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Université de Technologie de Compiègne
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Abstract

Combining the outputs from several postal address readers (PARs) is a promising

approach for improving the performances of mailing address recognition systems. In

this paper, this problem is solved using the Transferable Belief Model, an uncertain

reasoning framework based on Dempster-Shafer belief functions. Applying this frame-

work to postal address recognition implies defining the frame of discernment (or set

of possible answers to the problem under study), converting PAR outputs into belief

functions (taking into account additional information such as confidence scores when

available), combining the resulting belief functions, and making decisions. All these

steps are detailed in this paper. Experimental results demonstrate the effectiveness of

this approach as compared to simple combination rules.

Keywords: Mailing address recognition, Information fusion, Dempster-Shafer The-

ory, Evidence Theory, Transferable Belief Model.



1 Introduction

Postal address recognition is a complex task that involves different processes includ-

ing image scanning, address block and writing fields location, character and word

recognition, database querying and association of a group of words with a delivery

address. Each of these stages requires different algorithms and complex decision pro-

cedures [15, 26]. Systems in charge of this task are referred to as postal address readers

(PARs).

A generic representation of a PAR is shown in Figure 1. A PAR is linked with

a database containing the whole set of postal addresses of the concerned country.

It assigns a handwritten or machine printed mail piece image to a delivery address.

Additional pieces of information can also be output by a PAR such as alternative

addresses, confidence scores, or other intermediate results.

In the past years, a lot of work has been devoted to improving the performances of

PARs through refining various subsystems such as, e.g., block location [28] or hand-

writing recognition [16, 11]. A different way of improvement, which has comparatively

received less attention, consists in combining different PARs. Indeed, a decision based

on a great number of varied pieces of information is generally more robust than any

decision made individually from a single piece of information [9, 3, 10].

As explained by Xu, Krzyzak and Suen in [27], the combination of multiple classi-

fiers includes several problems: selecting the classifiers to combine, choosing an archi-

tecture for the combination, and combining the classifier outputs in order to achieve

better performances than each classifier individually. In this article, we focus on the

problem of combining the outputs supplied by different PARs, following the fusion

scheme illustrated in Figure 2.

Various approaches to classifier fusion have been proposed in the literature (see,

e.g., [3, 10]). These methods are based on various frameworks such as probabilistic the-

ory, fuzzy sets, possibility theory, Dempster-Shafer theory, voting, etc. As remarked

in [2], no general solution exists: the success of a fusion method strongly depends on

the fusion problem itself, and the way a given formalism is applied.

In the postal domain, the fusion problem is very specific. Addresses for the purpose

of physical mail delivery have a hierarchically structure: depending on the particular
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application, they are characterized by a country, state, town, post office, street, street

number or post office (PO) box, and secondary number such as apartment number.

Moreover, PARs have the possibility to output a complete or a partial address. For

example, a PAR can provide a solution for the town, but not for the street, if this

latter has not been recognized. Moreover, as previously mentioned, some PARs can

also supply additional information such as confidence scores.

Until now, approaches to PAR fusion have been very limited. They are essentially

based on common sense combination rules [8, 4]. For example, the main idea in [8] is

to choose the postal address provided by a majority of PARs, if it exists; otherwise,

the postal address output by the most reliable PAR is chosen. Although such simple

rules can be sufficient for some applications, higher recognition rates can be expected

to result from finer modelling of the fusion problem.

In this paper, it is proposed to model this fusion problem using the Transferable

Belief Model (TBM) [25, 22], a subjectivist and non-probabilistic interpretation of the

Dempster-Shafer theory of belief function [18, 21]. This framework is known to offer

great flexibility for the manipulation of partial knowledge and information represented

at various granularity levels (see, e.g., [19, 12, 1]), thus providing a range of tools well

suited to the application at hand.

This article is organized as follows. The postal problem is first presented in Section

2. Background material on belief functions is recalled in Section 3. A generic model for

combining postal addresses is then introduced in Section 4, and experimental results

are reported in Section 5. Finally, Section 6 concludes the paper.

2 Problem Description

2.1 Hierarchical Structure of Postal Addresses

A postal address is a string of characters indicating where mail sent to a person or

an organization should be delivered. Each country has structured its addresses in a

specific manner. However, all these arrangements have a hierarchical organization.

From top to bottom, each field specifies the destination of the mail in a finer way.

In the simple model considered in this paper for illustrative purposes, a postal
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address will be assumed to consist of only two parts:

• the town part indicating the city where the mail has to be delivered;

• the distribution part indicating the precise physical location within a particular

city. This place can be a street or any country-specific notion like a PO box for

example.

Denoting a town by Ti, a street by Sj and a PO box or any country specific

distribution point by Bk, where i,j and k are indices, a complete address can take any

of the two following forms:

• TiSj for street Sj in town Ti;

• TiBk: for PO box Bk in town Ti.

Complete addresses form the distribution level (bottom level) of the hierarchy shown

in Figure 3. When only the town is specified, one obtains a partial address of the

form Ti. Such partial addresses for the second level of the hierarchy. Finally, a third

level can be defined as the “empty” address noted “ ”, which corresponds to the case

where the address is completely unspecified.

