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Abstract. For N = 5, 6 and 7, using the classification of perfect quadratic forms,
we compute the homology of the Voronoï cell complexes attached to the modular
groups SLN(Z) and GLN(Z). From this we deduce the rational cohomology of
those groups.

1. Introduction

Let N > 1 be an integer and let SLN(Z) be the modular group of integral ma-
trices with determinant one. Our goal is to compute its cohomology groups with
trivial coefficients, i.e. Hq(SLN(Z),Z). The case N = 2 is well-known and follows
from the fact that SL2(Z) is the amalgamated product of two finite cyclic groups
([20], [6], II.7, Ex.3, p.52). The case N = 3 was done in [22]: for any q > 0 the
group Hq(SL3(Z),Z

)
is killed by 12. The case N = 4 has been studied by Lee and

Szczarba in [13]: modulo 2, 3 and 5–torsion, the cohomology group Hq(SL4(Z),Z
)

is trivial whenever q > 0, except that H3(SL4(Z),Z
)
= Z. In Theorem 7.3 below,

we solve the cases N = 5, 6 and 7.
For these calculations we follow the method of [13], i.e. we use the perfect

forms of Voronoï. Recall from [23] and [14] that a perfect form in N variables is
a positive definite real quadratic form h on RN which is uniquely determined (up
to a scalar) by its set of integral minimal vectors. Voronoï proved in [23] that there
are finitely many perfect forms of rank N, modulo the action of SLN(Z). These are
known for N 6 8 (see §2 below).

Voronoï used perfect forms to define a cell decomposition of the space X∗N of
positive real quadratic forms, the kernel of which is defined over Q. This cell
decomposition (cf. §3) is invariant under SLN(Z), hence it can be used to compute
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the equivariant homology of X∗N modulo its boundary. On the other hand, this
equivariant homology turns out to be isomorphic to the groups Hq

(
SLN(Z), StN

)
,

where StN is the Steinberg module (see [5] and §3.4 below). Finally, Borel–Serre
duality [5] asserts that the homology H∗

(
SLN(Z), StN

)
is dual to the cohomology

H∗
(
SLN(Z),Z

)
(modulo torsion).

To perform these computations for N 6 7, we needed the help of a computer.
The reason is that the Voronoï cell decomposition of X∗N gets soon very complicated
when N increases. For instance, when N = 7, there are more than two million orbits
of cells of dimension 18, modulo the action of SLN(Z) (see Figure 2 below). For
this purpose, we have developed a C library [17], which uses PARI [16] for some
functionalities. The algorithms are based on exact methods. As a result we get the
full Voronoï cell decomposition of the spaces X∗N for N 6 7 (with either GLN(Z)
or S LN(Z) action). Those decompositions are summarized in the figures and tables
below. The computations were done on several computers using different processor
architectures (which is useful for checking the results) and for N = 7 the overall
computational time was more than a year.

The paper is organized as follows. In §2, we recall the Voronoï theory of perfect
forms. In §3, we introduce a complex of abelian groups that we call the “Voronoï
complex” which computes the homology groups Hq

(
SLN(Z), StN

)
. In §4, we ex-

plain how to get an explicit description of the Voronoï complex in rank N = 5, 6
or 7, starting from the description of perfect forms available in the literature (es-
pecially in the work of Jaquet [12]). In Figures 1 and 2 we display the rank of
the groups in the Voronoï complex and in Tables 1–5 we give the elementary divi-
sors of its differentials. The homology of the Voronoï complex (hence the groups
Hq(SLN(Z), StN) ) follows from this. It is given in Theorem 4.3.

We found two methods to test whether our computations are correct. First,
checking that the virtual Euler characteristic of SLN(Z) vanishes leads to a mass
formula for the orders of the stabilizers of the cells of X∗N (cf. §4.5). Second, the
identity dn−1 ◦ dn = 0 for the differentials in the Voronoï complex is a non-trivial
equality when these differentials are written as explicit (large) matrices.

In §5 we give an explicit formula for the top homology group of the Voronoï
complex (Theorem 5.1). In §6 we prove that the Voronoï complex of GL5(Z) is a
direct factor of the Voronoï complex of GL6(Z) shifted by one. Finally, in §7 we
explain how to compute the cohomology of SLN(Z) and GLN(Z) (modulo torsion)
from our results on the homology of the Voronoï complex in §4. Our main result
is stated in Theorem 7.3.
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for its hospitality. The second author thanks the Institute for Experimental Math-
ematics (Essen), acknowledging financial support by the DFG and the European
Commission as well as hospitality of the Newton Institute in Cambridge and the
MPI for Mathematics in Bonn. The authors are grateful to B. Allombert, J.-G. Du-
mas, D.-O. Jaquet, J.-C. König, J. Martinet, S. Morita, A. Rahm, J-P. Serre and
B. Souvignier for helpful discussions and comments. The computations of the
Voronoï cell decomposition were performed on the computers of the Institut de
Mathématiques et Modélisation de Montpellier, the MPI, the Institut Fourier in
Grenoble and the Centre de Calcul Médicis; we are grateful to those institutions.

Notation: For any positive integer n we let Sn be the class of finite abelian
groups the order of which has only prime factors less than or equal to n.
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2. Voronoï’s reduction theory

2.1. Perfect forms. Let N > 2 be an integer. We let CN be the set of positive
definite real quadratic forms in N variables. Given h ∈ CN , let m(h) be the finite
set of minimal vectors of h, i.e. vectors v ∈ ZN , v , 0, such that h(v) is minimal.
A form h is called perfect when m(h) determines h up to scalar: if h′ ∈ CN is such
that m(h′) = m(h), then h′ is proportional to h.

