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Abstract. For N = 5, 6 and 7, using the classification of perfect quadratic forms, we compute the homology of the Voronoï cell complexes attached to the modular groups SL N (Z) and GL N (Z). From this we deduce the rational cohomology of those groups.

Introduction

Let N 1 be an integer and let SL N (Z) be the modular group of integral matrices with determinant one. Our goal is to compute its cohomology groups with trivial coefficients, i.e. H q SL N (Z), Z). The case N = 2 is well-known and follows from the fact that SL 2 (Z) is the amalgamated product of two finite cyclic groups ( [START_REF] Serre | Trees, Springer Monographs in Mathematics[END_REF], [START_REF] Brown | Cohomology of Groups[END_REF], II.7, Ex.3, p.52). The case N = 3 was done in [START_REF] Soulé | The cohomology of SL 3 (Z)[END_REF]: for any q > 0 the group H q SL 3 (Z), Z is killed by 12. The case N = 4 has been studied by Lee and Szczarba in [START_REF] Lee | On the torsion in K 4 (Z) and K 5 (Z)[END_REF]: modulo 2, 3 and 5-torsion, the cohomology group H q SL 4 (Z), Z is trivial whenever q > 0, except that H 3 SL 4 (Z), Z = Z. In Theorem 7.3 below, we solve the cases N = 5, 6 and 7.

For these calculations we follow the method of [START_REF] Lee | On the torsion in K 4 (Z) and K 5 (Z)[END_REF], i.e. we use the perfect forms of Voronoï. Recall from [START_REF] Voronoï | Nouvelles applications des paramètres continus à la théorie des formes quadratiques I[END_REF] and [START_REF] Martinet | Perfect Lattices in Euclidean Spaces[END_REF] that a perfect form in N variables is a positive definite real quadratic form h on R N which is uniquely determined (up to a scalar) by its set of integral minimal vectors. Voronoï proved in [START_REF] Voronoï | Nouvelles applications des paramètres continus à la théorie des formes quadratiques I[END_REF] that there are finitely many perfect forms of rank N, modulo the action of SL N (Z). These are known for N 8 (see §2 below).

Voronoï used perfect forms to define a cell decomposition of the space X * N of positive real quadratic forms, the kernel of which is defined over Q. This cell decomposition (cf. §3) is invariant under SL N (Z), hence it can be used to compute the equivariant homology of X * N modulo its boundary. On the other hand, this equivariant homology turns out to be isomorphic to the groups H q SL N (Z), St N , where St N is the Steinberg module (see [START_REF] Borel | Corners and arithmetic groups[END_REF] and §3.4 below). Finally, Borel-Serre duality [START_REF] Borel | Corners and arithmetic groups[END_REF] asserts that the homology H * SL N (Z), St N is dual to the cohomology H * SL N (Z), Z (modulo torsion).

To perform these computations for N 7, we needed the help of a computer. The reason is that the Voronoï cell decomposition of X * N gets soon very complicated when N increases. For instance, when N = 7, there are more than two million orbits of cells of dimension 18, modulo the action of SL N (Z) (see Figure 2 below). For this purpose, we have developed a C library [START_REF] Pfpk | A C library for computing Voronoï complexes[END_REF], which uses PARI [START_REF]PARI/GP[END_REF] for some functionalities. The algorithms are based on exact methods. As a result we get the full Voronoï cell decomposition of the spaces X * N for N 7 (with either GL N (Z) or SL N (Z) action). Those decompositions are summarized in the figures and tables below. The computations were done on several computers using different processor architectures (which is useful for checking the results) and for N = 7 the overall computational time was more than a year.

The paper is organized as follows. In §2, we recall the Voronoï theory of perfect forms. In §3, we introduce a complex of abelian groups that we call the "Voronoï complex" which computes the homology groups H q SL N (Z), St N . In §4, we explain how to get an explicit description of the Voronoï complex in rank N = 5, 6 or 7, starting from the description of perfect forms available in the literature (especially in the work of Jaquet [START_REF] Jaquet | Énumération complète des classes de formes parfaites en dimension 7[END_REF]). In Figures 1 and2 we display the rank of the groups in the Voronoï complex and in Tables 1-5 we give the elementary divisors of its differentials. The homology of the Voronoï complex (hence the groups H q (SL N (Z), St N ) ) follows from this. It is given in Theorem 4.3.

We found two methods to test whether our computations are correct. First, checking that the virtual Euler characteristic of SL N (Z) vanishes leads to a mass formula for the orders of the stabilizers of the cells of X * N (cf. §4.5). Second, the identity d n-1 • d n = 0 for the differentials in the Voronoï complex is a non-trivial equality when these differentials are written as explicit (large) matrices.

In §5 we give an explicit formula for the top homology group of the Voronoï complex (Theorem 5.1). In §6 we prove that the Voronoï complex of GL 5 (Z) is a direct factor of the Voronoï complex of GL 6 (Z) shifted by one. Finally, in §7 we explain how to compute the cohomology of SL N (Z) and GL N (Z) (modulo torsion) from our results on the homology of the Voronoï complex in §4. Our main result is stated in Theorem 7.3. Some of these results had already been announced in [START_REF] Elbaz-Vincent | Quelques calculs de la cohomologie de GL N (Z) et de la K-théorie de Z[END_REF].
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Notation: For any positive integer n we let S n be the class of finite abelian groups the order of which has only prime factors less than or equal to n.