The output of a PAR for a given mail piece is usually a complete or partial address

at any level in this hierarchy.

2.2 Performance Rates and Objectives

Using a test set of labelled letters (letters whose actual address is known), the per-

formances of PARs can be assessed at the town and distribution levels, using the

following three performance rates: the correct recognition rate, the error rate, and the

rejection rate.

At the distribution level, an output is correct if and only if the town and the

distribution are correct. At the town level, an output is correct if and only if the town

is correct.

Example 1 When the truth is “Ti Sj”:
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• at the distribution level, only the output “Ti Sj” is considered to be correct;

outputs “TiSj′” and “Ti′”, with j′ 6= j and i′ 6= i, are considered as errors, and

outputs “Ti” and “ ” are considered as rejections;

• at the town level, outputs “Ti Sj”,“TiSj′”, and “Ti” are considered to be correct,

while an output “Ti′” with i′ 6= i is an error, and an output “ ” is a rejection.

At each level and for each PAR, the sum of these three performance rates is equal

to one.

As different PARs are available, our main objective is to improve the postal address

recognition process by combining the outputs from different PARs. More precisely,

one seeks a fusion scheme leading to the greatest possible correct recognition rate,

while having an acceptable error rate at both town and distribution levels. In this

work, the maximal tolerated error rate is set to the best error rate among individual

PARs, as shown in Figure 4.

A fusion scheme designed to meet these objectives, based on the Transferable Belief

Model, is presented in this paper.

3 The Transferable Belief Model

The Transferable Belief Model (TBM) is a model of uncertain reasoning and decision-

making based on two levels [25, 7]:

• the credal level, where available pieces of information are represented by belief

functions;

• the pignistic or decision level, where belief functions are transformed into prob-

ability measures, and the expected utility is maximized.

3.1 Basic Concepts

Let Ω = {ω1, . . . , ωK}, called the frame of discernment, be a finite set comprising

all possible answers to a given question Q. The beliefs held by a rational agent Ag

regarding the answer to question Q can be quantified by a basic belief assignment
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(bba) mΩ
Ag, defined as a function from 2Ω to [0, 1] verifying:

∑
A⊆Ω

mΩ
Ag(A) = 1 .

The quantity mΩ
Ag(A) represents the part of the unit mass allocated to the hypo-

thesis that the answer to question Q is in the subset A of Ω. When there is no

ambiguity on the agent or the frame of discernment, the notationmΩ
Ag will be simplified

to mΩ or m.

A subset A of Ω such that m(A) > 0 is called a focal set of m. A bba m with only

one focal set A is called a categorical bba and is denoted mA; we then have mA(A) = 1.

Total ignorance is represented by the bba mΩ such that mΩ(Ω) = 1, called the vacuous

bba. A normal bba m satisfies the condition m(∅) = 0. A bba whose focal sets are

nested is said to be consonant.

The belief and plausibility functions associated with a bba m are defined, respec-

tively, as:

bel(A) =
∑
∅6=B⊆A

m(B),

and

pl(A) =
∑

B∩A 6=∅

m(B),

for all A ⊆ Ω. Functions m, bel and pl are in one-to-one correspondence, and thus

constitute different forms of the same information.

The basic operation for combining bbas induced by distinct sources of information

is the conjunctive rule of combination (CRC), also referred to as the unnormalized

Dempster’s rule of combination, defined as

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω. (1)

3.2 Refinements and Coarsenings

When applying the TBM to a real-world application, the determination of the frame

of discernment Ω, which defines the set of states on which beliefs will be expressed,

is a crucial step. As noticed by Shafer [18, chapter 6], the degree of granularity of Ω

is always, to some extent, a matter of convention, as any element of Ω representing
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a given state can always be split into several alternatives. Hence, it is fundamental

to examine how a belief function defined on a frame may be expressed in a finer or,

conversely, in a coarser frame. The concepts of refinement and coarsening can be

defined as follows.

Let Θ and Ω denote two frames of discernment. A mapping ρ : 2Θ → 2Ω is called

a refining of Θ (see Figure 5) if it verifies the following properties [18]:

1. The set {ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω.

2. For all A ⊆ Θ:

ρ(A) =
⋃
θ∈A

ρ({θ}). (2)

Θ is then called a coarsening of Ω, and Ω is called a refinement of Θ.

A bba mΘ on Θ may be transformed without any loss of information into a bba

mΩ on a refinement Ω of Θ by transferring each mass mΘ(A) for A ⊆ Θ to B = ρ(A):

mΘ(A) = mΩ(ρ(A)). This operation is called the vacuous extension of mΘ to Ω.

Conversely, a bba mΩ on Ω may be transformed into a bba mΘ on a coarsening Θ

of Ω by transferring each mass mΩ(A) for A ⊆ Ω to the smallest subset B ⊆ Θ such

that A ⊆ ρ(B). Note that, in this case, some information may be lost in the process.

Thanks to these transformations, a piece of information, initially defined on a

frame Ω, may be expressed on any frame obtained by refining and/or coarsening Ω.