Example 2.1. The form h(x, y) = x2 + y2 has minimum 1 and precisely 4 minimal
vectors ±(1, 0) and ±(0, 1). This form is not perfect, because there is an infinite
number of positive definite quadratic forms having these minimal vectors, namely
the forms h(x, y) = x2 + axy + y2 where a is a non-negative real number less than
1. By contrast, the form h(x, y) = x2 + xy+ y2 has also minimum 1 and has exactly
6 minimal vectors, viz. the ones above and ±(1,−1). This form is perfect, the
associated lattice is the “honeycomb lattice”.

Denote by C∗N the set of non-negative real quadratic forms on RN the kernel of
which is spanned by a proper linear subspace of QN , by X∗N the quotient of C∗N by
positive real homotheties, and by π : C∗N → X∗N the projection. Let XN = π(CN)
and ∂X∗N = X∗N − XN . Let Γ be either GLN(Z) or SLN(Z). The group Γ acts on C∗N
and X∗N on the right by the formula

h · γ = γt h γ , γ ∈ Γ , h ∈ C∗N ,

where h is viewed as a symmetric matrix and γt is the transpose of the matrix γ.
Voronoï proved that there are only finitely many perfect forms modulo the action
of Γ and multiplication by positive real numbers ([23], Thm. p.110).
The following table gives the current state of the art on the enumeration of perfect
forms.

rank 1 2 3 4 5 6 7 8 9

#classes 1 1 1 2 3 7 33 10916 > 500000

The classification of perfect forms of rank 8 was achieved by Dutour, Schürmann
and Vallentin in 2005 [8], [19]. They have also shown that in rank 9 there are at
least 500000 classes of perfect forms. The corresponding classification for rank 7
was completed by Jaquet in 1991 [12], for rank 6 by Barnes [1], and by Voronoï
for the other dimensions. We refer to the book of Martinet [14] for more details on
the results up to rank 7.

2.2. A cell complex. Given v ∈ ZN − {0} we let v̂ ∈ C∗N be the form defined by

v̂(x) = (v | x)2 , x ∈ RN ,

where (v | x) is the scalar product of v and x. The convex hull in X∗N of a finite
subset B ⊂ ZN − {0} is the subset of X∗N which is the image under π of the quadratic
forms

∑
j
λ j v̂ j ∈ C∗N , where v j ∈ B and λ j > 0. For any perfect form h, we let

σ(h) ⊂ X∗N be the convex hull of the set m(h) of its minimal vectors. Voronoï
proved in [23], §§8-15, that the cells σ(h) and their intersections, as h runs over
all perfect forms, define a cell decomposition of X∗N , which is invariant under the
action of Γ. We endow X∗N with the corresponding CW-topology. If τ is a closed
cell in X∗N and h a perfect form with τ ⊂ σ(h), we let m(τ) be the set of vectors v in
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m(h) such that v̂ lies in τ. Any closed cell τ is the convex hull of m(τ), and for any
two closed cells τ, τ′ in X∗N we have m(τ) ∩ m(τ′) = m(τ ∩ τ′).

3. The Voronoï complex

3.1. An explicit differential for the Voronoi complex. Let d(N) = N(N+1)/2−1
be the dimension of X∗N and n 6 d(N) a natural integer. We denote by Σ⋆n = Σ

⋆
n (Γ)

a set of representatives, modulo the action of Γ, of those cells of dimension n in
X∗N which meet XN , and by Σn = Σn(Γ) ⊂ Σ⋆n (Γ) the cells σ for which any element
of the stabilizer Γσ of σ in Γ preserves the orientation. Let Vn be the free abelian
group generated by Σn. We define as follows a map

dn : Vn → Vn−1 .

For each closed cell σ in X∗N we fix an orientation of σ, i.e. an orientation of
the real vector space R(σ) of symmetric matrices spanned by the forms v̂ with
v ∈ m(σ). Let σ ∈ Σn and let τ′ be a face of σ which is equivalent under Γ to
an element in Σn−1 (i.e. τ′ neither lies on the boundary nor has elements in its
stabilizer reversing the orientation). Given a positive basis B′ of R(τ′) we get a
basis B of R(σ) ⊃ R(τ′) by appending to B′ a vector v̂, where v ∈ m(σ) − m(τ′).
We let ε(τ′, σ) = ±1 be the sign of the orientation of B in the oriented vector space
R(σ) (this sign does not depend on the choice of v).

Next, let τ ∈ Σn−1 be the (unique) cell equivalent to τ′ and let γ ∈ Γ be such that
τ′ = τ · γ. We define η(τ, τ′) = 1 (resp. η(τ, τ′) = −1) when γ is compatible (resp.
incompatible) with the chosen orientations of R(τ) and R(τ′).

Finally we define

(1) dn(σ) =
∑

τ∈Σn−1

∑

τ′

η(τ, τ′) ε(τ′, σ) τ ,

where τ′ runs through the set of faces of σ which are equivalent to τ.

3.2. A spectral sequence. According to [6], VII.7, there is a spectral sequence
Er

pq converging to the equivariant homology groups HΓp+q(X∗N , ∂X
∗
N ;Z) of the ho-

mology pair (X∗N , ∂X
∗
N), and such that

E1
pq =

⊕

σ∈Σ⋆p

Hq(Γσ,Zσ) ,

where Zσ is the orientation module of the cell σ and, as above, Σ⋆p is a set of
representatives, modulo Γ, of the p-cells σ in X∗N which meet XN . Since σ meets
XN , its stabilizer Γσ is finite and, by Lemma 7.1 in §7 below, the order of Γσ is
divisible only by primes p 6 N + 1. Therefore, when q is positive, the group
Hq(Γσ,Zσ) lies in SN+1.

