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The Veldkamp space, in the sense of Buekenhout and Cohen, of the generalized quadrangle GQ(4, 2) is shown not to be a (partial) linear space by simply giving several examples of Veldkamp lines (V-lines) having two or even three Veldkamp points (V-points) in common. Alongside the ordinary V-lines of size five, one also finds V-lines of cardinality three and two. There, however, exists a subspace of the Veldkamp space isomorphic to PG(3, 4) having 45 perps and 40 plane ovoids as its 85 V-points, with its 357 V-lines being of four distinct types. A V-line of the first type consists of five perps on a common line (altogether 27 of them), the second type features three perps and two ovoids sharing a tricentric triad (240 members), whilst the third and fourth type each comprises a perp and four ovoids in the rosette centered at the (common) center of the perp (90). It is also pointed out that 160 non-plane ovoids (tripods) fall into two distinct orbits -of sizes 40 and 120with respect to the stabilizer group of a copy of GQ(2, 2); a tripod of the first/second orbit sharing with the GQ(2, 2) a tricentric/unicentric triad, respectively. Finally, three remarkable subconfigurations of V-lines represented by fans of ovoids through a fixed ovoid are examined in some detail.

Introduction

Generalized quadrangles of types GQ(2, t), with t = 1, 2, and 4, have recently been found to play a prominent role in quantum information and black hole physics; the first type for grasping the geometrical nature of the so-called Mermin squares [START_REF] Planat | On the Pauli graphs of N-qudits[END_REF][START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF], the second for underlying commutation properties between the elements of two-qubit Pauli group [START_REF] Planat | On the Pauli graphs of N-qudits[END_REF][START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF][START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF], and the third one for fully encoding the E 6(6) symmetric entropy formula describing black holes and black strings in D = 5 [START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. Whereas GQ [START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF][START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF] is isomorphic to its point-line dual, this is not the case with the remaining two geometries; the dual of GQ(2, 1) being GQ [START_REF] Planat | On the Pauli graphs of N-qudits[END_REF][START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF], that of GQ(2, 4) GQ(4, 2) [START_REF] Payne | Finite Generalized Quadrangles[END_REF]. These two duals, strangely, did not appear in the above-mentioned physical contexts. It is, therefore, natural to ask why this is so. We shall try to shed light on this matter by invoking the concept of the Veldkamp space of a point line incidence structure [START_REF] Buekenhout | Diagram Geometry (Chapter 10.2[END_REF]. The Veldkamp space of GQ [START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF] was shown to be a linear space isomorphic to PG(5, 2) [START_REF] Saniga | The Veldkamp space of GQ(2, 4)[END_REF]. Here, we shall demonstrate that the Veldkamp space of GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF], due to the existence of two different kinds of ovoids in GQ [START_REF] Lévay | Black hole entropy and finite geometry[END_REF][START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF], is not even a partial linear space, though it contains a (linear) subspace isomorphic to PG [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF] in which GQ(4, 2) lives as a non-degenerate Hermitian variety.

Rudiments of the Theory of Finite Generalized Quadrangles and Veldkamp Spaces

To make our exposition as self-contained as possible, and for the reader's convenience as well, we will first gather all essential information about finite generalized quadrangles [START_REF] Payne | Finite Generalized Quadrangles[END_REF], then introduce the concept of a geometric hyperplane [START_REF] Ronan | Embeddings and hyperplanes of discrete geometries[END_REF] and, finally, that of the Veldkamp space of a point-line incidence geometry [START_REF] Buekenhout | Diagram Geometry (Chapter 10.2[END_REF].