Example 2 Let us consider a bba mΘ defined on Θ = {θ1, θ2, θ3} by mΘ({θ1}) = 0.7

and mΘ({θ2, θ3}) = 0.3. Let Ω = {ω1, ω2, . . . , ω7} be a refinement of Θ as shown

in Figure 5. The piece of evidence mΘ can be expressed on the finer frame Ω by

mΩ({ω3, ω4, ω5}) = 0.7 and mΩ({ω1, ω2, ω6, ω7}) = 0.3.

Conversely, let us consider a bbamΩ defined bymΩ({ω3}) = 0.6 andmΩ({ω1, ω6}) =

0.4. This piece of information can be expressed on the coarser frame Θ by mΘ({θ1}) =

0.6 and mΘ({θ2, θ3}) = 0.4.

3.3 BBA Correction Mechanisms

When receiving a piece of information represented by a BBA m, agent Ag may have

some doubt regarding the reliability of the source that has provided this BBA. Such
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metaknowledge can be taken into account using the discounting operation introduced

by Shafer [18, page 252], and defined by:

αm = (1− α)m+ α mΩ , (3)

where α ∈ [0, 1] is a coefficient referred to as the discount rate.

A discount rate α equal to 1 means that the source is not reliable and the piece

of information it provides cannot be taken into account, so Ag’s knowledge remains

vacuous: mΩ
Ag = 1m = mΩ. On the contrary, a null discount rate indicates that the

source is fully reliable and the piece of information it provides is entirely accepted:

mΩ
Ag = 0m = m. In practice, an agent rarely knows for sure whether the source is

reliable or not, but it has some degree of belief in the thee source reliability, equal to

1− α [20].

Using metaknowledge on the reliability of the source, the BBA m can thus be cor-

rected into αm using the discounting operation. However, this discounting operation

only allows agent Ag to weaken a source of information, whereas it could sometimes

be useful to strengthen it, e.g., when this source is too cautious. In [14], the following

mechanism for weakening or reinforcing a BBA m was introduced and justified:

νm = ν1mΩ + ν2m+ ν3
trm , (4)

with νi ∈ [0, 1] ∀i ∈ {1, 2, 3} and ν1 + ν2 + ν3 = 1. The BBA trm corresponds to the

BBA m totally reinforced, and is defined by:

trm(A) =


m(A)

1−m(Ω) if A ⊂ Ω,

0 if A = Ω,
(5)

if m is not vacuous, and trm = m otherwise. If m is not vacuous, the total reinforce-

ment trm of m consists in transferring uniformly the whole mass allocated to Ω to

the focal sets of m different from Ω. As shown in [6], this process is the dual of the

normalization process that consists in uniformly redistributing to non-empty subsets

the mass initially allocated to the empty set.

Example 3 Let us consider a bbamΩ defined on Ω = {ω1, ω2, ω3} bymΩ({ω1}) = 0.4,

mΩ({ω2}) = 0.1, and mΩ(Ω) = 0.5 . The beliefs held by an agent Ag knowing that
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mΩ should be totally reinforced, is given by trmΩ({ω1}) = 0.4/(1 − 0.5) = 0.8, and
trmΩ({ω2}) = 0.1/(1− .8) = 0.2 .

In the correction mechanism (4), rates ν1, ν2 and ν3 are equal, respectively, to

the degree of belief that the source is unreliable (having to be discarded), fully re-

liable (having to be accepted without modifying it), and too cautious (having to be

reinforced). An application of this correction mechanism will be presented in Section

4.2.2.

3.4 Decision-making

In Bayesian decision theory, modelling a decision process implies defining:

1. A set D of decisions that can be made;

2. A set Γ of considered states of nature;

3. A cost function c : D × Γ → IR, such that c(d, γ) represents the cost of making

decision d ∈ D when γ ∈ Γ is the true state of nature.

Rationality principles [17, 5] then justify the choice of the decision d∗ ∈ D corre-

sponding to the minimum expected cost or risk according to some probability measure

PΓ on Γ:

d∗ = arg min
d
ρ(d),

with

ρ(d) =
∑
γ∈Γ

c(d, γ)PΓ({γ}) , ∀d ∈ D. (6)

In the TBM, this decision-theoretic framework is accepted [23, 24]. The set Γ,

called the betting frame, is often taken equal to Ω. However, it may be any refine-

ment or coarsening of Ω, or it may obtained from Ω by a succession of refinings and

coarsenings. The probability measure PΓ is obtained by the pignistic transformation

[23, 24], which consists in firstly expressing the piece of evidence mΩ, initially defined

on the frame of discernment, on the betting frame Γ, and then computing the pignistic

probability BetPΓ = PΓ as:

BetPΓ({γ}) =
∑

{A⊆Γ,γ∈A}

mΓ(A)
|A|(1−mΓ(∅))

, (7)
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where |A| denotes the cardinality of A.