When Γσ happens to contain an element which changes the orientation of σ, the
group H0(Γσ,Zσ) is killed by 2, otherwise H0(Γσ,Zσ) � Zσ). Therefore, modulo
S2, we have

E1
n 0 =

⊕

σ∈Σn

Zσ ,

and the choice of an orientation for each cell σ gives an isomorphism between E1
n 0

and Vn.
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3.3. Comparison. We claim that the differential

d1
n : E1

n 0 → E1
n−1,0

coincides, up to sign, with the map dn defined in 3.1. According to [6], VII,
Prop. (8.1), the differential d1

n can be described as follows.

Let σ ∈ Σ⋆n and let τ′ be a face of σ. Consider the group Γστ′ = Γσ ∩ Γτ′ and
denote by

tστ′ : H∗(Γσ,Zσ)→ H∗(Γστ′ ,Zσ)

the transfer map. Next, let

uστ′ : H∗(Γστ′ ,Zσ)→ H∗(Γτ′ ,Zτ′)

be the map induced by the natural map Zσ → Zτ′ , together with the inclusion
Γστ′ ⊂ Γτ′ . Finally, let τ ∈ Σ⋆n−1 be the representative of the Γ-orbit of τ′, let γ ∈ Γ
be such that τ′ = τ · γ, and let

vτ′τ : H∗(Γτ′ ,Zτ′)→ H∗(Γτ,Zτ)

be the isomorphism induced by γ. Then the restriction of d1
n to H∗(Γσ,Zσ) is equal,

up to sign, to the sum

(2)
∑

τ′

vτ′τ uστ′ tστ′ ,

where τ′ runs over a set of representatives of faces of σ modulo Γσ.

To compare d1
n with dn we first note that, when τ ∈ Σn−1,

vτ′τ : H0(Γτ′ ,Zτ′) = Z→ H0(Γτ,Zτ) = Z

is the multiplication by η(τ, τ′), as defined in §3.1. Next, when σ ∈ Σn, the map

uστ′ : H0(Γστ′ ,Zσ) = Zσ = Z→ H0(Γτ′ ,Zτ′) = Z

is the multiplication by ε(τ′, σ), up to a sign depending on n only. Finally, the
transfer map

tστ′ : H0(Γσ,Zσ) = Z→ H0(Γστ′ ,Zσ) = Z

is the multiplication by [Γσ : Γστ′]. Multiplying the sum (2) by this number
amounts to the same as taking the sum over all faces of σ as in (1). This proves
that dn coincides, up to sign, with d1

n on E1
n 0 = Vn. �

In particular, we get that dn−1 ◦ dn = 0. Note that this identity will give us a
non-trivial test of our explicit computations of the complex.

Notation: The resulting complex (V•, d•) will be denoted by VorΓ, and we call
it the Voronoï complex.

3.4. The Steinberg module. Let TN be the spherical Tits building of SLN over Q,
i.e. the simplicial set defined by the ordered set of non-zero proper linear subspaces
of QN . The reduced homology H̃q(TN ,Z) of TN with integral coefficients is zero
except when q = N − 2, in which case

H̃N−2(TN ,Z) = StN

is by definition the Steinberg module [5]. According to [21], Prop. 1, the relative
homology groups Hq(X∗N , ∂X

∗
N ;Z) are zero except when q = N − 1, and

HN−1(X∗N , ∂X
∗
N ;Z) = StN .
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From this it follows that, for all m ∈ N,

HΓm(X∗N , ∂X
∗
N ;Z) = Hm−N+1(Γ,StN)

(see e.g. [21], §3.1). Combining this equality with the previous sections we con-
clude that, modulo SN+1,

(3) Hm−N+1(Γ,StN) = Hm(VorΓ) .

4. The Voronoï complex in dimensions 5, 6 and 7

In this section, we explain how to compute the Voronoï complexes of rank N 6 7.

4.1. Checking the equivalence of cells. As a preliminary step, we develop an
effective method to check whether two cells σ and σ′ of the same dimension are
equivalent under the action of Γ. The cell σ (resp. σ′) is described by its set of
minimal vectors m(σ) (resp. m(σ′)). We let b (resp. b′) be the sum of the forms v̂
with v ∈ m(σ) (resp. m(σ′)). If σ and σ′ are equivalent under the action of Γ the
same is true for b and b′, and the converse holds true since two cells of the same
dimension are equal when they have an interior point in common.

To compare b and b′ we first check whether or not they have the same determi-
nant. In case they do, we let M (resp. M′) be the set of numbers b(x) with x ∈ m(σ)
(resp. b′(x) with x ∈ m(σ′)). If b and b′ are equivalent, then the sets M and M′

must be equal.
Finally, if M = M′ we check if b and b′ are equivalent by applying an algorithm

of Plesken and Souvignier [18] (based on an implementation of Souvignier).

4.2. Finding generators of the Voronoï complex. In order to compute Σn (and
Σ⋆n ), we proceed as follows. Fix N 6 7. Let P be a set of representatives of the
perfect forms of rank N. A choice of P is provided by Jaquet [12]. Furthermore,
for each h ∈ P, Jaquet gives the list m(h) of its minimal vectors, and the list of all
perfect forms h′γ (one for each orbit under Γσ(h)), where h′ ∈ P and γ ∈ Γ, such
that σ(h) and σ(h′)γ share a face of codimension one. This provides a complete
list C1

h of representatives of codimension one faces in σ(h).
From this, one deduces the full list F 1

h of faces of codimension one in σ(h)
as follows: first list all the elements in the automorphism group Γσ(h); this can
be obtained by using a second procedure implemented by Souvignier [18] which
gives generators for Γσ(h). We represent the latter generators as elements in the
symmetric group SM, where M is the cardinality of m(h), acting on set m(h) of
minimal vectors. Using those generators, we let GAP [10] list all the elements of
Γσ(h), viewed as elements of the symmetric group above.