A finite generalized quadrangle of order (s, t), usually denoted GQ(s, t), is an incidence structure S = (P, B, I), where P and B are disjoint (non-empty) sets of objects, called respectively points and lines, and where I is a symmetric point-line incidence relation satisfying the following axioms [START_REF] Payne | Finite Generalized Quadrangles[END_REF]: (i) each point is incident with 1 + t lines (t ≥ 1) and two distinct points are incident with at most one line; (ii) each line is incident with 1 + s points (s ≥ 1) and two distinct lines are incident with at most one point; and (iii) if x is a point and L is a line not incident with x, then there exists a unique pair (y, M ) ∈ P × B for which xIM IyIL; from these axioms it readily follows that |P | = (s + 1)(st + 1) and |B| = (t + 1)(st + 1). It is obvious that there exists a point-line duality with respect to which each of the axioms is self-dual. Interchanging points and lines in S thus yields a generalized quadrangle S D of order (t, s), called the dual of S. If s = t, S is said to have order s. The generalized quadrangle of order (s, 1) is called a grid and that of order (1, t) a dual grid. A generalized quadrangle with both s > 1 and t > 1 is called thick. Every finite generalized quadrangle is obviously a partial linear space, that is the point-line incidence structure where a) any line has at least two points and b) any two points are on at most one line.

Given two points x and y of S one writes x ∼ y and says that x and y are collinear if there exists a line L of S incident with both. For any x ∈ P define the perp of x as x ⊥ = {y ∈ P |y ∼ x} and note that x ∈ x ⊥ , being its center; obviously, |x ⊥ | = 1 + s + st. Given an arbitrary subset A of P , the perp of A, A ⊥ , is defined as A ⊥ = {x ⊥ |x ∈ A} and A ⊥⊥ := (A ⊥ ) ⊥ ; in particular, if x and y are two non-collinear points, then {x, y} ⊥⊥ is called a hyperbolic line (through them). A triple of pairwise non-collinear points of S is called a triad; given any triad T , a point of T ⊥ is called its center and we say that T is acentric, centric or unicentric according as |T ⊥ | is, respectively, zero, non-zero or one. An ovoid of a generalized quadrangle S is a set of points of S such that each line of S is incident with exactly one point of the set; hence, each ovoid contains st + 1 points. The dual concept is that of spread; this is a set of lines such that every point of S is on a unique line of the spread. A rosette of ovoids is a set of ovoids through a given point x of S partitioning the set of points non-collinear with x. A fan of ovoids is a set of ovoids partitioning the whole point set of S; if S has order (s, t) then every rosette contains s ovoids and every fan features s + 1 ovoids.

A geometric hyperplane H of a point-line geometry Γ(P, B) is a proper subset of P such that each line of Γ meets H in one or all points [START_REF] Ronan | Embeddings and hyperplanes of discrete geometries[END_REF]. For Γ = GQ(s, t), it is well known that H is one of the following three kinds [START_REF] Payne | Finite Generalized Quadrangles[END_REF]: (i) the perp of a point x, x ⊥ ; (ii) a (full) subquadrangle of order (s, t ′ ), t ′ < t; and (iii) an ovoid.

Finally, we shall introduce the notion of the Veldkamp space of a point-line incidence geometry Γ(P, B), V(Γ) [START_REF] Buekenhout | Diagram Geometry (Chapter 10.2[END_REF]. V(Γ) is the space in which (i) a point is a geometric hyperplane of Γ and (ii) a line is the collection

H 1 H 2 of all geometric hyperplanes H of Γ such that H 1 ∩ H 2 = H 1 ∩ H = H 2 ∩ H or H = H i (i = 1, 2)
, where H 1 and H 2 are distinct points of V(Γ).

Basic Properties of GQ(4, 2)

The unique generalized quadrangle GQ(4, 2), associated with the classical group PGU 4 (2), can be represented by 45 points and 27 lines of a non-degenerate Hermitian surface H(3, 4) in PG [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF], the three-dimensional projective space over GF(4) [START_REF] Payne | Finite Generalized Quadrangles[END_REF][START_REF] Brouwer | Ovoids and fans in the generalized quadrangle Q(4, 2)[END_REF][START_REF] Hirschfeld | On the history of generalized quadrangles[END_REF]. Every line has five points and there are three lines through every point. This quadrangle features both unicentric and tricentric triads, 1and has no spreads. There are 16 tricentric triads through each point; hence, their total number is 45 × 16/3 = 240. Its geometric hyperplanes are (45) perps of points and (200) ovoids, because it has no subquadrangles of type GQ(4, 1) [START_REF] Payne | Finite Generalized Quadrangles[END_REF].