4 Application to Postal Address Recognition

The different stages of the fusion process based on the TBM are illustrated in Figure

6. First, the frame of discernment Ω on which beliefs are expressed has to be chosen

(step 1). Outputs oi, which are partial or complete postal addresses provided by

each available PAR i are then converted into bbas on Ω (step 2), and combined into

one bba mΩ synthesizing the whole available information (step 3). The pignistic

transformation is then applied to reach a final decision (step 4). These four steps are

described in more detail below.

4.1 Frame of discernment

The question Q of interest is to determine the destination address indicated on a

given mail piece. The set of possible answers to this question should naturally contain

all delivery addresses, which are usually stored in a database. However, there are

additional possibilities, as the address written on the envelope may correspond to no

valid delivery address. For instance, a part of an address may be non-existent or

unreadable, as shown in Figure 7. Such addresses are said to be invalid. An address

in which the town cannot be identified is said to be totally invalid. Addresses depicted

in Figures 7(a), 7(b) and 7(c) are totally invalid. An address for which the town can

be identified but not the distribution part, as illustrated in Figure 7(d), is said to be

partially invalid.

The frame of discernment Ω we associate to question Q is thus composed of all valid

addresses contained in the database, the partially invalid addresses associated with

the towns included in the database, and an additional element representing totally

invalid addresses. Such of frame typically contains several millions elements.

Example 4 (Small database) Let us consider a toy problem in which the database

contains only two towns T1 and T2. Town T1 contains two streets S1 and S2. Town

T2 contains one street S1 (S1 in T1, and S1 in T2 are physically different streets, but

they may have the same name) and two P.O. Boxes B1 and B2.
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The frame Ω is shown in Figure 8. It is composed of:

• valid addresses: T1S1, T1S2, T2S1, T2B1, T2B2;

• partially invalid addresses associated with towns T1 and T2, denoted by T1 inv

and T2 inv, respectively;

• an additional element, denoted {inv}, representing totally invalid addresses.

The subset {T1S1, T1S2, T1 inv} contains all addresses in town T1 and is denoted

T1. Likewise, T2 = {T2S1, T2B1, T2B2, T2 inv} contains all addresses associated with

town T2. Finally, Ω is equal to T1 ∪T2 ∪{inv}. The corresponding hierarchy is shown

in Figure 9.

Each output of a PAR is thus associated with a unique subset of Ω. Outputs

corresponding to a complete address are singletons of Ω; for example, an address

“Ti Sj” is associated with the singleton {Ti Sj}. Outputs corresponding to a partial

address are subsets of Ω:

• an output “Ti” is associated with the subset Ti of Ω;

• the output “ ” representing total ignorance is associated with Ω.

4.2 Construction of Basic Belief Assignments

Once the frame of discernment has been defined, the next step is to define a method

for converting PAR outputs into belief functions. Here, it is proposed to base this

conversion on the observed performances of the PAR on a learning set of manually

labelled mail pieces. More precisely, we will use a confusion matrix counting the oc-

currences of different types of errors. This method is in the spirit of the work described

in [27] in the context of character recognition. However, the problem considered here

is much more complex because of the hierarchical structure of the address space, and

the existence of different address categories (streets, P.O. boxes, ...). The method

described here generalizes that introduced by the authors in [13].
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4.2.1 Basic Approach

In this section, only postal addresses output by PARs are considered as input to the

fusion process. The use of confidence scores will be addressed in the Section 4.2.2.

Each PAR provides an output o composed of a complete or partial address, i.e., a

subset of Ω. Depending on the true value of the address, an output o, if not correct,

may be partially correct. For instance, in Example 4, an output o = {T1S1}, when

the truth is {T1S2}, is not correct. However, the town is correct: {T1S1} and {T1S2}

are in the same set T1 of level 2. We then say that the output o of level 1 is correct

at level 2.

Formally, an output o of level p is said to be correct at level q ≥ p, where q is the

level of the first element in the hierarchy containing o and the truth. In the worst

case, q is equal to P , where P is the number of levels in the hierarchy. An output of

level p correct at level p is said to be correct. Let us introduce the following notations:

• np,qc denotes the number of mail pieces in the learning set classified in category

c of level p that are correct at level q, with q ∈ [p, P ];

• H is the address hierarchy;

• u is the function that maps an element of H different from Ω to its parent

element in H. For instance, in example 4, u({T1S1}) = T1 and u(T1) = Ω.

The total number of mail pieces classified at level p and in category c is then equal

to npc =
∑P

q=p n
p,q
c .

When a PAR provides an output o of level p and category c, a simple approach

could be to define the corresponding bba m as follows:

m(uq−p(o)) =
np,qc
npc

, ∀q ∈ [p, P ] , (8)

where

uq−p = u ◦ . . . ◦ u ◦ u︸ ︷︷ ︸
q−p times

,

and u0 is the identity function. In other words, each parent of o at level q ∈ [p, P ]

receives a mass equal to the number of mail pieces of the same level p and category c

as o that were correctly classified at level q, divided by the total number of mail pieces
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classified by the PAR at level p and category c. We note that the bba m computed

using (8) is consonant.