The next step is to create a shortlist F 2
h of codimension 2 facets of σ(h) by

intersecting all the translates under SM of codimension 1 facets with each member
of C1

h and only keeping those intersections with the correct rank (=d(N) − 2). The
resulting shortlist is reasonably small and we apply the procedure of 4.1 to reduce
the shortlist to a set of representatives C2

h of codimension 2 facets.

We then proceed by induction on the codimension to define a list F p
h of cells of

codimension p > 2 in σ(h). Given F p
h , we let Cp

h ⊂ F
p

h be a set of representatives

for the action of Γ. We then let F p+1
h be the set of cells ϕ ∩ τ, with ϕ ∈ F 2

h , and
τ ∈ C

p
h .
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n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Σ⋆n
(
GL5(Z)

)
2 5 10 16 23 25 23 16 9 4 3

Σn
(
GL5(Z)

)
1 7 6 1 0 2 3

Σ⋆n
(
GL6(Z)

)
3 10 28 71 162 329 589 874 1066 1039 775 425 181 57 18 7

Σn
(
GL6(Z)

)
3 46 163 340 544 636 469 200 49 5

Σ⋆n
(
SL6(Z)

)
3 10 28 71 163 347 691 1152 1532 1551 1134 585 222 62 18 7

Σn
(
SL6(Z)

)
3 10 18 43 169 460 815 1132 1270 970 434 114 27 14 7

Figure 1. Cardinality of Σn and Σ⋆n for N = 5, 6 (empty slots de-
note zero).

n 6 7 8 9 10 11 12 13 14 15 16

Σ⋆n 6 28 115 467 1882 7375 26885 87400 244029 569568 1089356

Σn 1 60 1019 8899 47271 171375 460261 955128

n 17 18 19 20 21 22 23 24 25 26 27

Σ⋆n 1683368 2075982 2017914 1523376 876385 374826 115411 24623 3518 352 33

Σn 1548650 1955309 1911130 1437547 822922 349443 105054 21074 2798 305 33

Figure 2. Cardinality of Σn and Σ⋆n for GL7(Z) .

Next, we let Σ⋆n be a system of representatives modulo Γ in the union of the sets
C

d(N)−n
h , h ∈ P. We then compute generators of the stabilizer of each cell in Σ⋆n

with the help of another algorithm developed by Plesken and Souvignier in [18],
and we check whether all generators preserve the orientation of the cell. This gives
us the set Σn as the set of those cells which pass that check.

Proposition 4.1. The cardinality of Σn and Σ⋆n is displayed in Figure 1 for rank
N = 5, 6 and in Figure 2 for rank N = 7.

Remark 4.2. The first line in Figure 1 has already been computed by Batut (cf. [2],
p.409, second column of Table 2).

4.3. The differential. The next step is to compute the differentials of the Voronoï
complex by using formula (1) above. In Table 3, we give information on the differ-
entials in the Voronoï complex of rank 6. For instance the second line, denoted d11,
is about the differential from V11 to V10. In the bases Σ11 and Σ10, this differential is
given by a matrix A with Ω = 513 non-zero entries, with m = 46 = card(Σ10) rows
and n = 163 = card(Σ11) columns. The rank of A is 42, and the rank of its kernel
is 121. The elementary divisors of A are 1 (multiplicity 40) and 2 (multiplicity 2).

The cases of SL4(Z), GL5(Z) and SL6(Z) are treated in Table 1, Table 2 and Ta-
ble 4, respectively.
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A Ω n m rank ker elementary divisors

d4 0 1 0 0 1
d5 1 1 1 1 0 1(1)
d6 0 1 1 0 1
d7 0 0 1 0 0
d8 0 1 0 0 1
d9 2 2 1 1 1 2(1)

Table 1. Results on the rank and elementary divisors of the differ-
entials for SL4(Z).

A Ω n m rank ker elementary divisors

d8 0 1 0 0 1
d9 2 7 1 1 6 1(1)

d10 18 6 7 5 1 1(4), 2(1)
d11 5 1 6 1 0 1(1)
d12 0 0 1 0 0
d13 0 2 0 0 2
d14 4 3 2 2 1 5(1), 15(1)

Table 2. Results on the rank and elementary divisors of the differ-
entials for GL5(Z) .

A Ω n m rank ker elementary divisors

d10 17 46 3 3 43 1(3)
d11 513 163 46 42 121 1(40), 2(2)
d12 2053 340 163 120 220 1(120)
d13 4349 544 340 220 324 1(217), 2(3)
d14 6153 636 544 324 312 1(320), 2(1), 6(2), 12(1)
d15 5378 469 636 312 157 1(307), 2(3), 60(2)
d16 2526 200 469 156 44 1(156)
d17 597 49 200 44 5 1(41), 3(1), 6(1), 36(1)
d18 43 5 49 5 0 1(5)

Table 3. Results on the rank and elementary divisors of the differ-
entials for GL6(Z) .

Our results on the differentials in rank 7 are shown in Table 5. While the ma-
trices are sparse, they are not sparse enough for efficient computation. They have
a poor conditioning with some dense columns or rows (this is a consequence of
the fact that the complex is not simplicial and non-simplicial cells can have a large
number of non-trivial intersections with the faces). We have obtained full informa-
tion on the rank of the differentials. For the computation of the elementary divisors
complete results have been obtained in the case of matrices of dn for 10 6 n 6 14
and 24 6 n 6 27 only. See [7] for a detailed description of the computation.

