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We present a numerical study of the flow of an assembly of frictionless grains at zero temperature,
in the vicinity of and slightly above the jamming density. We find that some of the flow properties,
such as the fluctuations in the number of contacts or the shear modulus, display a critical like
behaviour that is governed by the proximity to the jamming point. Dynamical correlations during
a quasistatic deformation, however, are non critical and dominated by system size. At finite strain
rates, these dynamical correlations acquire a finite, strain-rate dependent amplitude, that decreases
when approaching the jamming point from above.
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I. INTRODUCTION AND BACKGROUND

The properties of granular materials, in particular
sand, are a constant source of fascination for children and
adults alike, and are intrinsically related to the ability of
such systems to exist in either solid or fluid states, under
very similar conditions. For the scientist this fascination
may arise through the apparent contradiction between
the rigidity of the individual grains and the fragility of
the assembly as a whole. This means that, for example,
small changes in the loading conditions (such as chang-
ing the inclination angle of the support) can lead to large
scale structural rearrangements (“avalanches”) or even
to the complete fluidization of the material. A few years
ago, Liu and Nagel [1] have suggested a “phase-diagram”
for this type of solid-liquid transition (“jamming”). At
zero temperature the axes relate to the ways an unjam-
ming transition can be triggered, either by increasing the
external driving (e.g. shear stress) or by decreasing the
density of the material. The present study will probe the
vicinity of this ”unjamming line” using quasistatic and
finite strain rate simulations of a model granular system.

If one applies a shear stresses, which is small and below
a certain threshold (“yield-stress”), the material will re-
spond as an elastic solid. Increasing the stress above the
yield-stress, the particles will unjam and start to flow.
This flow behavior is called “plastic flow” as the mate-
rial will not revert to its original shape when the stress
is removed.

In the following we will assume that the system can
flow at arbitrary small strain-rates without showing flow-
localization. That this is possible is by no means guar-
anteed, as in some instances coexistence of flowing and
jammed states is observed [2]. We have not observed
such a persistent strain localization in the simulations
that are presented here.

Plastic flow is observed in a large number of glassy
materials, that are a priori very different from the ather-
mal granular systems close to point J (see below) stud-
ied in this paper. However, all materials display a rather

universal behavior, that was illustrated already in early
studies on the plastic-flow of metallic glasses [3, 4]. These
studies have given indications that in the flowing phase
the main plastic activity is spatially localized to so called
shear transformation zones [5, 6]. These zones are non
persistent, localized in space, and presumably consist of
a few atoms that undergo the irreversible rearrangements
responsible for the observed plastic flow. Recently, this
plasticity has been further analyzed in simulations with
a focus on the quasistatic dynamics at small strain rates,
close to the flow arrest [7, 8, 9, 10, 11, 12]. With these
studies it was possible to trace back the origin of plastic
activity to the softening of a vibrational mode and the
vanishing of the associated frequency [7]. In real space,
this softening is associated with the formation of distinct,
localized zones where the plastic failure is nucleated [8].
In turn, this can trigger the failure of nearby zones, such
that avalanches of plastic activity form that may “prop-
agate” through the entire system.

It has been argued that the macroscopic extent of these
avalanches is a signature of the quasistatic dynamics,
which gives the system enough time to propagate the
failure throughout the system. Beyond the quasistatic
regime, i.e. farther away from the jammed state, the size
of these events is expected to be finite. Thus, one nat-
urally finds an increasing length-scale that is connected
with the flow arrest upon reducing the stress towards the
threshold value [13, 14, 15].