Voronoï's reduction theory

2.1. Perfect forms. Let N 2 be an integer. We let C N be the set of positive definite real quadratic forms in N variables. Given h ∈ C N , let m(h) be the finite set of minimal vectors of h, i.e. vectors v

∈ Z N , v 0, such that h(v) is minimal. A form h is called perfect when m(h) determines h up to scalar: if h ∈ C N is such that m(h ) = m(h), then h is proportional to h.
Example 2.1. The form h(x, y) = x 2 + y 2 has minimum 1 and precisely 4 minimal vectors ±(1, 0) and ±(0, 1). This form is not perfect, because there is an infinite number of positive definite quadratic forms having these minimal vectors, namely the forms h(x, y) = x 2 + axy + y 2 where a is a non-negative real number less than 1. By contrast, the form h(x, y) = x 2 + xy + y 2 has also minimum 1 and has exactly 6 minimal vectors, viz. the ones above and ±(1, -1). This form is perfect, the associated lattice is the "honeycomb lattice".

Denote by C *

N the set of non-negative real quadratic forms on R N the kernel of which is spanned by a proper linear subspace of Q N , by X * N the quotient of C * N by positive real homotheties, and by π :

C * N → X * N the projection. Let X N = π(C N ) and ∂X * N = X * N -X N .
Let Γ be either GL N (Z) or SL N (Z). The group Γ acts on C * N and X * N on the right by the formula

h • γ = γ t h γ , γ ∈ Γ , h ∈ C * N
, where h is viewed as a symmetric matrix and γ t is the transpose of the matrix γ. Voronoï proved that there are only finitely many perfect forms modulo the action of Γ and multiplication by positive real numbers ( [START_REF] Voronoï | Nouvelles applications des paramètres continus à la théorie des formes quadratiques I[END_REF], Thm. p.110). The following table gives the current state of the art on the enumeration of perfect forms. The classification of perfect forms of rank 8 was achieved by Dutour, Schürmann and Vallentin in 2005 [START_REF] Dutour Sikiric | Classification of eight dimensional perfect forms[END_REF], [START_REF] Schürmann | Enumerating perfect forms[END_REF]. They have also shown that in rank 9 there are at least 500000 classes of perfect forms. The corresponding classification for rank 7 was completed by Jaquet in 1991 [START_REF] Jaquet | Énumération complète des classes de formes parfaites en dimension 7[END_REF], for rank 6 by Barnes [START_REF] Barnes | The complete enumeration of extreme senary forms[END_REF], and by Voronoï for the other dimensions. We refer to the book of Martinet [START_REF] Martinet | Perfect Lattices in Euclidean Spaces[END_REF] for more details on the results up to rank 7.

2.2.

A cell complex. Given v ∈ Z N -{0} we let v ∈ C * N be the form defined by v(x) = (v | x) 2 , x ∈ R N ,
where (v | x) is the scalar product of v and x. The convex hull in X * N of a finite subset B ⊂ Z N -{0} is the subset of X * N which is the image under π of the quadratic forms j λ j v j ∈ C * N , where v j ∈ B and λ j 0. For any perfect form h, we let σ(h) ⊂ X * N be the convex hull of the set m(h) of its minimal vectors. Voronoï proved in [START_REF] Voronoï | Nouvelles applications des paramètres continus à la théorie des formes quadratiques I[END_REF], § §8-15, that the cells σ(h) and their intersections, as h runs over all perfect forms, define a cell decomposition of X * N , which is invariant under the action of Γ. We endow X * N with the corresponding CW-topology. If τ is a closed cell in X * N and h a perfect form with τ ⊂ σ(h), we let m(τ) be the set of vectors v in m(h) such that v lies in τ. Any closed cell τ is the convex hull of m(τ), and for any two closed c ells τ, τ in X * N we have m(τ) ∩ m(τ ) = m(τ ∩ τ ).

3. The Voronoï complex 3.1. An explicit differential for the Voronoi complex. Let d(N) = N(N +1)/2-1 be the dimension of X * N and n d(N) a natural integer. We denote by Σ n = Σ n (Γ) a set of representatives, modulo the action of Γ, of those cells of dimension n in X * N which meet X N , and by Σ n = Σ n (Γ) ⊂ Σ n (Γ) the cells σ for which any element of the stabilizer Γ σ of σ in Γ preserves the orientation. Let V n be the free abelian group generated by Σ n . We define as follows a map

d n : V n → V n-1 .
For each closed cell σ in X * N we fix an orientation of σ, i.e. an orientation of the real vector space R(σ) of symmetric matrices spanned by the forms v with v ∈ m(σ). Let σ ∈ Σ n and let τ be a face of σ which is equivalent under Γ to an element in Σ n-1 (i.e. τ neither lies on the boundary nor has elements in its stabilizer reversing the orientation). Given a positive basis B of R(τ ) we get a basis B of R(σ) ⊃ R(τ ) by appending to B a vector v, where v ∈ m(σ)m(τ ). We let ε(τ , σ) = ±1 be the sign of the orientation of B in the oriented vector space R(σ) (this sign does not depend on the choice of v).

Next, let τ ∈ Σ n-1 be the (unique) cell equivalent to τ and let γ ∈ Γ be such that τ = τ • γ. We define η(τ, τ ) = 1 (resp. η(τ, τ ) = -1) when γ is compatible (resp. incompatible) with the chosen orientations of R(τ) and R(τ ).

Finally we define

(1)

d n (σ) = τ∈Σ n-1 τ η(τ, τ ) ε(τ , σ) τ ,
where τ runs through the set of faces of σ which are equivalent to τ.