4.4. The homology of the Voronoï complexes. From the computation of the dif-
ferentials, we can determine the homology of Voronoï complex. Recall that if we
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A Ω n m rank ker elementary divisors

d7 12 10 3 3 7 1(3)
d8 48 18 10 7 11 1(7)
d9 140 43 18 11 32 1(11)

d10 613 169 43 32 137 1(32)
d11 2952 460 169 136 324 1(129), 2(6), 6(1)
d12 7614 815 460 323 492 1(318), 2(3), 4(2)
d13 12395 1132 815 491 641 1(491)
d14 14966 1270 1132 641 629 1(637), 3(3), 12(1)
d15 12714 970 1270 629 341 1(621), 2(5), 6(1), 60(2)
d16 6491 434 970 339 95 1(338), 2(1)
d17 1832 114 434 95 19 1(92), 3(2), 18(1)
d18 257 27 114 19 8 1(17), 2(2)
d19 62 14 27 8 6 1(7), 10(1)
d20 28 7 14 6 1 1(1), 3(4), 504(1)

Table 4. Results on the rank and elementary divisors of the differ-
entials for SL6(Z) .

A Ω n m rank ker elementary divisors

d10 8 60 1 1 59 1
d11 1513 1019 60 59 960 1 (59)
d12 37519 8899 1019 960 7939 1 (958), 2 (2)
d13 356232 47271 8899 7938 39333 1 (7937), 2 (1)
d14 1831183 171375 47271 39332 132043 1 (39300), 2 (29), 4 (3)
d15 6080381 460261 171375 132043 328218 ?
d16 14488881 955128 460261 328218 626910 ?
d17 25978098 1548650 955128 626910 921740 ?
d18 35590540 1955309 1548650 921740 1033569 ?
d19 37322725 1911130 1955309 1033568 877562 ?
d20 29893084 1437547 1911130 877562 559985 ?
d21 18174775 822922 1437547 559985 262937 ?
d22 8251000 349443 822922 262937 86506 ?
d23 2695430 105054 349443 86505 18549 ?
d24 593892 21074 105054 18549 2525 1 (18544), 2 (4), 4 (1)
d25 81671 2798 21074 2525 273 1 (2507), 2 (18)
d26 7412 305 2798 273 32 1 (258), 2 (7), 6 (7), 36 (1)
d27 600 33 305 32 1 1 (23), 2 (4), 28 (3), 168 (1), 2016 (1)

Table 5. Results on the rank and elementary divisors of the differ-
entials for GL7(Z) .

have a complex of free abelian groups

· · · → Zα
f
→ Zβ

g
→ Zγ → · · ·

with f and g represented by matrices, then the homology is

ker(g)/Im( f ) � Z/d1Z ⊕ · · · ⊕ Z/dℓZ ⊕ Z
β−rank( f )−rank(g),

where d1, . . . , dℓ are the elementary divisors of the matrix of f .
We deduce from Tables 1–5 the following result on the homology of the Voronoï

complex.
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Theorem 4.3. The non-trivial homology of the Voronoï complexes associated to
GLN(Z) with N = 5, 6 modulo S5 is given by:

Hn(VorGL5(Z)) � Z, if n = 9, 14 ,

Hn(VorGL6(Z)) � Z, if n = 10, 11, 15 ,

while in the case SL6(Z) we get, modulo S7, that

Hn(VorSL6(Z)) �


Z, if n = 10, 11, 12, 20 ,

Z2, if n = 15 .

Furthermore, for N = 7 we get

Hn(VorGL7(Z) ⊗ Q) �


Q if n = 12, 13, 18, 22, 27 ,

0 otherwise.

Notice that, if N is odd, SLN(Z) and GLN(Z) have the same homology modulo
S2. Notice also that, for simplicity, in the statement of the theorem we did not use
the full information given by the list of elementary divisors in Tables 1–5.

4.5. Mass formulae for the Voronoï complex. Let χ(SLN(Z)) be the virtual Euler
characteristic of the group SLN(Z). It can be computed in two ways. First, the mass
formula in [6] gives

χ(SLN(Z)) =
∑

σ∈E

(−1)dim(σ) 1
|Γσ|
=

d(N)∑

n=N

(−1)n
∑

σ∈Σ⋆n

1
|Γσ|
,

where E is a family of representatives of the cells of the Voronoï complex of rank
N modulo the action of SLN(Z), and Γσ is the stabilizer of σ in SLN(Z). Second,
by a result of Harder [11], we know that

χ(SLN(Z)) =
N∏

k=2

ζ(1 − k) ,

hence χ(SLN(Z)) = 0 if N > 3.

A non-trivial check of our computations is to test the compatibility of these two
formulas, and the corresponding check for rank N = 5 had been performed by
Batut (cf. [2], where a proof of an analogous statement, for any N, but instead
pertaining to well-rounded forms, which in our case are precisely the ones in Σ⋆• ,
is attributed to Bavard [3]).

If we add together the terms 1
|Γσ |

for cells σ of the same dimension to a single
term, then we get for N = 6, starting with the top dimension,

45047
1451520

−
10633
11520

+
6425
576

−
12541
192

+
7438673

34560
−

3841271
8640

+
9238

15
−

266865
448

+
14205227

34560
−

14081573
69120

+
830183
11520

−
205189
11520

+
61213
20736

−
1169
3840

+
17

1008
−

1
2880

= χ(SL6(Z)) = 0 .

For N = 7 we obtain similarly
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−
290879
107520

+
13994381

103680
−

31815503
13824

+
1362329683

69120
−

6986939119
69120

+
7902421301

23040
−

340039739981
414720

+
174175928729

120960
−

132108094091
69120

+
27016703389

13824
−

13463035571
8640

+
14977461287

15360
−

22103821919
46080

+
8522164169

46080
−

17886026827
322560

+
1764066533

138240
−

101908213
46080

+
12961451

46080

−
10538393
414720

+
162617
103680

−
721

11520
+

43
32256

= χ (SL7(Z)) = 0 .