Without external drive, an (un)jamming transition can
occur for decreasing particle volume fraction below a crit-
ical value, φc. This special point, which is only present
in systems with purely repulsive steric interactions, has
been given the name “point J” [16, 17]. At this point the
average number of particle contacts jumps from a finite
value z0 to zero just below the transition. The value of
z0 is given by Maxwell’s estimate for the rigidity tran-
sition [18, 19] and signals the fact that at point J each
particle has just enough contacts for a rigid/solid state
to exist. This marginally rigid state is called “isostatic”.
Compressing the system above its isostatic state a num-
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ber of non-trivial scaling properties emerge [16, 20]. As
the volume fraction is increased, additional contacts are
generated according to δz ∼ δφ1/2. The shear modululs
scales as G ∼ p/δz and vanishes at the transition (un-
like the bulk modulus)[16]. This scaling is seen to be
a consequence of the non-affine deformation response of
the system [21], with particles preferring to rotate around
rather than to press into each other [22]. Associated with
the breakdown of rigidity at point J is the length-scale,
l⋆ ∼ δz−1 [23, 24], which quantifies the size over which
additional contacts stabilize the marginally rigid isostatic
state.

In this article we present results from quasistatic and
small strain-rate flow simulations in the vicinity of point
J. Together with the linear elastic shear modulus, at
point J also the yield-stress vanishes [25, 26, 27, 28, 29].
Thus, point J is connected with a transition from plastic-
flow behavior (φ > φc, σy > 0) to normal fluid flow
(φ < φc, σy = 0), with either Newtonian [26] or Bagnold
rheology [27, 29] at small strain-rates. In consequence,
both (un)jamming mechanisms as described above are
present at the same time: the flow arrest, as experienced
by lowering the stress towards threshold, is combined
with the vanishing of the threshold itself.

In this study we want to address two questions: In how
far do the general plastic flow properties carry over to
this situation of small or, indeed, vanishing yield-stress?
Is the vicinity to point J and its isostatic state at all
relevant for the flow properties ?

We will approach these questions starting with the
quasistatic-flow regime. The advantage of quasistatic
simulations is to provide a clean way of accessing the
transition region between elastic, solid-like behavior and
the onset of flow. In the quasistatic regime flow is gener-
ated by a succession of (force-)equilibrated solid states.
Thus, one can connect a liquid-like flow with the ensem-
ble of solid states that are visited along the trajectory
through phase-space.

In Section III A, we study the instantaneous statistical
properties of the configurations generated by this flow
trajectory at zero strain rate, and show that they display
large fluctuations in several quantities, that are associ-
ated with the proximity to the jamming point.

In Section III B, we follow the analysis of recent ex-
periments [30] and use a ”four point correlation” tool to
define a dynamical correlation length that characterizes
the extension of the dynamical heterogeneities observed
in the flow process. This dynamical length scale is shown
to scale as the system size in the zero strain rate limit,
independently of the distance to point J. The heterogene-
ity in the system is maximal for strains that correspond
to the typical duration between the plastic avalanches
described above.

We complement this analysis with preliminary results
from dissipative molecular-dynamics simulations that ac-
cess strain-rates above the quasistatic regime. This al-
lows us to assess the importance of dynamic effects in
limiting access to certain regions of the landscape. In-

deed, the results at larger strain rate are system size in-
dependent, and reveal a surprising growth of the strength
of the heterogeneities with increasing packing fraction.

II. SIMULATIONS

Our system consists of N soft spherical particles with
harmonic contact interactions

E(r) = k(r − rc)
2 . (1)

Two particles, having radii ri and rj , only interact, when
they are “in contact”, i.e. when their distance r is less
than the interaction diameter rc = ri + rj . This sys-
tem has been studied in several contexts, for example
in [16, 26, 31]. The mixture consists of two types of par-
ticles (50 : 50) with radii r1 = 0.5a and r2 = 0.7a in
two-dimensions. Three different system-sizes have been
simulated with N = 900, 1600 and 2500 particles, re-
spectively. The unit of length is the diameter, a, of the
smaller particle, the unit of energy is ka2, where k is the
spring constant of the interaction potential. We use qua-
sistatic shear simulation, and compare some of the results
with those obtained from dissipative molecular-dynamics
simulations at zero temperature.

