≥ 1 at depth i and by Lemma 23 and Lemma 20 no new RecFn−u

redex for

n ≥ n−u > n−j can be created at depth i by Rec-reduction or com-reduction. Hence,

in particular we have that if Mj is RecFn−u
-normal at depth i for all n ≥ n − u > n − j

then Mj+1 is RecFn−u
-normal at depth i for all n ≥ n − u ≥ n − j

So, we have Mn is normal for all recursive function symbols. Finally by Lemma 7 we

have M′ is normal for all reductions at depth i.
Now we prove the bound on |M′|i and on the entire number k of reduction steps in a

standard reduction round at depth i. Clearly, by Corollary 11 and Lemma 10 we have

k ≤ (|M|i)
2 + R + C + |Mn|i where C is the number of com-reduction steps, and R is

the sum of RecFj -reduction steps for n ≥ j ≥ 1.

By lemma 17 and lemma 29 we have

R =

n−1
∑

j=0

SA
Fn−j

i (Mj) ≤

n−1
∑

j=0

|Mj |i ≤

n−1
∑

j=0

|M0|i × (K + 1)j ≤ |M0|i × (K + 1)n

By Lemma 10 we have C =
∑n−1

j=0 2 × (|Mj |i)
3 × (K + 1)2

≤ 2 × (K + 1)2 × (|M0|i)
3 × (K + 1)3n ≤ 2 × (|M0|i)

3 × (K + 1)3n+2

By lemma 10 and lemma 7 we obtain the bound on the number of reduction steps in a

standard reduction round at depth i:

k ≤ (|M|i)
2 + R + C + |Mn|i ≤ (|M|i)

2 + |M0|i × (K + 1)n + 2 × (|M0|i)
3×

(K + 1)3n+2 + |M0|i × (K + 1)n ≤ 3 × (|M|i)
3 × (K + 1)3n+2

There remains to bound the size of M′ at depth i. By lemma 10, lemma 26.ii and lemma

29 we have

|M0|i ≤ |M|i and |Mn|i ≤ |M0|i × (K + 1)n and |M′|i ≤ |Mn|i

So at depth i we have the bound |M′|i ≤ |M|i × (K + 1)n.



6 POLYNOMIAL TIME SOUNDNESS 24

Now we have a bound on a term size at fixed depth when we apply our strategy

at the same depth. In order to bound the whole program execution we need next to

examine what happens to the sizes at higher depth during the standard reduction round.

Lemma 30 (Size bound at depth greater than i, for a standard reduction round). Let

p = LetRec dF1 , . . . , dFn in M be a program. Let M ⇒i
k M′ be a standard reduction

round at depth i ≥ 0. Then we have

|M′|i+1 ≤ |M|i+1|M|i × (K + 1)n + (|M|i)
2 × (K + 1)2n+1

Proof. Let M ⇒i
k M′ be a standard reduction round at depth i as

M →∗
(β,com) M0 ։

i
RecFn

M1 ։
i
RecFn−1

· · · ։
i
RecF1

Mn →∗
† M

′

Following the theorem 2 proof, by lemma 10 we have |M0|i ≤ |M|i and |M0|i+1 ≤
|M|i+1. By lemma 29 for n − 1 ≥ u ≥ 1 we have |Mu+1|i+1 ≤ |Mu|i+1 + |Mu|i × K.

Then

|Mn|i+1 ≤ |M0|i+1 +

n−1
∑

v=0

|M0|i × K × (K + 1)v ≤ |M0|i+1 + |M0|i × (K + 1)n

By lemma 26 and lemma 7 we have |M′|i+1 ≤ |Mn|i+1 × |Mn|i. Then

|M′|i+1 ≤ (|M|i+1 + |M|i × (K + 1)n+1) × (|M|i × (K + 1)n)

≤ |M|i+1|M|i × (K + 1)n + (|M|i)
2 × (K + 1)2n+1

It then implies:

Corollary 31. Let p = LetRec dF1 , . . . , dFn in M be a program. Let M ⇒i M′ be a

standard reduction round at depth i ≥ 0. Then we have |M′| ≤ 2(|M|)2 × (K + 1)2n+1.

6.3 Bound on a program normalization

We apply our reduction strategy by standard rounds progressively at depths 0, 1, 2 . . .

Definition 17 (standard reduction). Let p = LetRec dF1 , . . . , dFn in M be a program.