5. Explicit homology classes

5.1. Equivariant fundamental classes.

Theorem 5.1. The top homology group Hd(N)
(
VorSLN (Z) ⊗ Q

)
has dimension 1.

When N = 4, 5, 6 or 7, it is represented by the cycle

∑

σ

1
|Γσ|

[σ] ,

where σ runs through the perfect forms of rank N and the orientation of each cell
is inherited from the one of XN/Γ.

Proof. The first assertion is clear since, by (3) above and (6) below we have

Hd(N)
(
VorSLN (Z) ⊗ Q

)
� Hd(N)−N+1

(
SLN(Z), StN ⊗ Q

)
� H0(SLN(Z),Q) � Q .

In order to prove the second claim, write the differential between codimension 0
and codimension 1 cells as a matrix A of size n1×n0, with ni = |Σd(N)−i(Γ)| denoting
the number of codimension i cells in the Voronoï cell complex. It can be checked
that in each of the n1 rows of A there are precisely two non-zero entries. Moreover,
the absolute value of the (i, j)-th entry of A is equal to the quotient |Γσ j |/|Γτi | (an
integer), where σ j ∈ Σd(N)(Γ) and τi ∈ Σd(N)−1(Γ). Finally, one can multiply some
columns by −1 (which amounts to changing the orientation of the corresponding
codimension 0 cell) in such a way that each row has exactly one positive and one
negative entry. �

Example 5.2. For N = 5 the differential matrix d14 (cf. Table 2) between codimen-
sion 0 and codimension 1 is given by

(
40 0 −15
40 −15 0

)
,

so the kernel is generated by (3, 8, 8) = 11520
( 1

3840 ,
1

1440 ,
1

1440

)
, while the orders of

the three automorphism groups are 3840, 1440 and 1440, respectively.
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Example 5.3. Similarly, the differential d20 : V20 → V19 for rank N = 6 (cf. Table
3) is represented by the matrix



0 0 96 0 0 0 −21
3240 0 0 0 −21 0 0

0 0 1440 0 0 −3 0
0 0 0 18 0 −6 0

−12960 0 0 0 0 12 0
−3240 0 0 9 0 0 0

0 −360 0 1 0 0 0
−4320 0 0 12 0 0 0

0 0 960 −6 0 0 0
0 −216 96 0 0 0 0
−45 45 0 0 0 0 0
−2592 0 1152 0 0 0 0
−3240 0 1440 0 0 0 0
−432 0 192 0 0 0 0



.

Its kernel is generated by

(28, 28, 63, 10080, 4320, 30240, 288)

while the orders of the corresponding automorphism groups are, respectively,

103680, 103680, 46080, 288, 672, 96, 10080 ,

and we note that 28 ·103680 = 63 ·46080 = 10080 ·288 = 4320 ·672 = 30240 ·96.

5.2. An explicit non-trivial homology class for rank N = 5. The integer kernel
of the 7 × 1-matrix of d9 for GL5(Z), given by (0, 0, 0, 0,−1, 0, 1), is spanned by
the image of d10 (the latter being given, up to permutation of rows and columns,
by the transpose of the matrix (4) below), together with (2, 1,−1,−1,−1, 1, 1). The
latter vector therefore provides the coefficients of a non-trivial homology class in
H9

(
VorGL5(Z)

)
� H5(GL5(Z),Z) (moduloS5), given as a linear combination of cells

(in terms of minimal vectors) as follows:

2ϕ
(
[e1, e2, ē23, ē13, e3, ē34, ē14, ē45, ē35, ē25]

)

+ϕ
(
[e1, e2, e3, e4, e24, e34, e5, e15, e35, e1245]

)

−ϕ
(
[e1, ē12, e2, ē23, e3, ē34, ē14, ē45, ē35, ē25]

)

−ϕ
(
[e1, e2, e3, e4, e14, e24, e34, e5, e35, e1245]

)

−ϕ
(
[e1, ē12, e2, ē13, e3, ē14, e4, u, ē45, v]

)

+ϕ
(
[e1, e2, e3, e14, e24, e34, e5, e15, e35, e1245]

)

+ϕ
(
[e1, e2, e3, e4, e24, e34, e25, e35, e1245, e1345]

)
.

where we denote the standard basis vectors in R5 by ei, and we put ei j = ei + e j,
ēi j = −ei+e j and ei jkℓ = ei+e j+ek+eℓ, as well as u = e5−e1−e4 and v = e5−e2−e3.

6. Splitting off the Voronoï complex VorN from VorN+1 for small N

In this section, we will be concerned with Γ = GLN(Z) only and we adapt the
notation Σn(N) = Σn(GLN(Z)) for the sets of representatives.
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6.1. Inflating well-rounded forms. Let A be the symmetric matrix attached to
a form h in C∗N . Suppose the cell associated to A is well-rounded, i.e., its set
of minimal vectors S = S (A) spans the underlying vector space RN . Then we

can associate to it a form h̃ with matrix Ã =

(
A 0
0 m(A)

)
in C∗N+1, where m(A)

denotes the minimum positive value of A on ZN . The set S̃ of minimal vectors of Ã
contains the ones from S , each vector being extended by an (N + 1)-th coordinate
0. Furthermore, S̃ contains the additional minimal vectors ±eN+1 = ±(0, . . . , 0, 1),
and hence it spans RN+1, i.e., Ã is well-rounded as well. In the following, we will
call forms like Ã as well as their associated cells inflated.

The stabilizer of h in GLN(Z) thereby embeds into the one of h̃ inside GLN+1(Z)
(at least modulo ±Id) under the usual stabilization map.

Note that, by iterating the same argument r times, A induces a well-rounded
form also in Σ⋆• (N + r) which, for r > 2, does not belong to Σ•(N + r) since there is
an obvious orientation-reversing automorphism of the inflated form, given by the
permutation which swaps the last two coordinates.