Quasistatic simulations consists of successively apply-
ing small steps of shear followed by a minimization of the
total potential energy. The shear is implemented with
Lee-Edwards boundary conditions with an elementary
strain step of ∆γ = 5 ·10−5. After each change in bound-
ary conditions the particles are moved affinely to define
the starting configuration for the minimization, which is
performed using conjugate gradient techniques [32]. The
minimization is stopped when the nearest energy min-
imum is found. Thus, as the energy landscape evolves
under shear the system always remains at a local energy
minimum, characterized by a potential energy, a pressure
p and a shear stress σ.

The molecular dynamics simulations were performed
by integrating Newton’s equations of motion with elastic
forces as deduced from Eq. (1) and dissipative forces

~Fij = −b [(~vi − ~vj) · r̂ij ] r̂ij , (2)

proportional to the velocity differences along the direc-
tion r̂ij that connects the particle pair. The damping co-
efficient is chosen to be b = 1. Rough boundaries are used
during the shear, the boundaries being built by freezing
some particles at the extreme ends in the y-direction,
from a quenched liquid configuration at a given φ. The
system is sheared by driving one of the walls at a fixed
velocity in the x direction, using periodic boundary con-
ditions in this direction.

For all system sizes, the distance between the top and
bottom boundaries is Ly = 44σ̃ and each of the bound-
aries has a thickness of 3.5σ̃, with σ̃ being the average
diameter of the particles. The system size is changed by
modifying the length of the box in the x-direction.
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III. RESULTS

A. Quasistatic simulations

As mentioned above and readily apparent from Fig. 1,
a typical feature of quasistatic stress-strain relations is
the interplay of “elastic branches” and “plastic events”.
During elastic branches stress grows linearly with strain
and the response is reversible. In plastic events the stress
drops rapidly and energy is dissipated.
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FIG. 1: Stress-strain relation for two different volume-
fractions, φ = 0.847 (top) and φ = φc = 0.8433 (bottom). At
volume-fractions close to φc the signal is intermittent showing
long quiet regions where the system flows without the building
up of stress.

The succession of elastic and plastic events defines the
flow of the material just above its yield-stress σy(φ). The
value of the yield-stress depends on volume-fraction and
nominally vanishes at φc (see Fig. 2). For finite systems,
however, finite-size effects dominate close to φc such that
one cannot observe a clear vanishing of σy . Rather, as
Fig. 1 shows, one enters an intermittent regime, where
the stress-signal shows a coexistence between jammed
and “freely-flowing” states.

This is evidence of a distribution of jamming thresh-
olds, P (φc), which sharpens with increasing the system-
size [16, 28]. A finite-size scaling analysis of this distri-
bution allows one to extract the critical volume-fraction,
which corresponds to φc = 0.8433 in our simulations.
This value is slightly higher than what has been obtained
previously, however, evidence is mounting that φc is non-
universal [33] and depends on the details of the ensemble
preparation. Scaling properties in the vicinity of a jam-
ming threshold, on the other hand, appear to be univer-
sal [33].

In Fig. 2 we display the yield-stress σy, as a function of
volume-fraction, δφ = φ−φc, and pressure p. Finite-size
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FIG. 2: Average yield-stress as function of volume-fraction
(left) and pressure (right). The yield-stress is determined as
an average over stress-values just before plastic events occur,
i.e at the top end of each elastic branch.

effects are particularly strong when using φ as control
variable. In the intermittent regime the average stress
levels off to a system-size dependent value.

Much better scaling behavior can be obtained, when
using pressure as control variable, as this is character-
ized by the same finite-size effects as the shear-stress.
In the following we will therefore use pressure as con-
trol variable. Be aware, however, that we do not run
pressure-controlled simulations, as for example Peyneau
and Roux [25] but use the average pressure, 〈p〉(φ), only
to plot our simulation results. The value σ/p ≈ 0.1
obtained from Fig. 2 is consistent with these pressure-
controlled simulations. On the other hand, the scaling
with volume-fraction, p ∼ δφ1.1, is slightly stronger than
in linear elasticity at zero stress [16, 20], where the pres-
sure simply scales as δφ. In view of the strong finite-size
effects, the scaling with volume-fraction should, however,
be taken with care.