3.2.

A spectral sequence. According to [START_REF] Brown | Cohomology of Groups[END_REF], VII.7, there is a spectral sequence E r pq converging to the equivariant homology groups H Γ p+q (X * N , ∂X * N ; Z) of the homology pair (X * N , ∂X * N ), and such that

E 1 pq = σ∈Σ p H q (Γ σ , Z σ ) ,
where Z σ is the orientation module of the cell σ and, as above, Σ p is a set of representatives, modulo Γ, of the p-cells σ in X * N which meet X N . Since σ meets X N , its stabilizer Γ σ is finite and, by Lemma 7.1 in §7 below, the order of Γ σ is divisible only by primes p N + 1. Therefore, when q is positive, the group H q (Γ σ , Z σ ) lies in S N+1 .

When Γ σ happens to contain an element which changes the orientation of σ, the group

H 0 (Γ σ , Z σ ) is killed by 2, otherwise H 0 (Γ σ , Z σ ) Z σ ). Therefore, modulo S 2 , we have E 1 n 0 = σ∈Σ n Z σ ,
and the choice of an orientation for each cell σ gives an isomorphism between E 1 n 0 and V n .

3.3.

Comparison. We claim that the differential

d 1 n : E 1 n 0 → E 1 n-1,0
coincides, up to sign, with the map d n defined in 3.1. According to [START_REF] Brown | Cohomology of Groups[END_REF], VII, Prop. (8.1), the differential d 1 n can be described as follows. Let σ ∈ Σ n and let τ be a face of σ. Consider the group Γ στ = Γ σ ∩ Γ τ and denote by

t στ : H * (Γ σ , Z σ ) → H * (Γ στ , Z σ ) the transfer map. Next, let u στ : H * (Γ στ , Z σ ) → H * (Γ τ , Z τ )
be the map induced by the natural map Z σ → Z τ , together with the inclusion Γ στ ⊂ Γ τ . Finally, let τ ∈ Σ n-1 be the representative of the Γ-orbit of τ , let γ ∈ Γ be such that τ = τ • γ, and let

v τ τ : H * (Γ τ , Z τ ) → H * (Γ τ , Z τ )
be the isomorphism induced by γ. Then the restriction of

d 1 n to H * (Γ σ , Z σ ) is equal, up to sign, to the sum (2) τ v τ τ u στ t στ ,
where τ runs over a set of representatives of faces of σ modulo Γ σ .

To compare

d 1 n with d n we first note that, when τ ∈ Σ n-1 , v τ τ : H 0 (Γ τ , Z τ ) = Z → H 0 (Γ τ , Z τ ) = Z
is the multiplication by η(τ, τ ), as defined in §3.1. Next, when σ ∈ Σ n , the map

u στ : H 0 (Γ στ , Z σ ) = Z σ = Z → H 0 (Γ τ , Z τ ) = Z
is the multiplication by ε(τ , σ), up to a sign depending on n only. Finally, the transfer map

t στ : H 0 (Γ σ , Z σ ) = Z → H 0 (Γ στ , Z σ ) = Z is the multiplication by [Γ σ : Γ στ ].
Multiplying the sum (2) by this number amounts to the same as taking the sum over all faces of σ as in [START_REF] Barnes | The complete enumeration of extreme senary forms[END_REF]. This proves that d n coincides, up to sign, with d 1 n on E 1 n 0 = V n . In particular, we get that d n-1 • d n = 0. Note that this identity will give us a non-trivial test of our explicit computations of the complex.

Notation: The resulting complex (V • , d • ) will be denoted by Vor Γ , and we call it the Voronoï complex.

3.4. The Steinberg module. Let T N be the spherical Tits building of SL N over Q, i.e. the simplicial set defined by the ordered set of non-zero proper linear subspaces of Q N . The reduced homology Hq (T N , Z) of T N with integral coefficients is zero except when q = N -2, in which case

HN-2 (T N , Z) = St N
is by definition the Steinberg module [START_REF] Borel | Corners and arithmetic groups[END_REF]. According to [START_REF] Soulé | On the 3-torsion in K 4 (Z)[END_REF], Prop. 1, the relative homology groups H q (X * N , ∂X * N ; Z) are zero except when q = N -1, and

H N-1 (X * N , ∂X * N ; Z) = St N .
From this it follows that, for all m ∈ N, [START_REF] Soulé | On the 3-torsion in K 4 (Z)[END_REF], §3.1). Combining this equality with the previous sections we conclude that, modulo S N+1 ,

H Γ m (X * N , ∂X * N ; Z) = H m-N+1 (Γ, St N ) (see e.g.
(3)

H m-N+1 (Γ, St N ) = H m (Vor Γ ) .
4. The Voronoï complex in dimensions 5, 6 and 7

In this section, we explain how to compute the Voronoï complexes of rank N 7.

4.1. Checking the equivalence of cells. As a preliminary step, we develop an effective method to check whether two cells σ and σ of the same dimension are equivalent under the action of Γ. The cell σ (resp. σ ) is described by its set of minimal vectors m(σ) (resp. m(σ )). We let b (resp. b ) be the sum of the forms v with v ∈ m(σ) (resp. m(σ )). If σ and σ are equivalent under the action of Γ the same is true for b and b , and the converse holds true since two cells of the same dimension are equal when they have an interior point in common.

