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AsstracT. FOrN =5, 6 and 7, using the classification of perfect quadratic form
we compute the homology of the Voronoi cell complexes atddb the modular
groupsSLy(Z) andGLy(Z). From this we deduce the rational cohomology of
those groups.

1. INTRODUCTION

Let N > 1 be an integer and I&Ly(Z) be the modular group of integral ma-
trices with determinant one. Our goal is to compute its cablogy groups with
trivial codficients, i.e.HY(SLy(Z), Z). The caseN = 2 is well-known and follows
from the fact thatSLy(Z) is the amalgamated product of two finite cyclic groups
([29], [4], 1.7, EX.3, p.52). The casH = 3 was done in [21]: for ang > O the
groupHY(SLs(Z), Z) is killed by 12. The cas&l = 4 has been studied by Lee and
Szczarba in [12]: modulo 2, 3 and 5—torsion, the cohomolagugH9(SL4(Z), Z)
is trivial wheneverg > 0, except thaH3(SL4(Z),Z) = Z. In Theorem 7.3 below,
we solve the casdd =5, 6 and 7.

For these calculations we follow the method of [12], i.e. vee the perfect
forms of Voronoi. Recall from [22] and [13] that a perfectrfom N variables is
a positive definite real quadratic formon RN which is uniquely determined (up
to a scalar) by its set of integral minimal vectors. Voronaived in [22] that there
are finitely many perfect forms of rari, modulo the action 06Ly(Z). These are
known forN < 8 (see 82 below).

Voronoi used perfect forms to define a cell decompositiorhefspacexy; of
positive real quadratic forms, the kernel of which is defimegr Q. This cell
decomposition (cf. 83) is invariant und8ty(Z), hence it can be used to compute

1991 Mathematics Subject Classificatiod1H55,11F75,11F06,11Y99,55N91, 20J06,57-04.
Key words and phraseserfect forms, Voronoi complex, group cohomology, modgtaups,
machine calculations.
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the equivariant homology oX§, modulo its boundary. On the other hand, this
equivariant homology turns out to be isomorphic to the gsodp(SLn(Z), Sin),
whereSty is the Steinberg module (see [5] and §3.4 below). FinallyeBeéserre
duality [5] asserts that the homolody. (SLy(Z), Sty) is dual to the cohomology
H*(S(Z), Z) (modulo torsion).

To perform these computations fbr < 7, we needed the help of a computer.
The reason is that the Voronoi cell decompositioiXpigets soon very complicated
whenN increases. Forinstance, whidn= 7, there are more than two million orbits
of cells of dimension 18, modulo the action 8k (Z) (see Figure 2 below). For
this purpose, we have developed a C library [16], which ugd?l PL5] for some
functionalities. The algorithms are based on exact methads result we get the
full Voronoi cell decomposition of the spac&g for N < 7 (with eitherGLy(Z)
or S Ly(Z) action). Those decompositions are summarized in the fgamd tables
below. The computations were done on several computerg difierent processor
architectures (which is useful for checking the results) for N = 7 the overall
computational time was more than a yeatr.

The paper is organized as follows. In 82, we recall the Vortimeory of perfect
forms. In 83, we introduce a complex of abelian groups thatatkthe “Voronoi
complex” which computes the homology grougdg(SLn(Z), Sty). In 84, we ex-
plain how to get an explicit description of the Voronoi compln rankN = 5, 6
or 7, starting from the description of perfect forms avd#ain the literature (es-
pecially in the work of Jaquet [11]). In Figures 1 and 2 we Bigphe rank of
the groups in the Voronoi complex and in Tables 1-5 we giveelbmentary divi-
sors of its diferentials. The homology of the Voronoi complex (hence tloeigs
Hq(Sn(Z), Sty) ) follows from this. It is given in Theorem 4.3.

We found two methods to test whether our computations aredcor First,
checking that the virtual Euler characteristic Sify(Z) vanishes leads to a mass
formula for the orders of the stabilizers of the cellsXgf (cf. 84.5). Second, the
identity dy_1 o dy = O for the diferentials in the Voronoi complex is a non-trivial
equality when these fierentials are written as explicit (large) matrices.