6.2. The case N = 5.

Theorem 6.1. The complex VorGL5(Z) is isomorphic to a direct factor of VorGL6(Z),
with degrees shifted by 1.

Proof. The Voronoï complex of GL5(Z) can be represented by the following weighted
graph with levels

0 : P1
5

−15
==

==
=

P2
5

40��
��

�

40
==

==
=

P3
5

−15��
��

�

1 : σ1
1 σ2

1

3 : σ1
3

−1

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1

oooooooooooooooooooo

−2
��

��
��

��
��

�

−2
1

>>
>>

>>
>>

>>
>

4 : σ1
4

OOOOOOOOOOOOOOOOOOOO

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW σ2
4

OOOOOOOOOOOOOOOOOOOO

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT σ3
4

oooooooooooooooooooo

��
��

��
��

��
�

σ4
4

��
��

��
��

��
�

σ5
4

oooooooooooooooooooo

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

gggggggggggggggggggggggggggggggggggggggg σ6
4

ffffffffffffffffffffffffffffffffffffffffffffff

−1

��
��
��
��
�

−1

22
22

22
22

2

5 : σ1
5 σ2

5 σ3
5 σ4

5 σ5
5 σ6

5

1

11
11

11
11

1
σ7

5

−1







6 : σ1
6

Here the nodes in line j (marked on the left) represent the elements in Σd(N)− j(5),
i.e. we have 3, 2, 0, 1, 6, 7 and 1 cells in codimensions 0, 1, 2, 3, 4, 5 and 6, re-
spectively, and arrows show incidences of those cells, while numbers attached to
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arrows give the corresponding incidence multiplicities. Since entering the multi-
plicities relating codimensions 4 and 5 would make the graph rather unwieldy, we
give them instead in terms of the matrix corresponding to the differential d10 con-
necting dimension 10 to 9 (columns refer, in this order, to σ1

5, . . . , σ
7
5, while rows

refer to σ1
4, . . . , σ

6
4)

(4)



−5 0 −5 0 −1 0 0
0 −2 0 2 −2 0 0
2 −2 1 0 0 0 0
0 0 2 1 0 0 0
−1 −2 1 0 1 0 0
0 4 0 0 0 −1 −1



.

As is apparent from the picture, there are two connected components in that
graph. The corresponding graph for GL6(Z) has three connected components, two
of which are "isomorphic" (as weighted graphs with levels) to the one above for
GL5(Z), except for a shift in codimension by 5

(
e.g. codimension 0 cells in Σ•(5)

correspond to codimension 5 cells in Σ•(6)
)
, i.e. a shift in dimension by 1.

In fact, it is possible, after appropriate coordinate transformations, to identify
the minimal vectors (viewed up to sign) of any given cell in the two inflated com-
ponents of Σ•(6) alluded to above with the minimal vectors of another cell which is
inflated from one in Σ•(5), except precisely one minimal vector (up to sign) which
is fixed under the stabilizer of the cell.

Let us illustrate this correspondence for the top-dimensional cell σ of the perfect
form P1

5 ∈ Σ14(5), also denoted P(5, 1) in [12] and D5 in [13], with the list m(P1
5)

of minimal vectors given already at the end of §5.2.
Using the algorithm described in §4.1, the corresponding inflated cell σ̃ in Σ15(6)

can be found to be, in terms of its 21 minimal vectors of the perfect form P1
6 in

Jaquet’s notation (see [12] and §5.2 for the full list m(P1
6)),

v1 v2 v4 v5 v10 v12 v13 v14 v16 v17 v18 v22 v24 v25 v26 v27 v29 v33 v34 v35 v36

1 −1 0 −1 0 0 0 −1 1 1 0 1 1 0 1 0 0 1 0 0 1
0 1 −1 0 0 0 −1 0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 0 1 1 0 −1 0 0 −1 0 0 −1 0 0 −1 −1 0 −1 −1 0 −1
0 0 0 0 1 0 0 0 −1 −1 −1 0 0 0 −1 −1 −1 0 0 0 −1
0 0 0 0 0 1 1 1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2

The transformation

γ =



0 −1 −1 0 0 0
0 0 −1 0 −1 −1
0 0 0 1 0 1
0 0 0 1 0 0
0 0 1 −1 0 0
−1 −1 −1 0 −1 0



sends v1 to (0, 0, 0, 0, 0, 1) and sends each of the other vectors to the corresponding
one of the form (v, 0) where v is the corresponding minimal vector for P1

5 (in the
order given above).

One can verify that the other two perfect forms P2
5 and P3

5 (denoted by Voronoï
A5 and ϕ2, respectively) give rise to a corresponding inflated cell in Σ15(6) in a
similar way.
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Concerning the cells of positive codimension in Σ•(5), it turns out that these all
have a representative which is a facet in σ. Furthermore, the matrix γ induces an
isomorphism from the subcomplex of Σ•(6) spanned by σ̃ and all its facets to the
complex obtained by inflation, as in §6.1 above, from the complex spanned by σ5

and all its facets. Finally, one can verify that the cells attached to P2
5 and P3

5 are
conjugate, after inflation, to cells in Σ15(6), and that the differentials for VorGL5 and
VorGL6 agree on these. This ends the proof of the theorem. �

6.3. Other cases. A similar situation holds for Σ•(3) and Σ•(4), but as Σ•(3) con-
sists of a single cell only, the picture is far less significant.

For N = 4, there is only one cell leftover in Σ•(4), in fact in Σ6(4), and it is
already inflated from Σ5(3). Hence its image in Σ⋆7 (5) will allow an orientation
reversing automorphism and hence will not show up in Σ7(5). This illustrates the
remark at the end of 6.1.