To compare b and b we first check whether or not they have the same determinant. In case they do, we let M (resp. M ) be the set of numbers b(x) with x ∈ m(σ) (resp. b (x) with x ∈ m(σ )). If b and b are equivalent, then the sets M and M must be equal.

Finally, if M = M we check if b and b are equivalent by applying an algorithm of Plesken and Souvignier [START_REF] Plesken | Computing isometries of lattices[END_REF] (based on an implementation of Souvignier). 4.2. Finding generators of the Voronoï complex. In order to compute Σ n (and Σ n ), we proceed as follows. Fix N 7. Let P be a set of representatives of the perfect forms of rank N. A choice of P is provided by Jaquet [START_REF] Jaquet | Énumération complète des classes de formes parfaites en dimension 7[END_REF]. Furthermore, for each h ∈ P, Jaquet gives the list m(h) of its minimal vectors, and the list of all perfect forms h γ (one for each orbit under Γ σ(h) ), where h ∈ P and γ ∈ Γ, such that σ(h) and σ(h )γ share a face of codimension one. This provides a complete list C 1 h of representatives of codimension one faces in σ(h). From this, one deduces the full list F 1 h of faces of codimension one in σ(h) as follows: first list all the elements in the automorphism group Γ σ(h) ; this can be obtained by using a second procedure implemented by Souvignier [START_REF] Plesken | Computing isometries of lattices[END_REF] which gives generators for Γ σ(h) . We represent the latter generators as elements in the symmetric group S M , where M is the cardinality of m(h), acting on the set m(h) of minimal vectors. Using those generators, we let GAP [START_REF]GAP -Groups, Algorithms, and Programming[END_REF] list all the elements of Γ σ(h) , viewed as elements of the symmetric group above.

The next step is to create a shortlist F 2 h of codimension 2 facets of σ(h) by intersecting all the translates under S M of codimension 1 facets with each member of C 1 h and only keeping those intersections with the correct rank (=d(N) -2). The resulting shortlist is reasonably small and we apply the procedure of 4.1 to reduce the shortlist to a set of representatives C 2 h of codimension 2 facets. We then proceed by induction on the codimension to define a list F p h of cells of codimension p > 2 in σ(h). Given F p h , we let C p h ⊂ F p h be a set of representatives for the action of Γ. We then let F p+1 h be the set of cells ϕ ∩ τ, with ϕ ∈ F 2 h , and τ ∈ C p h . As a result, we get directly the cellular structure of the quotient space (X * N , ∂X * N )/Γ without computing the full cellular structure of X * N which is not required (and of greater computational complexity). Next, we let Σ n be a system of representatives modulo Γ in the union of the sets

C d(N)-n h
, h ∈ P. We then compute generators of the stabilizer of each cell in Σ n with the help of another algorithm developed by Plesken and Souvignier in [START_REF] Plesken | Computing isometries of lattices[END_REF], and we check whether all generators preserve the orientation of the cell. This gives us the set Σ n as the set of those cells which pass that check.

Proposition 4.1. The cardinality of Σ n and Σ n is displayed in Figure 1 for rank N = 5, 6 and in Figure 2 for rank N = 7.

Remark 4.2. The first line in Figure 1 has already been computed by Batut (cf. [START_REF] Batut | Classification of quintic eutactic forms[END_REF], p.409, second column of Table 2). The running time for the computation of the cell structure (with the differentials and the checking) for N = 7 using [START_REF] Pfpk | A C library for computing Voronoï complexes[END_REF] was 18 months on several servers including quadri-processors computers, while for N = 6 this can be done in a few seconds. 4.3. The differential. The next step is to compute the differentials of the Voronoï complex by using formula (1) above. In Table 3, we give information on the differentials in the Voronoï complex of rank 6. For instance the second line, denoted d 11 , is about the differential from V 11 to V 10 . In the bases Σ 11 and Σ 10 , this differential is given by a matrix A with Ω = 513 non-zero entries, with m = 46 = card(Σ 10 ) rows and n = 163 = card(Σ 11 ) columns. The rank of A is 42, and the rank of its kernel is 121. The elementary divisors of A are 1 (multiplicity 40) and 2 (multiplicity 2).

A Ω n m rank ker elementary divisors

d 4 0 1 0 0 1 d 5 1 1 1 1 0 1(1) d 6 0 1 1 0 1 d 7 0 0 1 0 0 d 8 0 1 0 0 1 d 9 2 2 1 1 1 2 (1) 
Table 1. Results on the rank and elementary divisors of the differentials for SL 4 (Z).

A Ω n m rank ker elementary divisors 

d 8 0 1 0 0 1 d 9 2 7 
Table 2. Results on the rank and elementary divisors of the differentials for GL 5 (Z) .

The cases of SL 4 (Z), GL 5 (Z) and SL 6 (Z) are treated in Table 1, Table 2 and Table 4, respectively.

Our results on the differentials in rank 7 are shown in Table 5. While the matrices are sparse, they are not sparse enough for efficient computation. They have a poor conditioning with some dense columns or rows (this is a consequence of the fact that the complex is not simplicial and non-simplicial cells can have a large number of non-trivial intersections with the faces). We have obtained full information on the rank of the differentials. For the computation of the elementary divisors complete results have been obtained in the case of matrices of d n except for n = 19. For this case, the computational cost is currently too high. The computations have required a full year on a parallel computer (including checking). For n = 19 alone, the computational cost is equivalent to 3 CPU-years on a current processor. See [START_REF] Dumas | Parallel Computation of the Rank of Large Sparse Matrices from Algebraic K-theory[END_REF][START_REF] Urbanska/Marszalek | Hybrid and adaptive algorithms in exact linear algebra[END_REF] for a detailed description of the computations.