In 85 we give an explicit formula for the top homology grouptbé& Voronoi
complex (Theorem 5.1). In 86 we prove that the Voronoi compfeGLy(Z) is a
direct factor of the Voronoi complex @ Lg(Z) shifted by one. Finally, in 87 we
explain how to compute the cohomology $®fy(Z) andGLy(Z) (modulo torsion)
from our results on the homology of the Voronoi complex in &ur main result
is stated in Theorem 7.3.

Acknowledgments: The first two authors are particularly indebted to the IHES
for its hospitality. The second author thanks the InstifoteExperimental Math-
ematics in Essen, acknowledging financial support by the BR¢the European
Commission as well as hospitality of the Newton InstituteCimmbridge and the
MPI for Mathematics in Bonn. The authors are grateful to Bobert, J.-G. Du-
mas, D.-O. Jaquet, J.-C. Kénig, J. Martinet, S. Morita, Sd?re and B. Souvignier
for helpful discussions. The computations of the Vorondiiadecomposition were
performed on the computers of the Institut de Mathématigiddodélisation de
Montpellier, the MPI Bonn, the Institut Fourier in Grenoldled the Centre de Cal-
cul Médicis and we are grateful to those institutions.

Notation: For any positive integen we let S,, be the class of finite abelian
groups the order of which has only prime factors less thamoalkton.
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2. VORONOT'S REDUCTION THEORY

2.1. Perfect forms. Let N > 2 be an integer. We lefy be the set of positive
definite real quadratic forms iN variables. Giverh € Cy, let m(h) be the finite
set of minimal vectors of, i.e. vectorsy € ZN, v # 0, such thah(v) is minimal.
A form his calledperfectwhenm(h) determines up to scalar: i’ € Cy is such
thatm(h’) = m(h), thenh’ is proportional tch.

Example 2.1 The formh(x,y) = X% + y? has minimum 1 and precisely 4 minimal
vectors+(1,0) and+(0,1). This form is not perfect, because there is an infinite
number of positive definite quadratic forms having theseimmh vectors, namely
the formsh(x,y) = x% + axy+ y? wherea is a non-negative real number less than
1. By contrast, the formh(x, y) = X% + xy+ y? has also minimum 1 and has exactly
6 minimal vectors, viz. the ones above anfl, —1). This form is perfect, the
associated lattice is the “honeycomb lattice”.

Denote byCy, the set of non-negative real quadratic formsFohthe kernel of
which is spanned by a proper linear subspac@'bfby X{, the quotient ofC}, by
positive real homotheties, and ly: C{, — XJ the projection. LeXy = m(Cy)
andoXxy = X, — Xn. LetI be eitherGLy(Z) or SLy(Z). The groupl” acts onCy
andX{, on the right by the formula

h-y=+'hy, yel, heCy,

whereh is viewed as a symmetric matrix andis the transpose of the matrix
Voronoi proved that there are only finitely many perfect fertmiodulo the action
of I and multiplication by positive real numbers ([22], Thm.J0L

The following table gives the current state of the art on tigneeration of perfect
forms.

rank |1]2|3|4|5|6]| 7 8 9
#classes1|1(1(2(3|7(33|10916[ > 500000

The classification of perfect forms of rank 8 was achieved bioDr, Schiirmann
and Vallentin in 2005 [7], [18]. They have also shown thatank 9 there are at
least 500000 classes of perfect forms. The correspondasgification for rank 7
was completed by Jaquet in 1991 [11], for rank 6 by Barnesdd, by Voronoi
for the other dimensions. We refer to the book of Martinef fb8 more details on
the results up to rank 7.