Obviously, perps correspond to the cuts of H(3, 4) by its 45 tangent planes. As first shown by Brouwer and Wilbrink [START_REF] Brouwer | Ovoids and fans in the generalized quadrangle Q(4, 2)[END_REF], ovoids fall into two distinct orbits of sizes 40 and 160. The ovoids of the first orbit are called plane ovoids, as each of them represents a section of H(3, 4) by one of the 40 non-tangent planes. The ovoids of the second orbit are referred to as tripods, each comprising nine isotropic points on three hyperbolic lines {x, y} ⊥⊥ , {x, z} ⊥⊥ and {x, w} ⊥⊥ , where {x, y, z, w} is a basis of non-isotropic points; in other words, every tripod can be viewed as a unique union of three tricentric triads. Given a plane ovoid P and any two distinct points x, y ∈ P, it is always true that {x, y} ⊥⊥ ⊆ P. Hence, {P \ {x, y} ⊥⊥ } ∪ {x, y} ⊥ is again an ovoid, and all the tripods can be obtained in this manner from plane ovoids. GQ(4, 2) contains both fans and rosettes of ovoids [START_REF] Brouwer | Ovoids and fans in the generalized quadrangle Q(4, 2)[END_REF]. There are altogether 520 fans, each made of a plane ovoid and four tripods and falling into two orbits of sizes 480 and 40, and 26 rosettes on a given point; two of them feature four plane ovoids, the remaining ones consist of four tripods each.

Apart from perps and ovoids, GQ(4, 2) is endowed with one more kind of distinguished subgeometry -that isomorphic to the unique generalized quadrangle GQ(2, 2); this is, however, not a geometric hyperplane. There are altogether 36 distinct copies of GQ(2, 2) living inside GQ(4, 2), and with any of them an ovoid is found to share a triad. For a plane ovoid this triad is always tricentric. For tripods, however, it can be either tricentric (40 of them) or unicentric (120 of them); in what follows we shall occasionally refer to the former/latter as tri-tripods/uni-tripods, respectively. There exists a remarkable partitioning of the point-set of GQ(4, 2) in terms of three Figure 1: A diagrammatical model of the structure of GQ(4, 2) whose points are illustrated by bullets and lines by straight segments, arcs of ellipses and/or parabolas, and two circles (for more details, see the text). Note a particular copy of GQ(2, 2) (black), its complement (red) being nothing but famous Schläfli's double-six of lines. GQ(2, 1)s and three GQ(1,2)s such that one of the latter group forms with each of the former group a GQ [START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF][START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF]. Another noteworthy property is the existence of pairs of plane ovoids and/or tri-tripods on the common (tricentric) triad whose symmetric difference is a disjoint union of two GQ(1, 2)s.

All the above-mentioned properties can be ascertained -some readily, some requiring a bit of work -from a diagrammatical illustration of GQ(4, 2) depicted in Figure 1. In this picture, of a form showing an automorphism of order five, all the 45 points of GQ(4, 2) are represented by bullets, whereas its 27 lines have as many as four distinct representations: two are represented by (concentric) circles, five by arcs of parabolas touching the inner circle, another five by parabolas touching the outer circle, five by arcs of ellipses, and, finally, 10 by straight line-segments. (Note that there are many intersections of segments and arcs that do not stand for any point of GQ(4, 2).) A copy of GQ(2, 2) is also highlighted (black bullets, all line-segments and all arcs of ellipses).

4 Distinguished Features of the Veldkamp Space of GQ(4, 2)

4.1 Linear Subspace Isomorphic to PG [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF] In PG(3, 4) a point and a plane are duals of each other. On the other hand, both a perp and a plane ovoid are associated each with a unique plane of PG [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. Hence, disregarding tripods for the moment, we find a subspace of the Veldkamp space of GQ(4, 2) that is isomorphic to PG [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. The 85 V-points of this subspace are 45 perps and 40 planar ovoids, and the 357 V-lines split into four distinct types as shown in Figure 2. A V-line of the first type (1-st row in Figure 2) consists of five perps on a common pentad of collinear points i. e. on a common line; clearly, there are 27 V-lines of this type as each line leads to a unique V-line. A second-type V-line (2-nd row) features three perps and two ovoids sharing a tricentric triad; since each such triad defines a unique Vline, there are altogether 240 V-lines of this type. Third-/fourth-type V-lines (3-rd/4-th row) each comprises a perp and four ovoids in the rosette centered at the perp's center (the only common point); their total number thus amounts to 2 × 45 = 90.