4.4.

The homology of the Voronoï complexes. From the computation of the differentials, we can determine the homology of Voronoï complex. Recall that if we have a complex of free abelian groups

• • • → Z α f → Z β g → Z γ → • • •
with f and g represented by matrices, then the homology is

ker(g)/Im( f ) Z/d 1 Z ⊕ • • • ⊕ Z/d Z ⊕ Z β-rank( f )-rank(g) ,
where d 1 , . . . , d are the elementary divisors of the matrix of f . We deduce from Tables 1-5 the following result on the homology of the Voronoï complex. 

(Z) ⊗ Q) 0.
Notice that, if N is odd, SL N (Z) and GL N (Z) have the same homology modulo S 2 . Notice also that, for simplicity, in the statement of the theorem we did not use the full information given by the list of elementary divisors in Tables 12345. 

Table 5. Results on the rank and elementary divisors of the differentials for GL 7 (Z) , middle entries cited from the thesis of A. Urbanska [START_REF] Urbanska/Marszalek | Hybrid and adaptive algorithms in exact linear algebra[END_REF].

4.5. Mass formulae for the Voronoï complex. Let χ(SL N (Z)) be the virtual Euler characteristic of the group SL N (Z). It can be computed in two ways. First, the mass formula in [START_REF] Brown | Cohomology of Groups[END_REF] gives

χ(SL N (Z)) = σ∈E (-1) dim(σ) 1 |Γ σ | = d(N) n=N (-1) n σ∈Σ n 1 |Γ σ | ,
where E is a family of representatives of the cells of the Voronoï complex of rank N modulo the action of SL N (Z), and Γ σ is the stabilizer of σ in SL N (Z). Second, by a result of Harder [START_REF] Harder | Die Kohomologie S -arithmetischer Gruppen über Funktionenkörpern[END_REF], we know that

χ(SL N (Z)) = N k=2 ζ(1 -k) , hence χ(SL N (Z)) = 0 if N 3.
A non-trivial check of our computations is to test the compatibility of these two formulas, and the corresponding check for rank N = 5 had been performed by Batut (cf. [START_REF] Batut | Classification of quintic eutactic forms[END_REF], where a proof of an analogous statement, for any N, but instead pertaining to well-rounded forms, which in our case are precisely the ones in Σ • , is attributed to Bavard [START_REF] Bavard | Classes minimales de réseaux et rétractions géométriques équivariantes dans les espaces symétriques[END_REF]).

If we add together the terms where σ runs through the perfect forms of rank N and the orientation of each cell is inherited from the one of X N /Γ.

Proof. The first assertion is clear since, by (3) above and ( 6) below we have

H d(N) Vor SL N (Z) ⊗ Q H d(N)-N+1 SL N (Z), St N ⊗ Q H 0 (SL N (Z), Q) Q .
In order to prove the second claim, write the differential between codimension 0 and codimension 1 cells as a matrix A of size n 1 ×n 0 , with n i = |Σ d(N)-i (Γ)| denoting the number of codimension i cells in the Voronoï cell complex. It can be checked that in each of the n 1 rows of A there are precisely two non-zero entries. Moreover, the absolute value of the (i, j)-th entry of A is equal to the quotient |Γ σ j |/|Γ τ i | (an integer), where σ j ∈ Σ d(N) (Γ) and τ i ∈ Σ d(N)-1 (Γ). Finally, one can multiply some columns by -1 (which amounts to changing the orientation of the corresponding codimension 0 cell) in such a way that each row has exactly one positive and one negative entry.

Example 5.2. For N = 5 the differential matrix d 14 (cf. Table 2) between codimension 0 and codimension 1 is given by 40 0 -15 40 -15 0 , so the kernel is generated by [START_REF] Bavard | Classes minimales de réseaux et rétractions géométriques équivariantes dans les espaces symétriques[END_REF][START_REF] Dutour Sikiric | Classification of eight dimensional perfect forms[END_REF][START_REF] Dutour Sikiric | Classification of eight dimensional perfect forms[END_REF] = 11520 1 3840 , 1 1440 , 1 1440 , while the orders of the three automorphism groups are 3840, 1440 and 1440, respectively.

Example 5.3. Similarly, the differential d 20 : V 20 → V 19 for rank N = 6 (cf. Table 3) is represented by the matrix 

                                                                 
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5.

2. An explicit non-trivial homology class for rank N = 5. The integer kernel of the 7 × 1-matrix of d 9 for GL 5 (Z), given by (0, 0, 0, 0, -1, 0, 1), is spanned by the image of d 10 (the latter being given, up to permutation of rows and columns, by the transpose of the matrix (4) below), together with (2, 1, -1, -1, -1, 1, 1). The latter vector therefore provides the coefficients of a non-trivial homology class in H 9 Vor GL 5 (Z) H 5 (GL 5 (Z), Z) (modulo S 5 ), given as a linear combination of cells (in terms of minimal vectors) as follows: where we denote the standard basis vectors in R 5 by e i , and we put e i j = e i + e j , ēi j = -e i +e j and e i jk = e i +e j +e k +e , as well as u = e 5 -e 1 -e 4 and v = e 5 -e 2 -e 3 .

6. Splitting off the Voronoï complex Vor N from Vor N+1 for small N In this section, we will be concerned with Γ = GL N (Z) only and we adapt the notation Σ n (N) = Σ n (GL N (Z)) for the sets of representatives.