2.2. A cell complex. Givenv e ZN — {0} we letV e C}, be the form defined by
V() = (vIx?, xeRN,

where ¢ | X) is the scalar product of andx. Theconvex hull in X of a finite
subseB c ZN — {0} is the subset oK{, which is the image under of the quadratic
forms 3 4;Vj € Cy, wherev; € Banda; > 0. For any perfect forni, we let

i
o(h) c X§ be the convex hull of the sen(h) of its minimal vectors. Voronoi
proved in [22], §88-15, that the celis(h) and their intersections, dsruns over

all perfect forms, define a cell decompositionX(f, which is invariant under the
action ofl'. We endowX§, with the correspondin@W-topology. Ifr is a closed

cell in X§, andh a perfect form withr C o(h), we letm(r) be the set of vectongin
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m(h) such that/lies int. Any closed cellr is the convex hull ofm(z), and for any
two closed cellg, 7" in X{; we havem(r) N m(z") = m(r N 7’).

3. THE VORONOI COMPLEX

3.1. Definition. Letd(N) = N(N + 1)/2- 1 be the dimension ok}, andn < d(N)

a natural integer. We denote By, = Xx(I') a set of representatives, modulo the
action of I', of those cells of dimension in X§, which meetXy, and byZ, =
Znh() c Z5(T) the cellso for which any element of the stabiliz&t, of o in T
preserves the orientation. L&} be the free abelian group generatedXyy We
define as follows a map

dn Vn - Vn_l .

For each closed cett in X{, we fix an orientation otr, i.e. an orientation of
the real vector spacR(o) of symmetric matrices spanned by the formngvith
v € m(o). Leto € £, and letr’ be a face ot which is equivalent under to
an element irX,_1 (i.e. v’ neither lies on the boundary nor has elements in its
stabilizer reversing the orientation). Given a positivaie®’ of R(r’) we get a
basisB of R(0") > R(7’) by appending t®’ a vectorv, wherev € m(c) — m(t’).
We lete(’, o) = =1 be the sign of the orientation &fin the oriented vector space
R(o) (this sign does not depend on the choice)of

Next, letr € ¥,_1 be the (unique) cell equivalent t6 and lety € T be such that
7 = 1-y. We definey(r,7’) = 1 (resp.n(r,v’) = —1) wheny is compatible (resp.
incompatible) with the chosen orientationsRifr) andR(’).

Finally we define

(1) @)= Y Y @) e, o),

TE€EXN1 T

wheret’ runs through the set of faces @fwhich are equivalent to.

3.2. A spectral sequence.According to [4], VII.7, there is a spectral sequence
qu converging to the equivariant homology grodﬁ§+q(x* ,0X{; Z) of the ho-
mology pair K, 9Xy), and such that

Epq = EB Ha(l'o Zo),

*
o€}

whereZ, is the orientation module of the ce#t and, as abovezg is a set of
representatives, modulg of the p-cellso in X, which meetXy. Sinceo meets
XN, its stabilizerT,- is finite and, by Lemma 7.1 in 87 below, the orderTgfis
divisible only by primesp < N + 1. Therefore, whem is positive, the group
Hoq(Ts, Zs) lies inSnya.

WhenTI',- happens to contain an element which changes the orient#tionthe
groupHo(l's, Z,) is killed by 2, otherwiseHo(I',, Z,) = Z,). Therefore, modulo

S, we have
E%O = @205

o€y

and the choice of an orientation for each eeljives an isomorphism betweﬁf{o
andV,.
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3.3. Comparison. We claim that the dferential
di : Eqo = Er11—1,0

coincides, up to sign, with the mad, defined in 3.1. According to [4], VII,
Prop. (8.1), the dferentiald} can be described as follows.

Leto € X and letr’ be a face obr. Consider the group,» =I';> N T and
denote by
tor - H*(ro-a Za’) - H*(ra"r/a Za’)
the transfer map. Next, let
Upr - Hi(Tor, Zog) = H (T, Zy)

be the map induced by the natural map — Z., together with the inclusion
['or € I'wv. Finally, letr € £* | be the representative of tiieorbit of 7/, lety e I
be such that’ = 7 - y, and let

Verrd H*(FT/5ZT’) - H*(r‘ra Z‘r)

be the isomorphism induced lyy Then the restriction af} to H..(T',, Z,) is equal,
up to sign, to the sum