Finally, for N = 6, the cells in the third component of the incidence graph for
GL6(Z) mentioned in the proof of Theorem 6.1 above appear, in inflated form, in
the Voronoï complex for GL7(Z) which inherits the homology of that component,
since in the weighted graph of GL7(Z), which is connected, there is only one in-
cidence of an inflated cell with a non-inflated one. Therefore we do not have a
splitting in this case.

7. The Cohomology of modular groups

7.1. Preliminaries. Recall the following simple fact:

Lemma 7.1. Assume that p is a prime and g ∈ GLN(R) has order p. Then p 6
N + 1.

Proof. The minimal polynomial of g is the cyclotomic polynomial xp−1 + xp−2 +

· · ·+1. By the Cayley-Hamilton theorem, this polynomial divides the characteristic
polynomial of g. Therefore p − 1 6 N. �

We shall also need the following result:

Lemma 7.2. The action of GLN(R) on the symmetric space XN preserves its ori-
entation if and only if N is odd.

Proof. The subgroup GLN(R)+ ⊂ GLN(R) of elements with positive determinant
is the connected component of the identity, therefore it preserves the orientation
of XN . Any g ∈ GLN(R) which is not in GLN(R)+ is the product of an element
of GLN(R)+ with the diagonal matrix ε = diag (−1, 1, . . . , 1), so we just need to
check when ε preserves the orientation of XN . The tangent space T XN of XN at the
origin consists of real symmetric matrices m = (mi j) of trace zero. The action of ε
is given by m · ε = εt m ε (cf. §2.1) and we get

(m · ε)i j = mi j

unless i = 1 or j = 1 and i , j, in which case (m · ε)i j = −mi j. Let δi j be the matrix
with entry 1 in row i and column j, and zero elsewhere. A basis of T XN consists of
the matrices δi j + δ ji, i , j, together with N − 1 diagonal matrices. For this basis,
the action of ε maps N − 1 vectors v to their opposite −v and fixes the other ones.
The lemma follows. �
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7.2. Borel–Serre duality. According to Borel and Serre ([5], Thm. 11.4.4 and
Thm. 11.5.1), the group Γ = SLN(Z) or GLN(Z) is a virtual duality group with
dualizing module

Hv(N)(Γ,Z[Γ]) = StN ⊗ Z̃ ,

where v(N) = N(N − 1)/2 is the virtual cohomological dimension of Γ and Z̃ is the
orientation module of XN . It follows that there is a long exact sequence

(5) · · · → Hn(Γ,StN)→ Hv(N)−n(Γ, Z̃)→ Ĥv(N)−n(Γ, Z̃)→ Hn−1(Γ,StN)→ · · ·

where Ĥ∗ is the Farrell cohomology of Γ [9]. From Lemma 7.1 and the Brown
spectral sequence ([6], X (4.1)) we deduce that Ĥ∗(Γ, Z̃) lies in SN+1. Therefore

(6) Hn(Γ,StN) ≡ Hv(N)−n(Γ, Z̃) , modulo SN+1.

When N is odd, then GLN(Z) is the product of SLN(Z) by Z/2, therefore

Hm(GLN(Z),Z) ≡ Hm(SLN(Z),Z) , modulo S2.

When N is even, then the action of GLN(Z) on Z̃ is given by the sign of the deter-
minant (see Lemma 7.2) and Shapiro’s lemma gives

(7) Hm(SLN(Z),Z) = Hm(GLN(Z),M) ,

with
M = IndGLN (Z)

SLN (Z) Z ≡ Z ⊕ Z̃ , modulo S2.

To summarize: when Γ = SLN(Z) or GLN(Z), where N 6 7, we know Hm(Γ, Z̃) by
combining (3) (end of §3.4), Theorem 4.3 and (6). This allows us to compute the
cohomology of GLN(Z). The results are given in Theorem 7.3 below.

7.3. The cohomology of modular groups.

Theorem 7.3. (i) Modulo S5 we have

Hm(SL5(Z),Z) =


Z if m = 0, 5,

0 otherwise.

(ii) Modulo S7 we have

Hm(GL6(Z),Z) =


Z if m = 0, 5, 8,

0 otherwise,

and

Hm(SL6(Z),Z) =



Z2 if m = 5,

Z if m = 0, 8, 9, 10,

0 otherwise.

(iii) For N = 7, we have

Hm(SL7(Z),Q) =


Q if m = 0, 5, 9,14, 15,

0 otherwise.

More precisely, modulo S7 we get the partial result

Hm(SL7(Z),Z) =


Z if m = 0, 14, 15,

0 if 1 6 m 6 3 or m > 16.
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For the proof of the final statement on integral cohomology (modulo S7) we use
the fact that there are no primes p > 7 that divide the elementary divisors of the
corresponding differentials (it suffices to check this for d j with 10 6 j 6 13 and
24 6 j 6 27, say) and the fact that in codimension c = 0, 1, 2, 3 and c > 14 all the
stabiliser orders of the cells in Σ27− j are not divisible by p.

Remark 7.4. Morita asks in [15] whether the class of infinite order in H5(GL5(Z),Z)
survives in the cohomology of the group of outer automorphisms of the free group
of rank five.

Remark 7.5. It was shown by A. Borel [4] that, for N large enough, H5(SLN(Z),Q)
has dimension one. In view of Theorem 7.3 it is tempting to believe that the re-
striction map from H5(SLN(Z),Q) to H5(SL5(Z),Q) is an isomorphism. We have
been unable to show that. An analogous statement holds, by the same results, for
H9(SLN(Z),Q). Theorem 7.3 would seem to suggest that the non-trivial cohomol-
ogy class already occurs for N = 6 and 7, i.e., in the “non-stable range".
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