A standard reduction, denoted M ⇛ M′, is a sequence of standard reduction rounds of

increasing depths of the shape: M ⇒0⇒1 · · · ⇒d M′

When we need to stress the number k of reduction rounds in a standard reduction we

simply write it as M ⇛k M′.

To give an upper bound on the length of standard reductions we need the notion of

potential depth.

Definition 18 (Potential Depth). Let p = LetRec dF1 , . . . , dFn in M be a program, N be

an occurrence of a subterm in M. The potential depth of N in p, denoted ptd(N, p) is

defined as

ptd(N, p) = d(N, M) +
∑n

i=1 maxj{d(N
j
i ) | Fi(t

j
1, .., t

j
n) = N

j
i ∈ dFi}

The potential degree of p, denoted ptd(p), is the maximal potential depth of any sub-

term in M.
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Even if standard reductions can increase the depth of a term, we have the following:

Lemma 32. Let p = LetRec dF1 , .., dFn in M be a program and M⇒0 M0⇒
1 · · ·⇒m Mm

be a standard reduction. Then m < ptd(p).

Proof. Every standard reduction can be summarized as follows

M →∗
β,com M0

k0
։0

RecFn
M0

k1
։0

RecFn−1
· · · ։0

RecF1
M0

kn
→∗

† M0

M0 →∗
β,com M1

0 ։1
RecFn

M1
1 ։1

RecFn−1
· · · ։1

RecF1
M1

n →∗
† M1

...

Mm−1 →∗
β,com Mm

0 ։m
RecFn

Mm
1 ։m

RecFn−1
· · · ։m

RecF1
Mm

n →∗
† Mm

We prove by induction on i: ∀j ≤ n,∀k ≤ m :

d(Fn−i, M
j
k) ≤ d(p) +

i
∑

m=0

max
o

{d(N
o
n−m) | Fn−m(

−→
t ) = No

n−m ∈ dFn−m
}

Then the conclusion follows easily since β, com and † reductions cannot increase the

depth. Base case i = 0 follows from the fact that β, com and † reductions preserve

the depth of terms, so in particular of function symbols, and from the fact that Fn can

introduce only other Fn redexes at the same depth while it cannot be introduced by other

rec-redexes (Lemma 22). So in particular for each j, k we have d(Fn, M
j
k) ≤ d(p). Now

consider the case i = l + 1 < n. By induction hypothesis for every l1 ≤ l we have

∀j ≤ n,∀k ≤ m :

d(Fn−l1
, Mj

k) ≤ d(p) +

l1
∑

m=0

max
o

{d(N
o
n−m) | Fn−m(

−→
t ) = No

n−m ∈ dFn−m
}

Moreover, we now also need to proceed by induction on the number of reduction steps

(the number of M
j
k). Base case is trivial, so consider the case the reduction is of length

s+1, in fact we proceed by simultaneous induction on j, k. Suppose we are performing

a reduction M
j1
k1

→ M
j
′
1

k′1
for some j1 and k1. The case of a β or † reduction follows

by induction hypothesis and from the fact that such reductions preserve the depth of

subterms.

So we can consider the case of a reduction of the shape M
j1
k1

։
j1
RecFh

M
j1
k1+1. Let F′h be

the occurrence of the function symbols Fh involved in the reduction. Then, by Lemma

?? all occurrences of every functions symbols Fr but F′h are such that d(Fr, M
j1
k1

) =

d(Fr, M
j1
k1+1). So we just need to consider the new occurrences of function symbols

introduced by the recF′h reduction. By induction hypothesis we also have

d(Fn−(l+1), M
j1
k1

) ≤ d(p) +

l+1
∑

m=0

max
o

{d(N
o
n−m) | Fn−m = No

n−m ∈ dFn−m
}

We distinguish three cases. If h ≤ n − l then by Lemma 22 the reduction cannot

introduce new occurrences of the function symbol Fn−(l+1), so the conclusion follows

by induction hypothesis.