6.1. Inflating well-rounded forms. Let A be the symmetric matrix attached to a form h in C * N . Suppose the cell associated to A is well-rounded, i.e., its set of minimal vectors S = S (A) spans the underlying vector space R N . Then we can associate to it a form h with matrix à = A 0 0 m(A) in C * N+1 , where m(A) denotes the minimum positive value of A on Z N . The set S of minimal vectors of à contains the ones from S , each vector being extended by an (N + 1)-th coordinate 0. Furthermore, S contains the additional minimal vectors ±e N+1 = ±(0, . . . , 0, 1), and hence it spans R N+1 , i.e., à is well-rounded as well. In the following, we will call forms like à as well as their associated cells inflated.

The stabilizer of h in GL N (Z) thereby embeds into the one of h inside GL N+1 (Z) (at least modulo ±Id) under the usual stabilization map.

Note that, by iterating the same argument r times, A induces a well-rounded form also in Σ • (N + r) which, for r 2, does not belong to Σ • (N + r) since there is an obvious orientation-reversing automorphism of the inflated form, given by the permutation which swaps the last two coordinates. j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j o j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g As is apparent from the picture, there are two connected components in that graph. The corresponding graph for GL 6 (Z) has three connected components, two of which are "isomorphic" (as weighted graphs with levels) to the one above for GL 5 (Z), except for a shift in codimension by 5 e.g. codimension 0 cells in Σ • (5) correspond to codimension 5 cells in Σ • (6) , i.e. a shift in dimension by 1.

σ 6 4 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f
In fact, it is possible, after appropriate coordinate transformations, to identify the minimal vectors (viewed up to sign) of any given cell in the two inflated components of Σ • (6) alluded to above with the minimal vectors of another cell which is inflated from one in Σ • (5), except precisely one minimal vector (up to sign) which is fixed under the stabilizer of the cell.

Let us illustrate this correspondence for the top-dimensional cell σ of the perfect form P 1 5 ∈ Σ 14 [START_REF] Borel | Corners and arithmetic groups[END_REF], also denoted P(5, 1) in [START_REF] Jaquet | Énumération complète des classes de formes parfaites en dimension 7[END_REF] and D 5 in [START_REF] Lee | On the torsion in K 4 (Z) and K 5 (Z)[END_REF], with the list m(P 1 5 ) of minimal vectors given already at the end of §5.2.

Using the algorithm described in §4.1, the corresponding inflated cell σ in Σ 15 (6) can be found to be, in terms of its 21 minimal vectors of the perfect form P 1 6 in Jaquet's notation (see [START_REF] Jaquet | Énumération complète des classes de formes parfaites en dimension 7[END_REF] and §5.2 for the full list m(P 

0 0 0 -1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 -1 0 0 0 -1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 -1 0 0 -1 0 0 -1 0 0 -1 -1 0 -1 -1 0 -1 0 0 0 0 1 0 0 0 -1 -1 -1 0 0 0 -1 -1 -1 0 0 0 -1 0 0 0 0 0 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2
The transformation For m = 8, we get H 8 (SL 7 (Z), Q) = 0 .

γ =                          0 -1 -1 0 0 0 0 0 -1 0 -1 -1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 -1 0 0 -1 -1 -1 0 -1 0
For the proof of the final statement on integral cohomology (modulo S 7 ) we use the fact that there are no primes p > 7 that divide the elementary divisors of the corresponding differentials (except possibly for d 19 which corresponds to m = 8) and the fact that none of the stabiliser orders of the cells in Σ 27-m are divisible by p. Note that computational evidence from Table 4 suggests that we should have H 8 (SL 7 (Z), Z) = 0 modulo S 7 .

Remark 7.4. Morita asks in [START_REF] Morita | Cohomological structure of the mapping class group and beyond[END_REF] whether the class of infinite order in H 5 (GL 5 (Z), Z) survives in the cohomology of the group of outer automorphisms of the free group of rank five. Remark 7.5. It was shown by A. Borel [4] that, for N large enough, H 5 (SL N (Z), Q) has dimension one. In view of Theorem 7.3 it is tempting to believe that the restriction map from H 5 (SL N (Z), Q) to H 5 (SL 5 (Z), Q) is an isomorphism. We have been unable to show that. An analogous statement holds, by the same results, for H 9 (SL N (Z), Q). Theorem 7.3 would seem to suggest that the non-trivial cohomology class already occurs for N = 6 and 7, i.e., in the "non-stable range".
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 2 Figure 2. Cardinality of Σ n and Σ n for GL 7 (Z) .

5. Explicit homology classes 5 . 1 .

 51 Equivariant fundamental classes. Theorem 5.1. The top homology group H d(N) Vor SL N (Z) ⊗ Q has dimension 1. When N = 4, 5, 6 or 7, it is represented by the cycle σ 1 |Γ σ | [σ] ,

  Its kernel is generated by (28, 28, 63, 10080, 4320, 30240, 288) while the orders of the corresponding automorphism groups are, respectively, 103680, 103680, 46080, 288, 672, 96, 10080 , and we note that 28 • 103680 = 63 • 46080 = 10080 • 288 = 4320 • 672 = 30240 • 96.