Examples of V-lines on Three and Two Common Points

In order to show that V(GQ(4, 2)) is not a (partial) linear space it suffices to find two (or more) V-lines sharing two (or more) V-points. From the previous subsection it should already be fairly obvious that it is the existence of tripods that prevents V(GQ(4, 2)) from being a linear space.

Figure 2: Representatives of the four different types of V-lines forming the linear subspace of V(GQ(4, 2) isomorphic to PG [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF]. The encircled bullets represent the points shared by all the five V-points forming a given V-line.

To this end, let us have again a look at a type-two V-line of the PG(3, 4)-subspace, reproduced once again in Figure 3, top row. It turns out that we can get a new type of V-line by replacing its two plane ovoids by two particular tripods, as shown in Figure 3, bottom row. Hence, we have an example of two distinct V-lines having three V-points (the three perps) in common.

Figure 3: An instance of two distinct V-lines having three V-points in common. We note in passing that the tripods are tri-tripods with respect to the selected copy of GQ [START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF][START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF].

The next couple of examples feature three (Figure 4) and four (Figure 5) V-lines through two common V-points. In the first case, the V-lines consist each of a perp and four tripods in the rosette centered at the perp's center; the perp and the first tripod are the common V-points. With respect to the selected GQ(2, 2), the first two tripods in each V-line are tri-tripods, the other two being uni-tripods. In the second case, each of the four V-lines represents a fan of ovoids, the first ovoid being planar, second a tri-tripod, and the remaining three uni-tripods. 

Examples of V-lines of Size Three and Two

That the structure of V(GQ(4, 2)) is much more complex and intricate than that of any (partial) linear space is, alongside the above-introduced examples, also illustrated by the existence of V-lines of cardinality less than five. Thus, we found many V-lines of size three, like the one shown in Figure 6. This V-line consists of a perp and two (uni-)tripods on a common unicentric triad; since two perps, obviously, cannot share a unicentric triad and a given perp contains 48 such triads, we find altogether 45 × 48 = 2160 V-lines of this particular kind. Finally, there are also a large number of V-lines of size two; the one depicted in Figure 7 is composed of a plane ovoid and a tripod having six points in common. 

V-lines as Fans of Ovoids Through a Given Ovoid

We shall finish the paper by having a closer look at very impressive subconfigurations of V-lines represented by fans of ovoids. One first recalls (Sec. 3) that a fan of ovoids of GQ(4, 2) is a pentad of (pairwise disjoint) ovoids partitioning the point set. Every fan comprises -as already shown in Figure 5 -a plane ovoid, a tri-tripod and three uni-tripods; in the figures below these are represented by red-, green-and yellow-coloured circles, respectively.

Given a plane ovoid, there are no plane ovoids, 10 tri-tripods and 30 uni-tripods disjoint from it. Figure 8 ("spider") depicts the configuration of 13 fans of ovoids through a plane ovoid (P). We see a remarkable pattern. One tri-tripod (4) has a special standing as there are four distinct fans passing through it. Similarly, three out of 30 uni-tripods (namely 19, 25 and 28) have a particular footing as there are four distinct fans through each of them. Leaving the distinguished fan {P, 4, 19, 25, 28} aside, the remaining twelve fans form four classes of cardinality three each. In each class the fans have two ovoids in common (namely P and 4, P and 19, P and 25, and P and 28); whereas in the first class the two ovoids are both plane ovoids, in the remaining three they are of two distinct kinds. Hence, considering the multiplicities and character of mutual intersection of fans, the totality of the latter is split into five subsets in a [3 + 3 + 3] + (3) + 1 fashion; the "1" corresponds, naturally, to the distinguished fan {P, 4, 19, 25, 28}.