In the following we show results from five different
volume-fractions, φ = 0.846, 0.848, 0.85, 0.86 and φ =
0.9, which are all above φc and outside the intermittent
regime. For each volume-fraction we study three different
system sizes with N = 900, 1600 and 2500 particles.

1. Elastic properties

As reviewed in the introduction a hallmark of the elas-
ticity of solids in the vicinity of point J is the scaling of
the linear elastic shear modulus g ∼ p1/2. Similarly, the
number of inter-particle contacts scale as z = z0 +Ap1/2.

We have analyzed the elastic branches in the steady-
state flow to find (Figs. 3 and 4) that the same scal-
ing properties characterize the average nonlinear elastic
modulus gavg, which we define as the local slope of the
stress-strain curve, and also the associated contact num-
bers zavg. If we take these scaling properties as a signa-
ture of the criticality of point J, we can conclude that for
the range of volume-fractions considered we are in the
“critical regime”.

As additional characterization of the ensemble of elas-
tic states we report the probability distributions of shear
moduli and contact numbers, respectively. Maybe sur-
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FIG. 3: (Top) Average nonlinear elastic shear modulus gavg

as function of pressure p. (Bottom) Probability distribution
P (g) centered around average value gavg and rescaled width
according to ∆g = p0.25/N0.5. Black solid line is a Gaussian
pdf.

prisingly all the obtained distributions have approxi-
mately the same shape and can be superimposed on a
single master curve. To achieve this we center each dis-
tribution around the average value and rescale the width
with a factor pαNβ .

By looking carefully at the individual distributions we
do observe a slight trend towards the development of non-
Gaussian tails close to φc. While non-Gaussian distribu-
tions are to be expected close to critical points [34], the
effect is quite small and all distributions have a well de-
veloped Gaussian core. The pronounced small-g tail of
P (g) is due to shear moduli that extend down to zero.

Similar tails have been observed in [8] and related to a
softening of the response upon approach towards plastic
instabilities. Indeed, we found that manually suppressing
states close to plastic events, the weight in the small-g
tail is reduced.

For the width of the g-distribution we obtain ∆g =
p0.25/N0.5. Thus, the absolute width of the distribu-
tion decreases with decreasing pressure, while the rela-
tive width, ∆g/gavg diverges at point J. For the contact
numbers, on the other hand, we find a divergence of the
absolute width itself, ∆z = p−0.35/N0.5. These enhanced
fluctuations certainly support the view of δz as an or-
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FIG. 4: (Top) Average contact number z as function of pres-
sure p. The values for z0 ≡ z(p = 0) are determined from a
best fit. They are smaller than zc = 4 as to the presence of
rattlers, which have not been accounted for. (Bottom) Prob-
ability distribution P (z) centered around average value zavg

and rescaled width according to ∆z = p−0.35/N0.5

der parameter for a continuous jamming transition. The
quantity ∆z2N would then be analogous to a suscepti-
bility, χ ∼ p−γ , diverging with an exponent γ = 0.7.

Our results are different than those of Henkes and
Chakraborty [35]. They found that the fluctuations of
z are independent of pressure, ∆z ∼ p0. Note, how-
ever, the subtle difference in ensemble. They [35] study
a pressure-ensemble, in which states are randomly sam-
pled from all volume-fractions. In contrast, the relevant
states in our ensemble are connected by the trajectory
of the system in phase-space. They reflect the dynamics
of the system and the region of phase-space where it is
guided to.

2. Yield properties

We now go beyond the properties of the elastic states
and discuss aspects related to their failure during the
plastic events. As indicated in the introduction, plastic
events can be viewed as bifurcations in energy-landscape.
A local energy minimum vanishes and the system has to
search for a new minimum at lower energy and stress. In
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FIG. 5: (Top) Distribution of stress-drops normalized with
average values ∆σavg. Inset shows the same figure in a log-
log representation. (Bottom) Scaling of ∆σavg with pressure
p.

quasistatic dynamics this process is instantaneous. The
associated stress-drop is therefore visible as a vertical line
in the stress-strain relation (Fig. 1).