2 ϕ [e 1 ,

 1 e 2 , ē23 , ē13 , e 3 , ē34 , ē14 , ē45 , ē35 , ē25 ] + ϕ [e 1 , e 2 , e 3 , e 4 , e 24 , e 34 , e 5 , e 15 , e 35 , e 1245 ] -ϕ [e 1 , ē12 , e 2 , ē23 , e 3 , ē34 , ē14 , ē45 , ē35 , ē25 ] -ϕ [e 1 , e 2 , e 3 , e 4 , e 14 , e 24 , e 34 , e 5 , e 35 , e 1245 ] -ϕ [e 1 , ē12 , e 2 , ē13 , e 3 , ē14 , e 4 , u, ē45 , v] + ϕ [e 1 , e 2 , e 3 , e 14 , e 24 , e 34 , e 5 , e 15 , e 35 , e 1245 ] + ϕ [e 1 , e 2 , e 3 , e 4 , e 24 , e 34 , e 25 , e 35 , e 1245 , e 1345 ] .

6. 2 .Theorem 6 . 1 .

 261 The case N = 5. The complex Vor GL 5 (Z) is isomorphic to a direct factor of Vor GL 6 (Z) , with degrees shifted by 1.Proof. The Voronoï complex of GL 5 (Z) can be represented by the following weighted graph
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7. 3 .Z 2 Z

 32 The cohomology of modular groups. Theorem 7.3. (i) Modulo S 5 we have H m (SL 5 (Z), Z) if m = 5, Z if m = 0, 8, 9, 10, 0 otherwise. (iii) Modulo S 7 we get that H m (SL 7 (Z), Z) = if m = 0, 5, 9,14, 15, 0 if 1 m 20, m 8.

  Figure 1. Cardinality of Σ n and Σ n for N = 5, 6 (empty slots denote zero).

		n	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Σ n GL 5 (Z)	2	5	10 16 23	25	23	16	9	4	3					
	Σ n GL 5 (Z)					1	7	6	1	0	2	3					
	Σ n GL 6 (Z)		3	10 28 71 162 329 589	874	1066 1039	775	425 181	57	18	7
	Σ n GL 6 (Z)						3	46	163	340	544	636	469	200	49	5	
	Σ n SL 6 (Z)		3	10 28 71 163 347 691 1152 1532 1551 1134 585 222	62	18	7
	Σ n SL 6 (Z)			3	10 18	43	169 460	815	1132 1270	970	434 114	27	14	7
	n	6		7		8		9		10	11	12		13	14	15		
	Σ n	6		28		115		467		1882	7375	26885	87400 244029 569568 1089356
	Σ n							1		60	1019	8899		47271 171375 460261	955128
	n	17		18		19		20		21	22	23		24	25	26		
	Σ n	1683368 2075982 2017914 1523376 876385 374826 115411 24623	3518	352		
	Σ n	1548650 1955309 1911130 1437547 822922 349443 105054 21074	2798	305		

Table 3 .

 3 Results on the rank and elementary divisors of the differentials for GL 6 (Z) .

	A	Ω	n	m	rank ker	elementary divisors
	d 7	12	10	3	3	7	1(3)
	d 8	48	18	10	7	11	1(7)
	d 9	140	43	18	11	32	1(11)
	d 10	613	169	43	32 137	1(32)
	d 11	2952	460	169 136 324	1(129), 2(6), 6(1)
	d 12	7614	815	460 323 492	1(318), 2(3), 4(2)
	d 13 12395 1132	815 491 641	1(491)
	d 14 14966 1270 1132 641 629	1(637), 3(3), 12(1)
	d 15 12714	970 1270 629 341 1(621), 2(5), 6(1), 60(2)
	d 16	6491	434	970 339	95	1(338), 2(1)
	d 17	1832	114	434	95	19	1(92), 3(2), 18(1)
	d 18	257	27	114	19	8	1(17), 2(2)
	d 19	62	14	27	8	6	1(7), 10(1)
	d 20	28	7	14	6	1	1(1), 3(4), 504(1)

Table 4 .

 4 Results on the rank and elementary divisors of the differentials for SL 6 (Z) .

	while in the case SL 6 (Z) we get, modulo S 7 , that
	H n (Vor SL 6 (Z) )	      	Z, if n = 10, 11, 12, 20 , Z 2 , if n = 15 .
	Furthermore, for N = 7 we get, modulo S 7 , that
	H n (Vor GL 7 (Z) )	      	Z if n = 12, 13, 18, 22, 27 , 0 otherwise, except possibly for n = 19,
	and H 19 (Vor GL 7		

Theorem 4.3. The non-trivial homology of the Voronoï complexes associated to GL N (Z) with N = 5, 6 modulo S 5 is given by:

H n (Vor GL 5 (Z) ) Z, if n = 9, 14 , H n (Vor GL 6 (Z) ) Z, if n = 10,

11, 15 , 

  1 |Γ σ | for cells σ of the same dimension to a single term, then we get for N = 6, starting with the top dimension,

													45047 1451520	-	10633 11520	+	6425 576	-	12541 192
					+	7438673 34560	-	3841271 8640	+	9238 15	-	266865 448	+	14205227 34560	-	14081573 69120
						+	830183 11520	-	205189 11520	+	61213 20736	-	1169 3840	+	17 1008	-	1 2880
													= χ(SL 6 (Z)) = 0 .
	For N = 7 we obtain similarly
		-	290879 107520	+	13994381 103680	-	31815503 13824	+	1362329683 69120	-	6986939119 69120
		+	7902421301 23040	-	340039739981 414720	+	174175928729 120960	-	132108094091 69120
		+	27016703389 13824	-	13463035571 8640	+	14977461287 15360	-	22103821919 46080
	+	8522164169 46080	-	17886026827 322560	+	1764066533 138240	-	101908213 46080	+	12961451 46080
									-	10538393 414720	+	162617 103680	-	721 11520	+	43 32256
													= χ (SL 7 (Z)) = 0 .