If h = n−(l+1) then the reduction can introduce occurrences of the Fn−(l+1) function

symbol just at depth equal to j1, so we can conclude by induction hypothesis:

j1 ≤ d(p) +

l+1
∑

m=0

max
o

{d(N
o
n−m) | Fn−m = No

n−m ∈ dFn−m
}
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If n ≥ h > n − (l + 1) then by Lemma 22 the reduction can introduce occurrences

of the Fn−(l+1) function symbol just at depth less than j1 + maxo{d(N
o
h)}. Note that

h = n − l′ with l′ ≤ l, so by induction hypothesis we have

d(Fh, Mj1
k1

) ≤ d(p) +

h
∑

m=0

max
o

{d(N
o
n−m) | Fn−m = No

n−m ∈ dFn−m
}

So we can conclude by: d(Fn−(l+1), M
j
k+1)

≤ d(p) +
∑h

m=0 maxo{d(N
o
n−m) | Fn−m = No

n−m ∈ dFn−m
} + maxo{d(N

o
h)}

≤ d(p) +
∑l+1

m=0 maxo{d(N
o
n−m) | Fn−m = No

n−m ∈ dFn−m
}

In the previous subsection we gave a bound on the number of program reduction

steps at fixed depth when we apply a standard reduction round. In the previous lemma

we stated that the potential depth is a bound on the possible depths to apply such

standard reduction rounds. So our standard reduction normalizes a given program as

follows:

Theorem 3. Let p = LetRec dF1 , . . . , dFn in M be a translated program and d =
ptd(p) be its potential degree. Let M ⇛k M′ be a standard reduction of the shape

M ≡ M0 ⇒0 M1 ⇒1 M2 · · · ⇒d−1 Md ⇒d Md+1 ≡ M′

Then M′ is normal, and |M′| ∈ O(|M|2
d+1

) and k ∈ O(|M|3×2d

).

Proof. Let p = LetRec dF1 , . . . , dFn in M be a translated program of potential degree

d = ptd(p). Let M ⇛k M′ be a standard reduction of the shape as in the theorem

hypothesis. By Theorem 2 we have that each standard reduction round at depth i
reaches a normal form at depth i, moreover this does not affect terms at depth lower

than i. So, since by Lemma 32 the maximal number of standard reduction rounds is

bound by d then we have that M′ is in normal form. Now we prove the bound on the

size of M′. We proceed by induction on 0 ≤ i ≤ d and we prove

|Mi+1| ≤ 22i+1−1 × (|M|)2
i+1

× (K + 1)(2
i+1−1)(2n+1)

By Corollary 31 we have |Mi+1| ≤ 2 × (|Mi|)2 × (K + 1)2n+1. So the conclusion

follows for i = 0. By induction hypothesis we have:

|Mi+1| ≤ 2 × [2(2i−1) × (|M|)2
i

× (K + 1)(2
i−1)(2n+1)]2 × (K + 1)2n+1

≤ 2(2i+1−1) × (|M|)2
i+1

× (K + 1)(2
i+1−1)(2n+1)

and so the conclusion. Now the bound is obtained by considering i = d and obviously

that 2d+1 − 1 < 2d+1. Now we prove the bound on the number k of reduction steps in

a standard reduction. Consider Mi ⇒i
ki

Mi+1, by Theorem 2 we have

ki ≤ 3.(|Mi|i)
3 × (K + 1)3n+2 ≤ 3.(|Mi|)3 × (K + 1)3n+2
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so, by Corollary 31 and observation above we have

ki ≤ 3.[2(2i)−1 × (|M|)2
i

× (K + 1)(2
i−1)(2n+1)]3 × (K + 1)3n+2

≤ 3.
(

23 × |M|3 × (K + 1)3(2n+1)
)2i

For all 0 ≤ i ≤ d, ki ≤ kd so we can conclude

k =

d
∑

i=0

ki ≤ 3.(d + 1) ×
(

23 × |M|3 × (K + 1)3(2n+1)
)2d

7 PTIME completeness

The proof that LPL is complete for polynomial time functions is rather standard: we

show that we can simulate any polynomial time (one tape) Turing machine in the lan-

guage.

In LPL we can represent all the polynomials in N[X] For simplicity we just show the

following.

Lemma 33. For any K, k ∈ N, there exists an integer l and an LPL program of type

N ⊸ §lN representing the polynomial K × x2k

.

Proof. As shown in Section 3 we have a term for multiplication typable as Mul : N ⊸

!N ⊸ §§N. By functoriality of § we have also the typing Mul : §N ⊸ §(!N ⊸ §§N).
Similarly to what happens in DLAL [BT09] there is for any type A a coercion: C :
N ⊸ §((!N ⊸ A) ⊸ §A) we have also Mul : §N ⊸ N ⊸ §§§N. So, by using the

Coer : N ⊸ §N program we get: N ⊸ N ⊸ §3N. By the obtained term we can build

a term for squaring: square :!N ⊸ §4N. So by using C again we get N ⊸ §5N. By

composing it k times and using another multiplication with the constant K, we get the

program announced.