Given a tri-tripod, there are 10 plane ovoids, no tri-tripods and 21 uni-tripods disjoint from it. Figure 9 ("bee") depicts the configuration of 13 fans of ovoids through a tri-tripod (X). We again see a remarkable pattern. One plane ovoid (5) has a special standing as there are four distinct fans passing through it. Similarly, three out of 21 uni-tripods (11, 13 and 20) have a particular footing as there are seven distinct fans through each of them. The split of the whole family of fans again shows a [3 + 3 + 3] + (3) + 1 pattern; the "1" here symbolizes the distinguished fan {5, X, 11, 13, 20}. This case differs from the previous one in two crucial aspects. First, the three size-three classes here are such that their fans have three ovoids in common (namely X, 11 and 13; X, 11 and 20; and X, 13 and 20), whilst the fans of the fourth class share only a couple of ovoids (X and 5). Second, one finds three pairs of ovoids, namely X and 11, X and 13, and X and 20, such that there go as many as seven distinct fans through each of them.

Given a uni-tripod, there are 10 plane ovoids, 7 tri-tripods and 14 uni-tripods disjoint from it. Figure 10 ("frog") illustrates the configuration of 13 fans through a uni-tripod (O). We again see a remarkable pattern. One plane ovoid (8) has a special standing as there pass four different fans through it. Similarly, one tri-tripod (4) and two uni-tripods (2 and 10) have also a special footing, as each of them is shared by seven distinct fans. One sees here, however, a slightly different [3 + 3] Here and in the following two figures as well, each ovoid is represented by a numbered circle -the particulars of the numbering being completely irrelevant for our purpose -and every fan comprises five different circles (one red, one green and three yellow ones, their order being also irrelevant) joined by broken line-segments and/or arcs of big circles (e. g., {P, 1, 28, 13, 30 }, {P, 2, 28, 12, 14}, {P, 3, 28, 6, 18}, etc.). Figure 9: The same as in the previous figure for a tri-tripod (X). Note a "tighter coupling" (i. e., higher-multiplicity intersections) between the fans within each of the three classes and between the classes themselves when compared with the plane ovoid case. What is the nature of the three distinguished fans? This is quite easy to spot. The nine points of a plane ovoid can always be partitioned into three pairwise disjoint tricentric triads. Since a plane ovoid contains 12 tricentric triads, there exist four different ways such a partitioning can be done. Given any of them, the nine centers of the triads generate a (unique) tripod; the plane ovoid and its four associated tripods form a distinguished fan of ovoids. In all the three above-discussed cases, the distinguished fan is the only one sharing with each of the remaining twelve at least one additional ovoid apart from the common one, and thus fully deserves its name.

Conclusion

We have furnished several examples showing that the Veldkamp space of GQ(4, 2) is not a (partial) linear space. This is in a sharp contrast with the case of the dual, GQ [START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF], whose Veldkamp space is a linear space, being isomorphic to PG(5, 2) [START_REF] Saniga | The Veldkamp space of GQ(2, 4)[END_REF]. We surmise that this fact, among other things, might also contain an important clue why it is GQ [START_REF] Saniga | Projective ring line encompassing two-qubits[END_REF][START_REF] Lévay | Black hole entropy and finite geometry[END_REF], not GQ(4, 2), which is relevant for a particular black-hole/qubit correspondence [START_REF] Lévay | Black hole entropy and finite geometry[END_REF].
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 4 Figure 4: An example of three different V-lines on two common V-points (a perp and a (tri-)tripod).
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 5 Figure 5: An example of four different V-lines sharing two V-points (a plane ovoid and a (tri-)tripod).
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 6 Figure 6: An example of V-line of size three.

Figure 7 :

 7 Figure 7: An example of V-line of size two.
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 8 Figure8: A diagrammatic illustration of the qualitative relation between the 13 fans of ovoids sharing a plane ovoid (P). Here and in the following two figures as well, each ovoid is represented by a numbered circle -the particulars of the numbering being completely irrelevant for our purpose -and every fan comprises five different circles (one red, one green and three yellow ones, their order being also irrelevant) joined by broken line-segments and/or arcs of big circles (e. g., {P, 1, 28, 13, 30 }, {P, 2, 28, 12, 14}, {P, 3, 28, 6, 18}, etc.).
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 10 Figure 10: The same as in the previous two figures for a uni-tripod (O).

GQ(4, 

2) is also endowed with acentric triads, but these are of no relevance for our subsequent reasoning.
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