In the following we characterize the amount of dissipa-
tion during a plastic event by the associated stress-drop,
∆σ. The frequency of plastic events is discussed in terms
of the length of elastic branches, ∆γavg.

Just like the probability distributions within the elastic
states, the functions P (∆σ) and P (∆γavg) (Figs. 5 and
6) are universal and can be rescaled on a single master-
curve. Here, it is sufficient to use the first moment of the
distribution, i.e. the ensemble-averaged stress drops and
elastic-branch lengths, respectively. As the logarithmic
scale in the inset in Fig. 5 shows, the collapse for the
stress-drop distribution is quite good for large as well
as for small stress drops. The black line represents a
fit of the form ∆σ−1 exp(−∆σ/σL) with the stress-scale
σL ≈ 5∆σavg. The intermediate power-law behaviour
P ∼ ∆σ−1 reflects the lack of scale related to a typical
event size. The only relevant scale is the exponential cut-
off at σL. Tewari et al. [36] have reported an exponent of
−0.7 in the energy-drop distribution at finite-strain rates.
The simulated systems are somewhat smaller, however.
Kabla et al. [37] have found an exponent of −1.5 in a ver-
tex model for foams, in agreement with renormalization
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FIG. 6: (Top) Distribution of elastic branch length normal-
ized with average values ∆γavg. (Bottom) Scaling of ∆γavg

with pressure p. The ratio g = ∆σavg/∆γavg , which defines a
shear-modulus, is consistent with the scaling in Fig. 3.

group arguments [38].

The exponential tail has been observed in several dif-
ferent studies [8, 11, 11, 39, 40] in two and in three spatial
dimensions. Tsamados et al. [11] have furthermore re-
lated this feature of the stress-drop distribution to the
diversity of local flow-defects causing the plastic event.

A similar universality has been observed by Maloney
and Lemâıtre [8]. Their simulations are conducted with
three different interaction potentials but without chang-
ing the density, which is set to high values far away from
the rigidity transition. The authors have argued for a
universal value of the “flow-strain” σy/g of a few per-
cent. Apparently, this can only be true far away from φc.
As the yield-stress vanishes faster than the shear modu-
lus, one finds a ratio σy/g ∼ δφ1/2 that vanishes at point
J. Thus, particle configurations at the onset of jamming
are highly fragile and susceptible to even minute changes
in the boundary conditions.

The average stress-drop as well as the average length of
elastic branches change with pressure and system-size as
displayed in Figs. 5 and 6 [50]. As a function of pressure
one observes an increase but with a slope that depends
on system-size. The average stress-drops increase some-
what slower with pressure than the yield-stress [51]. The
relative stress fluctuations ∆σavg/σy are thus slightly en-
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hanced at small pressures close to φc. The same trend is
also visible in the total stress fluctuations as calculated
by

〈

(σ − 〈σ〉)2
〉

.
The overall scale of both, ∆σavg and ∆γavg, decreases

with system-size to give a smooth stress-strain relation
in the thermodynamic limit. Previous studies [8, 10, 11]
have observed a scaling of the stress-drops with N−1/2.
This includes [8] a system of harmonically interacting
particles, as studied here, but at a rather high pressure.
In general, we observe a weaker dependence on system-
size, with an effective exponent that increases with pres-
sure. Our data is consistent, however, with the value of
1/2 being the relevant high-pressure limit.

B. Dynamical correlations

Let us now turn to the dynamics of the system. In par-
ticular we want to characterize dynamic correlations in
the motion of particles. While at volume-fractions above
φc the isostaticity length-scale l⋆ is clearly finite [52],
there is nevertheless a large dynamical length-scale re-
lated to the flow arrest. This has, for example, been
evidenced in a system of Lennard-Jones particles with
dissipative dynamics [15]. We will show below that a
similar length-scale occurs in our system of purely repul-
sively interacting particles, independent of the distance
to φc.