Although Equation (8) seems reasonable, it can be refined to allow the allocation

of belief masses to invalid addresses, based on past decisions made in such cases. An

extension of the above scheme that addresses this issue may be defined as follows.

Let us call each element Ti inv an invalid address of level 1 and inv the invalid

address of level 2. Let us denote by np,inv(q)
c the number of time the truth is an invalid

address of level q when the output is provided at level p and is of category c. When

a PAR provides an output o of level p and category c, a bba m may be defined as:

m
(
uq−p(o)

)
=

np,qc − np,inv(q−1)
c

npc
, ∀q ∈ [p, P ] , (9)

m
([
uq−p(o)

]
inv
)

=
n
p,inv(q−1)
c

npc
, ∀q ∈ [p, P ] , (10)

where, by convention, np,inv(0)
c = 0, Ω inv = inv, and [uq−p(o)] inv denotes the invalid

address associated to uq−p(o).

Applying assignment method (9)-(10) allows us to distinguish between two differ-

ent hypotheses in case of rejection: either the true complete address exists but the

PAR has not recognized it, or the true address is invalid.

Example 4 (continued) Let us consider a PAR with the confusion matrix shown

in Table 1. This matrix describes the PAR performances on a learning set. For

instance, this PAR proposed the address {T1S1} at level 1 for 95 mail pieces whose

actual address was {T1S1}, and for 2 mail pieces whose actual address was {T1S2}.

Likewise, it proposed the address T1 at level 2, 24 times for mail pieces whose actual

address was {T1S1}, and 22 times for mail pieces whose actual address was {T1S2}.

Let us suppose that this PAR provides an output o = {T1S1} for a new mail piece.

This output belongs to level 1 and category street, denoted s. The number of correct

outputs of level 1 and category s is equal to the sum of the numbers in bold in Table

1:

n1,1
s = 95 + 88 + 98 = 281 . (11)

Similarly, the number of outputs of level 1 and category s that are correct at level 2

(respectively, at level 3) is equal to the sum of the numbers in italics (respectively,
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underlined) in Table 1:

n1,2
s = 2 + 1 + 2 + 2 = 7 (12)

n1,3
s = 1 + 1 = 2 . (13)

Finally, the number of outputs of level 1 and category s which were invalid at level

1 is n1,inv(1)
s = 2. The bba m representing the piece of information provided by the

PAR is thus given by:

m({T1S1}) =
n1,1
s

n1
s

=
95 + 88 + 98

290
= 0.969 ,

m({T1inv}) =
n

1,inv(1)
s

n1
s

=
2

290
= 0.007 ,

m(T1) =
n1,2
s − n1,inv(1)

s

n1
s

=
2 + 1 + 2 + 2− 2

290
= 0.017 ,

m({inv}) =
n

1,inv(2)
s

n1
s

=
0

290
= 0.000 ,

m(Ω) =
n1,3
s − n1,inv(2)

s

n1
s

=
1 + 1− 0

290
= 0.007 .

Likewise, assume that the same PAR provides an output o = T1, which belongs to

level 2 and category town denoted t. We have

n2,2
t = 24 + 22 + 3 + 20 + 13 + 16 = 98

n2,3
t = 1 + 1 = 2

n
2,inv(1)
t = 3

n
2,inv(2)
t = 0.

Hence,

m(T1) =
n2,2
t − n2,inv(1)

n2
t

=
98− 3

100
= 0.95 ,

m(T1inv) =
n

2,inv(1)
t

n2
t

=
3

100
= 0.03 ,

m(Ω) =
n2,3
t − n

2,inv(2)
t

n2
t

=
2

100
= 0.02 ,

m({inv}) =
n

2,inv(2)
t

n2
t

=
0

100
= 0 .
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Finally, if o = Ω, we have:

m({inv}) =
n3,inv(2)

n3
=

4
16

= 0.25 ,

m(Ω) =
n3,3 − n3,inv(2)

n3
=

4 + 2 + 3 + 2 + 2 + 0 + 1 + 2− 4
16

= 0.75 .

4.2.2 Using confidence scores

In some cases, a PAR provides not only a partial or complete address, but also a

score indicating the degree of confidence in the output. Such a score may typically

be provided by character recognition algorithms. When available, this additional

information may easily be incorporated in our framework, using the bba correction

mechanisms introduced in Section 3.3.

A simple approach to use confidence scores is to reinforce the piece of information

provided by a PAR when the score is high, and, conversely, to discount it when the

score is low. For that purpose, we may define four thresholds Ti, i = 1, 2, 3, 4 such

that information provided by the PAR is:

• totally discounted if the score is lower than T1;

• discounted proportionally to the score if the score belongs to [T1, T2];

• left unchanged if the score belongs to [T2, T3];

• reinforced proportionally to the score if the score belongs to [T3, T4];

• totally reinforced if the score is greater than T4.

This may be achieved by defining three coefficient ν1, ν2 and ν3 as functions of the

score as shown in Figure 10, and use them to correct the output bba m using (4)-(5)

as explained in Section 3.3.

Figure 11 shows a typical fusion scheme involving three PARs, two of which provide

confidence scores that are used to correct their corresponding output bbas.