We consider a polytime Turing machine M with witness time polynomial P , n
states, and a 3 symbols alphabet (0,1 and blank). for encoding the configurations we

use the following type:

config = (L3 × L3) × Bn

where the first L3 type corresponds to the left part of the tape, the second L3 type

corresponds to the right part of the tape, starting with scanned symbol.

Lemma 34. For any transition function δ, there exists a LPL basic function conf2conf :
config ⊸ config representing the corresponding action on configurations.

Proof. (Sketch) The definition of conf2conf has 2 cases for each line of the table of

transition function of the Turing Machine (one if the head reaches the end of the tape,

and one if it doesn’t).

Let us just take an example :

If δ(q, s) = (q′, left, s′) where q and q′ are states, s is a symbol and s′ a symbol to

write , then we have 2 case definitions lines:

conf2conf p (p (x :: l′1) (s :: l′2)) q = p (p l′1 (x :: s′ :: l′2)) q
′
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conf2conf p (p nil (s :: l′2)) q = p (p nil (b :: s′ :: l′2)) q
′

where b is the blank symbol (if the head reaches the left part of the tape, the next

scanned symbol is blank). Here note that s, q, s′, q′ and b are values (actually construc-

tors of finite types), nil is a value also, while x, l′1, l
′
2 are pattern variables. Finally

note that conf2conf has type config ⊸ config.

Note that conf2conf satisfies the conditions of a basic function. We will use also

an iterator, defined by:

Iter (sx) f base = f Iter x f base

Iter 0 f base = base

Iter is a recursive function with type : N ⊸!(A⊸A) ⊸ §A ⊸ §A. We will use

A = Config.

Theorem 4 (Ptime Completeness). There exists an LPL program of type L2 ⊸ §jL2,

representing the same function as M.

Proof. By Lemma 33 we can represent in LPL a polynomial boundary P , with type

N ⊸ §mN, for some m. Denote it t : N ⊸ §mN.

It is also easy to define a function: Length : L2 ⊸ §N. We can also define: Init =
λw.p (p nil w). The projections Πi : D1 × D2 ⊸ D are easily defined as case-

definitions. The desired program is then obtained by iterating conf2conf (t (Length x))
times, from the base (Init w). So it is:

letRec Π1 ... Π2 ... conf2conf ... (previous basic functions)

letRec Iter ... Length ... (previous recursive functions)

in

λw.Π1Π2(Iter(t(Length w))) conf2conf

To type it we need to use some coercions : coerc : L2 ⊸ §m+2L2.

The typing gives us the following term for the body M of the program with type L2 ⊸

§m+3L2:

λw.let w be !w′ in §(let (t(Length w′)) be §m+1n in let (coerc w′) be §m+2w′′

in §m+1( let Iter n (!conf2conf) (§w′′) be §final in §(Π2(Π1 final))))

8 Conclusion and future developments

In this work we have introduced Light linear Programming Language (LPL), a typed

functional programming language with pattern-matching, recursive definitions and higher-

order types. The main feature of LPL is to give an implicit complexity characterization

of PTIME where programming is more natural than in previous proposals. In order

to ensure the PTIME soundness we have given a combined criterion composed of a

syntactic restriction and a type system inspired by the one of Dual Light Affine Logic

(DLAL).

As future developments we consider the following directions:

• Verifying the effectiveness of our criterion and study the exact complexity of its

checking. This study should lead to an efficient type inference procedure.
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• Studying different ways of relaxing our criterion in order to improve the inten-

sional expressiveness of LPL. One interesting direction is to include, in analogy

with [Hof99], recursive definitions of non-size increasing functions with a spe-

cial status.

• Analyzing the relation between the strategy proposed here to prove the PTIME

soundness and some standard evaluation strategies, e.g. lazy evaluation. We

think that, following the lines of what has been done for DLAL, our PTIME

proof can be turned into a polynomial time strong normalization proof for LPL,

i.e. the polynomial bound could hold for the length of any reduction sequence of

the LPL program.

• Comparing the intensional expressiveness of our LPL with the one of other

languages for PTIME, notably Safe Recursion on Notation [BC92] and LFPL

[Hof99].

Work along those lines is underway.
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