Let us start by presenting the results from the qua-
sistatic simulations. To define a dynamical correlation
length we study heterogeneities in the particle mobilities.
To this end we use the overlap-function [41, 42]

〈Q(γ, a)〉 =

〈

1

N

N
∑

i=1

exp

[

−
uina(γ)2

2a2

]

〉

, (3)

of particles undergoing nonaffine displacements uina dur-
ing a strain interval of γ. Particles moving farther than
the distance a (“mobile”), have Q ≈ 0, while those that
stay within this distance (“immobile”) have Q ≈ 1. As a
function of strain γ, the average overlap 〈Q〉 will decay,
when particle displacements una are comparable to the
probing length-scale a. The overlap function is similar
to the intermediate scattering function with wave-vector
q ∼ 1/a. Thus, a sets the probing length-scale. The
decay of Q(γ, a) then gives an associated structural re-
laxation strain, γ⋆(a), on which particle positions decor-
relate.

In the following we are interested in the dynamical het-
erogeneity of Q and the fluctuations around its average
value

χ4(a, γ) = N
(

〈

Q(γ, a)2
〉

− 〈Qa(γ, a)〉
2
)

, (4)

which defines the (self-part of the) dynamical suscepti-
bility χ4. This is displayed in Fig. 7 as a function of both
strain γ and probing length-scale a. For each γ it has a
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FIG. 7: Dynamical susceptibility χ4 as function of prob-
ing length-scale a for various different strains γ =
(5, 20, 50, 200, 500, 2000)·10−5 (from left to right) and φ = 0.9.
The maxima of the curves (black circles) define the amplitude
h(γ).

well defined peak (at a⋆(γ)) that parallels the decay of
the overlap function 〈Q〉 [30].

The strength of the correlations are encoded in
the peak-height, h(γ) ≡ χ4(a

⋆(γ), γ) (black circles in
Fig. 7)). As χ4 can be written as the integral over a corre-
lation function, it is connected to the correlation volume,
or to the number of correlated particles. Assuming that
this volume forms a compact region in space [43, 44] we
can relate the amplitude of χ4 to a dynamic correlation
length via ξ2(γ) = h(γ).

Following the maxima in Fig. 7 from left to right, one
sees that the amplitude first increases and then quickly
drops to small values. This implies that there is a finite
strain γ, at which χ4 presents an absolute maximum. To
extract this maximum we plot in Fig. 8 the amplitude
h(γ) for various volume-fractions φ and system-sizes N .

There are two surprising features in this plot.
First, by rescaling the strain-axis with the average

length of elastic branches, ∆γavg (see Fig. 6) we find rea-
sonable scaling collapse for all studied volume-fractions
and system-sizes. This implies that cooperativity, as
measured by the amplitude of χ4 is decisively controlled
by the length of elastic branches. In other words, the fre-
quency of plastic events sets the strain-scale for dynami-
cal heterogeneities. As the length of the elastic branches
decreases with system size, the absolute maximum shifts
towards smaller strains, with h(γ) becoming effectively a
decreasing function of γ in the thermodynamic limit.

The second surprising feature in Fig. 8 is the system-
size dependence of h. It turns out that h/N rather than
h itself is independent of system-size, indicating a finite
variance of the distribution of Q values in the thermody-
namic limit (see Eq. (4)). Assuming the connection with
the correlation length to hold, ξ2 ∼ h, this implies a cor-
relation length that is proportional to the length of the
simulation box, ξ ≈ 0.3L, independent of volume-fraction
and distance to point J. This illustrates the fact that qua-
sistatic dynamics is inherently dominated by system-size
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FIG. 8: Amplitude h(γ) as taken from the quasistatic sim-
ulations. Data for different volume-fractions and system-
sizes. The axes are normalized according to the scaling form
h(γ) = Nh̃(γ/∆γavg), with ∆γavg taken from Fig 6.
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FIG. 9: χ4(γ) for different strain-rates γ̇ and a = 0.01. com-
parison with quasistatic (‘qs’) simulations. Note the different
boundary conditions used. MD simulations are with walls,
while quasistatic simulations have periodic boundary condi-
tions. This may explain the difference in the amplitude.