4.3 Combination

Once each PAR output has been converted into a bba, the different bbas can be

combined using the conjunctive rule of combination (1).
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Example 5 (Combination) Let us consider three PARs associated with outputs

o1 = T2, o2 = T1, and o3 = {T2S1}, respectively. Let us suppose that assignment

method (9)-(10) has led to:

m1(T2) = 0.95, m1({T2 inv}) = 0.03, m1(Ω) = 0.02,

m2(T1) = 0.9, m2(Ω) = 0.1,

m3({T2S1}) = 0.93, m3(T2) = 0.05, m3(Ω) = 0.02 .

Then, m = m1 ∩©m2 ∩©m3 is given by:

m({T2S1}) = 0.0902, m(T1) = 0.0004,

m({T2inv}) = 0.0002, m(Ω) = 0.0000,

m(T2) = 0.0068, m(∅) = 0.9024 .

(14)

The large mass allocated to the empty set reflects the high conflict between the

outputs from the three PARs.

4.4 Decision Making

As explained in Section 3.4, decision making in the TBM requires the definition of a

set D of decisions, a betting frame Γ, and a cost function.

In this application, the definition of D is based on classifier outputs. Recall that

each classifier output is an element for the hierarchy H of addresses, i.e., a subset of

Ω. The set D of decisions is simply defined as the subset of 2Ω composed of PAR

outputs, their parents in the hierarchy, and Ω. For instance, in Example 5, the PARs

outputs are o1 = T2, o2 = T1, and o3 = {T2S1}. The corresponding possible decisions

are d1 = Ω, d2 = T1, d3 = T2, and d4 = {T2S1}.

The other ingredients of the decision model presented in Section 3.4, namely, the

betting frame and the cost function, will be described in the following subsections.

4.4.1 Betting frame

The result of the combination is a bba mΩ on Ω. As explained in Section 3.4, decision

making in the TBM is based on the pignistic transformation applied after a betting

frame has been defined. In this application, Ω cannot be chosen as the betting frame
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because it is much too big. Additionally, the cardinalities of various subsets of Ω are

unknown: we do not know exactly how many addresses are contained in a given town,

for instance. Computing this kind of information from the database would be too

time-consuming. For this reason, it was decided to define the betting frame Γ as a

coarsening (i.e., a partition) of Ω. In order to avoid loosing information, Γ was chosen

as the coarsest partition of Ω such that all non-empty focal sets of the combined bba

mΩ as well as their associated invalid addresses can be obtained as elements or unions

of elements of Γ. The formal construction of Γ from Ω is detailed in Algorithm 1.

Algorithm 1 Construction of the Betting Frame Γ.

Require: mΩ a bba; H a hierarchy;

F(m)← all the focal sets of m;

F(m)← F(m) ∪ {Ω};

for each element F of F(m) do

add to F(m) the invalid address associated with F , if it is not already contained

in F(m);

end for

Γ← ∅;

repeat

F ← a highest level element of F(m);

γ ← F \
⋃
{A ∈ F(m) s.t. F is the smallest element of F(m) containing A};

add γ to Γ;

remove F from F(m);

until F(m) = ∅

Example 5 (continued) The non-empty focal sets of m given by (14) are {T2S1},

T1, {T2inv}, Ω and T2. The invalid addresses associated to T1 and Ω are T1inv and

inv, respectively. The corresponding betting frame Γ is represented in Figure 12. It
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is composed of seven elements:

γ1 = Ω\(T2 ∪ T1 ∪ {inv}) , γ2 = {inv} ,

γ3 = T1\{T1 inv} , γ4 = T2\({T2S1} ∪ {T2 inv}) ,

γ5 = {T1 inv} , γ6 = {T2S1} ,

γ7 = {T2 inv} .

(15)

It is easy to see that the focal sets of m may be recovered from the γi: we have

{T2S1} = γ6, T1 = γ3 ∪ γ5, {T2 inv} = γ7,

T2 = γ4 ∪ γ6 ∪ γ7, Ω =
7⋃
i=1

γi.

As explained in Section 3.2, the bba m on Ω given by (14) can be expressed on the

coarsening Γ as:

mΓ({γ6}) = 0.0902, mΓ({γ3, γ5}) = 0.0004,

mΓ({γ7}) = 0.0002, mΓ(Γ) = 0.0000,

mΓ({γ4, γ6, γ7}) = 0.0068, mΓ(∅) = 0.9024 .

(16)

The pignistic probability computed from mΓ using (7) is:

BetP ({γ1}) = 0.000, BetP ({γ2}) = 0.000

BetP ({γ3}) = 0.002, BetP ({γ4}) = 0.023

BetP ({γ5}) = 0.002, BetP ({γ6}) = 0.948

BetP ({γ7}) = 0.025 .

4.4.2 Cost function

As explained in Section 3.4, the final decision d is the one that minimizes the risk

defined as the expected cost with respect to the pignistic probability distribution. To

compute this risk, we have to define a cost function c : D × Γ→ IR.