(2) Z Vo Ugrr tO'T’ )
T/

wheret’ runs over a set of representatives of faces ofiodulorl’,,.
To compared} with d,, we first note that, when € X,_4,
Ve HO(FT’aZT’) =7Z— HO(FT’ ZT) =7
is the multiplication byr(r, 7’), as defined in 83.1. Next, whene X, the map
Usr - HO(FO'TlazO') =Zy=1Z— HO(FT” ZT’) =7
is the multiplication bye(7’, o), up to a sign depending amonly. Finally, the
transfer map
tor : HO(FO'9 ZO’) =7 - HO(FO'T” ZO’) =7
is the multiplication by I, : T'sr]. Multiplying the sum (2) by this number
amounts to the same as taking the sum over all facesas in (1). This proves
thatd, coincides, up to sign, with} onE}, = V. O
In particular, we get thadl,_ 1 o d, = 0. Note that this identity will give us a
non-trivial test of our explicit computations of the comyple

Notation: The resulting complex\{,, d.) will be denoted by Vor, and we call
it the Voronoi complex

3.4. The Steinberg module. Let Ty be the spherical Tits building &Ly overQ,
i.e. the simplicial set defined by the ordered set of non-pesper linear subspaces
of QN. The reduced homologhy(Tn, Z) of Ty with integral codicients is zero
except wher = N — 2, in which case

Hn-2(Tn,Z) = Sty
is by definition the Steinberg module [5]. According to [2BTop. 1, the relative
homology groupsHq(Xy,, 9X{;; Z) are zero except whesp= N - 1, and

HN_l(X,’(,,GX’,(]; Z) = SiN.
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From this it follows that, for alm e N,
HIL(XN: 0X3; Z) = Hm-nea(T, Sty)

(see e.g. [20], 83.1). Combining this equality with the jjweg sections we con-
clude that, modul®p;1,

(3) Hm—N+1(F, StN) = Hm(VOI’r) .

4. THE VORONOI COMPLEX IN DIMENSIONS 5, 6 AND 7

In this section, we explain how to compute the Voronoi coxgaeof rankN < 7.

4.1. Checking the equivalence of cellsAs a preliminary step, we develop an
effective method to check whether two celtsando’ of the same dimension are
equivalent under the action ®f The cello (resp. o) is described by its set of
minimal vectoram(c) (resp.m(c”')). We letb (resp.b’) be the sum of the forme ~
with v e m(o) (resp.m(c”)). If o ando” are equivalent under the actionothe
same is true fob andb’, and the converse holds true since two cells of the same
dimension are equal when they have an interior point in commo

To compareb andb’ we first check whether or not they have the same determi-
nant. In case they do, we Ibt (resp.M’) be the set of numbelxx) with x € m(c)
(resp. b’(x) with x € m(c”)). If b andb’ are equivalent, then the sd¥ and M’
must be equal.

Finally, if M = M’ we check ifb andb’ are equivalent by applying an algorithm
of Plesken and Souvignier [17] (based on an implementati@oavignier).

4.2. Finding generators of the Voronoi complex.In order to compute, (and

XX), we proceed as follows. FiXN < 7. Let® be a set of representatives of the
perfect forms of raniN. A choice of® is provided by Jaquet [11]. Furthermore,
for eachh € £, Jaquet gives the lish(h) of its minimal vectors, and the list of all
perfect formsh’y (one for each orbit unddr,)), whereh’ € £ andy € I', such
thato(h) ando(h')y share a face of codimension one. This provides a complete
list Cﬁ of representatives of codimension one faces(in).

From this, one deduces the full Iigfnl of faces of codimension one un(h)
as follows: first list all the elements in the automorphismougrI',n); this can
be obtained by using a second procedure implemented by @oewri[17] which
gives generators far,r). We represent the latter generators as elements in the
symmetric groupSy, whereM is the cardinality ofm(h), acting on setm(h) of
minimal vectors. Using those generators, we let GAP [9]dikthe elements of
'+, viewed as elements of the symmetric group above.