effects, as already shown in previous works [14, 15, 28].
Let us now turn to the molecular-dynamics simulations

to show that this dependence on system-size indeed re-
flects the saturation of a length-scale that is finite for
larger strain-rates and increases towards the quasistatic
regime [53] . As Fig. 9 shows, the amplitude of χ4 in-
creases when reducing the strain-rate (a = 0.01, φ = 0.9)
and approaches the quasistatic limit for small strain-
rates. Also the strain γm, at which χ4 is maximal is
very well reproduced in the dynamic simulation.

Fig. 10 demonstrates a saturation of the amplitude
χm ≡ χ4(γm) at small strain-rates indicating that the
quasistatic regime is entered. Comparing with the qua-
sistatic simulation, we find somewhat smaller values for
the amplitude. It should be remembered, however, that
different boundary conditions have been used. The rough
walls used in the molecular dynamics simulations are
likely responsible for the reduction of the peak-height as
compared to the quasistatic simulations (which are per-
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N=2500
N=1600
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FIG. 10: (Left) Peak-height χm = χ4(γm) as determined
from Fig. 9. The saturation at small strain-rates is an indica-
tion of the quasistatic limit, in which χm ∼ N . In contrast,
at high strain-rates no significant dependence on system-size
is observed. (Right) Peak-height χm as function of volume-
fraction.

formed with periodic boundary conditions).
The presence of the quasistatic regime is also evidenced

by the fact that the amplitude χm within the plateau
depends on system-size, just as in the quasistatic sim-
ulations. Outside this regime, on the other hand, no
significant N -dependence is observed. These results are
consistent with those of Ono et al. [45]. The lowest
strain-rate accessible in the latter study was γ̇ = 0.0001.
At this strain-rate the correlation length was observed to
be on the order of 3 in agreement with our data.

We also probed the volume-fraction dependence, by
performing runs at φ = 0.85, 0.87, 0.9, 0.95 and 1. The
resulting amplitude of χ4 is given in Fig. 10. Interestingly
we observe a mild increase in the amplitude with volume-
fraction, signalling enhanced correlations away from φc.

This is not due to the special choice of the parame-
ter a = 0.01. We have found the same trend when fix-
ing γ and viewing χ4 as function of a as for the qua-
sistatic simulations in Fig. 7. Finally, we have also cal-
culated the absolute maximum of χ4, viewed as function
of both a and γ. In all cases, the amplitude increases
with volume-fraction. While, at present, we do not have
any definite explanation for this trend, we speculate that
it may be coupled to the increasing yield-stress and the
fact, that plastic rearrangements become more violent at
higher volume-fractions. This interpretation would be in
line with an observed enhancement of the rate of energy
dissipation away from φc [46].

Both, the increase of the length-scale with lowering the
strain-rate and the increase with volume-fraction are con-
sistent with the recently proposed elasto-plastic model of
Bocquet et al. [13]. Interestingly, our data (taken at
constant strain-rate γ̇ = 1e − 4 outside the quasistatic
regime) is consistent with a vanishing of the dynamical
correlation length as φ → φc. Such a behavior has re-
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cently been observed in the rheology of a concentrated
emulsion confined in gaps of different thickness [47].

IV. DISCUSSION AND CONCLUSION

We have discussed the small strain-rate elasto-plastic
flow of an athermal model system of soft harmonic
spheres. In particular, we were interested in the flow
properties at and above a critical volume-fraction (point
J), at which the yield-stress of the material vanishes.
This regime combines the more traditional elasto-plastic
flow of solids above their yield-stress with the breakdown
of the rigidity of the solid state at point J.