Let ω0 denote the true address, γ0 the element of Γ containing ω0, and d0 the

smallest element of D containing γ0. The costs are defined as follows. If d = d0, then

the decision is correct and the cost is equal to zero. If d 6= d0, four situations are

considered:

1. if d = Ω (the mail piece was rejected), then c(d, γ) = CtownR ; parameter CtownR is

called the rejection cost at town level ;
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2. if d = Ti for some town Ti (only the town but no street or PO box was given)

and d0 6⊆ d (the true address is not in town Ti), then c(d, γ) = CtownE ; parameter

CtownE is called the error cost at town level ;

3. if d = Ti for some town Ti and d0 ⊂ d (the true address is in town Ti), then

c(d, γ) = CdistR ; parameter CdistR is called the rejection cost at distribution level ;

4. if d = {ω} for some ω ∈ Ω, ω 6= ω0, then c(d, γ) = CdistE ; parameter CdistE is

called the error cost at distribution level ;

Note that cases 2 and 4 correspond to errors (on the town or on the address within

a town), whereas cases 1 and 3 correspond to situations where the decision is too

imprecise, but not erroneous. Table 2 shows the costs associated with the decisions

and betting frame elements of Example 5.

The cost function is thus defined using four parameters CtownR , CtownE , CdistR and

CdistE . It is natural to assume the following ordering relation between these parameters:

0 ≤ CdistR ≤ CtownR ≤ CdistE ≤ CtownE . (17)

For instance, an error in the distribution part of the address is less prejudicial than

an error in the town part. Likewise, it is preferable to make a rejection than an error.

Let us note, however, that this order may depend on postal agencies. For example,

the error on the distribution when the town is correct may incur a smaller cost than

the work implied by outright rejection. The rejection cost at the town level may be

thus higher than the error cost at the distribution level.
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Example 5 (concluded) With I = {1, . . . , 7}, the expected risks of each decision

are the following:

ρbet(d1) =
∑

γ∈Γ c(d1, γ)BetP (γ) =
∑

i∈I\{1,2}C
town
R BetP ({γi})

≈ CtownR ,

ρbet(d2) =
∑

γ∈Γ c(d2, γ)BetP (γ) =
∑

i∈I\{3,5}C
town
E BetP ({γi})

≈ 0.996 CtownE ,

ρbet(d3) =
∑

i∈{1,2,3,5}C
town
E BetP ({γi}) + CdistR BetP ({γ6})

≈ 0.004 CtownE + 0.948 CdistR ,

ρbet(d4) =
∑

i∈{1,2,3,5}C
town
E BetP ({γi}) +

∑
i∈{4,7}C

dist
E BetP ({γi})

≈ 0.004 CtownE + 0.048 CdistE .

Then, according to the cost vector c = (CdistR , CtownR , CdistE , CtownE ), decision d1,

d3 or d4 can be made. As CtownE ≥ CdistR (17), ρbet(d2) ≥ ρbet(d3), ∀c.

For instance, if c = (1, 2, 3, 4) (resp. (1, 2, 20, 40), (1, 2, 100, 300)), the final decision

is d4 = {T2S1} (resp. d3 = T2, d1 = Ω).

Ideally, the cost vector, reflecting real financial costs, should be provided by postal

agencies. Unfortunately, such input is rarely available. However, as explained in

Section 2.2, the goal of the postal fusion is to achieve the highest possible correct

recognition rate associated with a satisfactory error rate. The costs can thus be

determined using a set of labelled letters in order to obtain acceptable performances.

5 Experimental results

The fusion scheme described in this paper was applied to the combination of three

PARs denoted PAR 1, PAR 2 and PAR 3. A set of 56,000 mixed handwritten and

machine printed mail pieces was divided into a learning set and a test set in equal

proportions. The confusion matrix of each PAR was computed using the learning set,

which was also used to tune the costs so as to achieve acceptable performances on the

learning set. For different cost settings, error and correct recognition rates were then

computed using the test set. Note that, in this real application concerning France, the

address hierarchy H is more complex than the simple one considered above to explain

the principles of the approach. This real hierarchy is depicted in Figure 13.
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In addition to proposed addresses, PARs 1 and 2 also provide confidence scores

in the case of handwritten mail, as considered in Section 4.2.2. Figure 14, which

displays the confidence scores provided by PAR 1 for all handwritten mail pieces in

the database, shows that errors at the town level tend to be associated with lower

scores, which confirms that the score carries useful information. Figure 14 also shows

the definition of the four thresholds Ti used for the correction mechanism detailed in

Section 4.2.2.

Figures 15 and 16 show the performances of each of the individual PARs as well as

various fusions schemes at the town and distribution levels. To preserve confidentiality

on the performance level achieved, the origins of these two plots are not disclosed.

Recognition rates, represented on the x-axis, are expressed relatively to a reference

recognition rate, denoted R at the distribution level, and R′ at the town level. Error

rates, represented on the y-axis, are expressed relatively to a reference error rate,

denoted E at both distribution and town levels. Rates R and R′ are, respectively,

greater than 50% and 80%, while E is smaller than 0.1%.