  16 v 17 v 18 v 22 v 24 v 25 v 26 v 27 v 29 v 33 v 34 v 35 v 36

	v 1 v 1 v 2 v 4 v 5 v 10 v 12 v 13 v 14 -1 0 -1
	1 6 )),

Here the nodes in line j (marked on the left) represent the elements in Σ d(N)-j (5), i.e. we have 3, 2, 0, 1, 6,

and 1 cells in codimensions 0, 1, 2, 3, 4, 5 and 6, respectively, and arrows show incidences of those cells, while numbers attached to arrows give the corresponding incidence multiplicities. Since entering the multiplicities relating codimensions 4 and 5 would make the graph rather unwieldy, we give them instead in terms of the matrix corresponding to the differential d 10 connecting dimension 10 to 9 (columns refer, in this order, to σ 1

σ 3 order given above). One can verify that the other two perfect forms P 2 5 and P 3 5 (denoted by Voronoï A 5 and ϕ 2 , respectively) give rise to a corresponding inflated cell in Σ 15 [START_REF] Brown | Cohomology of Groups[END_REF] in a similar way.

Concerning the cells of positive codimension in Σ • (5), it turns out that these all have a representative which is a facet in σ. Furthermore, the matrix γ induces an isomorphism from the subcomplex of Σ • (6) spanned by σ and all its facets to the complex obtained by inflation, as in §6.1 above, from the complex spanned by σ 5 and all its facets. Finally, one can verify that the cells attached to P 2 5 and P 3 5 are conjugate, after inflation, to cells in Σ 15 [START_REF] Brown | Cohomology of Groups[END_REF], and that the differentials for Vor GL 5 and Vor GL 6 agree on these. This ends the proof of the theorem. 6.3. Other cases. A similar situation holds for Σ • (3) and Σ • (4), but as Σ • (3) consists of a single cell only, the picture is far less significant.

For N = 4, there is only one cell leftover in Σ • (4), in fact in Σ 6 (4), and it is already inflated from Σ 5 [START_REF] Bavard | Classes minimales de réseaux et rétractions géométriques équivariantes dans les espaces symétriques[END_REF]. Hence its image in Σ 7 [START_REF] Borel | Corners and arithmetic groups[END_REF] will allow an orientation reversing automorphism and hence will not show up in Σ 7 [START_REF] Borel | Corners and arithmetic groups[END_REF]. This illustrates the remark at the end of 6.1.

Finally, for N = 6, the cells in the third component of the incidence graph for GL 6 (Z) mentioned in the proof of Theorem 6.1 above appear, in inflated form, in the Voronoï complex for GL 7 (Z) which inherits the homology of that component, since in the weighted graph of GL 7 (Z), which is connected, there is only one incidence of an inflated cell with a non-inflated one. Therefore we do not have a splitting in this case. Proof. The minimal polynomial of g is the cyclotomic polynomial x p-1 + x p-2 + • • •+1. By the Cayley-Hamilton theorem, this polynomial divides the characteristic polynomial of g. Therefore p -1 N.

We shall also need the following result: Lemma 7.2. The action of GL N (R) on the symmetric space X N preserves its orientation if and only if N is odd.

Proof. The subgroup GL N (R) + ⊂ GL N (R) of elements with positive determinant is the connected component of the identity, therefore it preserves the orientation of X N . Any g ∈ GL N (R) which is not in GL N (R) + is the product of an element of GL N (R) + with the diagonal matrix ε = diag (-1, 1, . . . , 1), so we just need to check when ε preserves the orientation of X N . The tangent space T X N of X N at the origin consists of real symmetric matrices m = (m i j ) of trace zero. The action of ε is given by m • ε = ε t m ε (cf. §2.1) and we get (m • ε) i j = m i j unless i = 1 or j = 1 and i j, in which case (m • ε) i j = -m i j . Let δ i j be the matrix with entry 1 in row i and column j, and zero elsewhere. A basis of T X N consists of the matrices δ i j + δ ji , i j, together with N -1 diagonal matrices. For this basis, the action of ε maps N -1 vectors v to their opposite -v and fixes the other ones. The lemma follows. where v(N) = N(N -1)/2 is the virtual cohomological dimension of Γ and Z is the orientation module of X N . It follows that there is a long exact sequence

where Ĥ * is the Farrell cohomology of Γ [START_REF] Farrell | An extension of Tate cohomology to a class of infinite groups[END_REF]. From Lemma 7.1 and the Brown spectral sequence ([6], X (4.1)) we deduce that Ĥ * (Γ, Z) lies in S N+1 . Therefore (6)

When N is even, then the action of GL N (Z) on Z is given by the sign of the determinant (see Lemma 7.2) and Shapiro's lemma gives (7) H m (SL N (Z), Z) = H m (GL N (Z), M) , with M = Ind GL N (Z) SL N (Z) Z ≡ Z ⊕ Z , modulo S 2 . To summarize: when Γ = SL N (Z) or GL N (Z), where N 7, we know H m (Γ, Z) by combining (3) (end of §3.4), Theorem 4.3 and (6). This allows us to compute the cohomology of GL N (Z). The results are given in Theorem 7.3 below.