We found that this breakdown is visible in the ensem-
ble of states visited during a flow simulation in a similar
way as in the linear elasticity of the solid. For example
(Fig. 4), we showed that the average number of particle
contacts scale with the square-root of pressure, just as
in linear elasticity. In contrast, the fluctuations around
this average value show a distinct behavior that has not
been observed previously. We showed that the contact-
number fluctuations actually diverge upon approaching
the critical volume-fraction from above, making the con-
tact number an ideal candidate for an order parameter
of a continuous jamming transition as observed under
steady shear. The relative fluctuations of the shear mod-
ulus and those of the shear stress also diverge in the same
limit. Going beyond the characterization of the average
elastic properties we have studied the statistics of plas-
tic events (Figs. 5 and 6). It seems that all distributions
have universal scaling forms reminiscent of standard crit-
ical phenomena.

From all these results, it would be tempting to say
that it is the energy landscape as a whole that becomes
critical at point J. Isostatic elasticity would then be just
one aspect of this criticality, another one could be the
intermediate power-law tail in the stress-drop distribu-
tion. This critical aspect is also illustrated by the inter-
mittency in the stress response of finite-size systems (see
Fig.1) and by the growth of an isostatic correlation length
in the quasistatic response when point J is approached
from below [28].

At strain-rates above the quasistatic regime, the dy-
namics limits access to certain regions of the energy land-
scape. While the dynamics is still highly correlated, the
dynamical correlation length, as measured by the am-
plitude of the four-point susceptibility χ4, remains finite

and actually decreases with lowering the volume-fraction
towards φc.

In the quasistatic regime we have shown that χ4 re-
flects, in two ways, the interplay of elastic loading and
plastic energy release (Fig. 8). First, the typical strain-
scale of heterogeneity is set by the frequency of plastic
events. Second, the amplitude of χ4 scales with system-
size, which highlights the fact that the quasistatic, plastic
flow regime is, in fact, a finite-size dominated regime with
a correlation length that is limited by system size. This
behavior should be contrasted with the one observed be-
low φc, where a large but finite correlation length has
been identified, which is governed by the approach to
point J [48].

Upon increasing the strain-rate we have shown that
the correlation length starts to decrease when the finite-
size scaling regime is left (Fig. 10). Olsson and Teitel [26]
infer from their flow simulations that shear-stress should
be viewed as a “relevant perturbation” to point J, such
that a different fixed-point and indeed different physics
is relevant for the flow behaviour at finite stress. Our
findings support this picture for the dynamical correla-
tions, which, when approaching the zero shear rate limit,
appear to behave similarly to those observed in models
of elasto-plastic flow [13, 14, 49] or in low temperature
glasses [10, 15].

The flow behaviour in the vicinity of point J is there-
fore influenced by a complex combination of two critical
behaviour. Large stress fluctuations (relative to the yield
stress), or geometrical changes (number of neighbours)
reflect the enhanced sensitivity of the material to small
changes in external conditions at point J, and are spe-
cific properties of the energy landscape at this point. On
the other hand, dynamical correlations above point J are
dominated by the system size, and build up progressively
as the strain rate is decreased, as in any elasto-plastic sys-
tem, and are not particularly sensitive to the proximity
of point J.
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rat. On the study of local-stress rearrangements during
quasi-static plastic shear of a model glass: Do local-stress
components contain enough information? Eur. Phys. J.
E, 26:283, 2008.

[12] Michel Tsamados, Anne Tanguy, Chay Goldenberg, and
Jean-Louis Barrat. Local elasticity map and plasticity in
a model lennard-jones glass. Physical Review E (Statis-
tical, Nonlinear, and Soft Matter Physics), 80(2):026112,
2009.

[13] Lydéric Bocquet, Annie Colin, and Armand Ajdari. Ki-
netic theory of plastic flow in soft glassy materials. Phys-
ical Review Letters, 103(3):036001, 2009.

[14] G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet. Slow
flows of yield stress fluids: Complex spatiotemporal be-
havior within a simple elastoplastic model. Phys. Rev. E,
71:010501(R), 2005.
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