In addition to the three individual PARs, the performances of two reference fusion

rules, noted Maj and CPAR1, are plotted in Figures 15 and 16 for comparison. The

former correspond to a simple majority voting scheme, whereas the latter is a variant

given more importance to PAR 1 in the decision. The special role of PAR 1 in this

combination rule was motivated by its good overall performances at the distribution

and town levels.

The four combined PARs C1 to C4 were obtained using different cost settings,

without using confidence scores. At the distribution level (Figure 16), each selected

combination point has an acceptable error rate (i.e., an error rate lower than the

minimum over individual PARs). At the town level (Figure 15), however, only combi-

nation points C1 and C2 remain under the maximal tolerated error rate. Overall, the

cost setting corresponding to point C2 meets the requirements mentioned in Section 2:

it provides a combination scheme yielding more correct recognitions and fewer errors

than each of the individual PARs, both at the town and distribution levels.

Finally, combined PARs with different cost settings and corrections based on con-

fidence scores are also represented as crosses in Figures 15 and 16. We can see that
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the use of scores further improves the performances of the combination. This fusion

scheme allows us to obtain a combination point noted C+, which is associated with an

acceptable error rate and a higher correct recognition rate than previous combination

point C2, both at the town and distribution levels. This confirms the interest of using

confidence scores in the fusion process.

6 Conclusion

A fusion scheme for postal address recognition based on the Transferable Belief Model

has been presented. One of the key aspects of this scheme concerns the conversion of

PAR outputs into belief functions, based on confusion matrices and confidence scores

when available. Belief functions associated to the different PARS are then combined

using Dempster’s rule, and a final decision is made by minimizing the expected cost

relative to a pignistic probability distribution defined on a suitable betting frame.

This method has been shown experimentally to meet the requirements set by postal

agencies.

In this work, PARs have been considered as black boxes, which allows great flex-

ibility and modularity in the maintenance of the fusion system. For instance, PARs

can be added or removed without modification of the whole system: only new confu-

sion matrices having to be estimated. The fusion module is built on top of existing

PARs and constitutes an independent component. Further improvements might be

gained by using additional information provided by specific recognition algorithms

inside each PAR, at the expense of some loss of generality. Situations where PARs

provide more complex outputs such as ordered lists of addresses could also be studied.

This is left for future research.
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Figures

Figure 1: Generic representation of a postal address reader.

Figure 2: The PAR fusion problem.
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(a) Postal addresses hierarchy (b) Overall hierarchy

Figure 3: Hierarchy of postal addresses.

Figure 4: The objective of the fusion process: achieving the greatest possible correct

recognition rate while keeping the error rate below that of the best individual PAR.

Figure 5: A refining ρ from a frame Θ to a refinement Ω (Example 2).
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Figure 6: Fusion scheme.

(a) A folded envelope. (b) A letter slid into a window

envelope.

(c) Erased ink. (d) A partial invalid address:

the street is missing.

Figure 7: Some examples of invalid addresses.
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Figure 8: Frame of discernment associated with the small database of Example 4.

Figure 9: Address hierarchy of Example 4.
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Figure 10: Coefficients ν1 and ν3 as functions of the score. The three coefficients ν1,

ν2 and ν3 are linked by the equation ν1 + ν2 + ν3 = 1.

Figure 11: An extended model using a discounting/reinforcement correction mecha-

nism based on the scores provided by PAR 1 and PAR 2.
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Figure 12: Betting frame Γ for the bba m of Example 5.

Figure 13: Hierarchy of addresses in the real application.
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Figure 14: Confidence scores and addresses provided by PAR 1 regarding the images

of the learning set. A black dot corresponds to an address whose town is incorrect. A

grey dot is associated with an address whose town is correct.

Figure 15: Performances of individual PARs and various fusion schemes on the test

set at town level.
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Figure 16: Performances of individual PARs and various fusion schemes on the test

set at the distribution level.
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Tables

Table 1: Confusion matrix associated with a PAR on Example 4. Notations: cat =

category, pob = P.O. Boxes, s = streets, t = town.

Truth inv T1S1 T1S2 T1inv T2S1 T2B1 T2B2 T2inv

Level Cat Output

1 s T1S1 0 95 2 0 1 0 0 0

T1S2 0 1 88 2 0 0 0 0

T2S1 0 0 1 0 98 2 0 0

pob T2B1 0 0 0 0 1 55 1 0

T2B2 0 0 0 0 0 0 46 0

2 t T1 0 24 22 3 1 0 0 0

T2 0 0 0 1 20 13 16 0

3 Ω 4 2 3 2 2 0 1 2

Table 2: Costs of making a decision di when the truth is an element γj of the betting

frame in Example 5.

Truth γ1 γ2 γ3 γ4 γ5 γ6 γ7

Decisions

d1 = Ω 0 0 CtownR CtownR CtownR CtownR CtownR

d2 = T1 CtownE CtownE 0 CtownE 0 CtownE CtownE

d3 = T2 CtownE CtownE CtownE 0 CtownE CdistR 0

d4 = {T2S1} CtownE CtownE CtownE CdistE CtownE 0 CdistE
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