The next step is to create a shortliﬁll2 of codimension 2 facets af(h) by
intersecting all the translates undgy; of codimension 1 facets with each member
of Cﬁ and only keeping those intersections with the correct rawkN) — 2). The
resulting shortlist is reasonably small and we apply thegdare of 4.1 to reduce
the shortlist to a set of representati\[é#of codimension 2 facets.

We then proceed by induction on the codimension to defind ﬁ]ﬂsaf cells of

codimensionp > 2 in o(h). Given7,”, we letC{’ c 7" be a set of representatives

for the action off. We then let7;”"* be the set of cellg N 7, with ¢ € 72, and

p
TECh.
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n 4|s5|6| 78| 9 |10 12| 12 | 13 | 14 | 15 | 16 | 17 | 18] 19| 20
SrGlsz) | 2| 5]10]| 16| 23| 25 | 23| 16 | 9 4 3
21 (GLs(Z)) 11 7|6 | 1 0 2 3
2 (GLe(2)) 3| 10| 28| 71| 162| 329|589 | 874 | 1066 | 1039 | 775 | 425 | 181 | 57 | 18 | 7
21 (GLs(Z)) 3 | 46 | 163 | 340 | 544 | 636 | 469 | 200 | 49 | 5
2%(Sls(2)) 3| 10| 28| 71| 163 | 347 | 691 | 1152 | 1532 | 1551 | 1134 | 585 | 222 | 62 | 18 | 7
% (Sle(2)) 3| 10| 18| 43 | 169 | 460 | 815 | 1132 | 1270 | 970 | 434 | 114 | 27 | 14 | 7

Ficure 1. Cardinality ofZ, andX; for N = 5,6 (empty slots de-

note zero).
n 6 7 8 9 10 11 12 13 14 15 16
pord 6 28 115 467 1882 7375 26885 | 87400 | 244029 | 569568 | 1089356
Zn 1 60 1019 8899 47271 | 171375 | 460261 | 955128
n 17 18 19 20 21 22 23 24 25 26 27
5 | 1683368 | 2075982 | 2017914 | 1523376 | 876385 | 374826 | 115411 | 24623 | 3518 352 33
X, | 1548650 | 1955309 | 1911130| 1437547 | 822922 | 349443 | 105054 | 21074 | 2798 305 33

Fiure 2. Cardinality ofZ, andX} for GL7(Z) .

Next, we letz} be a system of representatives moduia the union of the sets
Cﬂ(N)_”,h € P. We then compute generators of the stabilizer of each celfjin
with the help of another algorithm developed by Plesken amavignier in [17],
and we check whether all generators preserve the orientafithe cell. This gives
us the sek, as the set of those cells which pass that check.

Proposition 4.1. The cardinality ofE, and X is displayed in Figure 1 for rank
N = 5,6 and in Figure 2 for rank N= 7.

Remark 4.2 The first line in Figure 1 has already been computed by Batufi};
p.409, second column of Table 2).

4.3. The differential. The next step is to compute theftdrentials of the Voronoi
complex by using formula (1) above. In Table 3, we give infation on the dter-
entials in the Voronoi complex of rank 5. For instance th@sddine, denoteds,
is about the dferential fromVy; to V. In the baseX 1 andXqq, this diferential is
given by a matrixA with Q = 513 non-zero entries, witim = 46 = cardgyg) rows
andn = 163 = cardgq;) columns. The rank of\ is 42, and the rank of its kernel
is 121. The elementary divisors Afare 1 (multiplicity 40) and 2 (multiplicity 2).
The cases 0BL4(Z), GLg(Z) andSlLg(Z) are treated in Table 1, Table 3 and Ta-
ble 4, respectively.
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AT Q] n] m]rank] ker | elementary divisorg

d| 01| 0 0 1

| 11 1] 1| o0 (1)

d| 01|12 0 1

dz| 00| 1 0 0

dg| 01| 0 0 1

| 22 1] 1] 1 2(1)
TaBLE 1. Results on the rank and elementary divisors of titedi
entials forSLy(Z).

A ] Q[n]m]rank] ker | elementary divisorg

dg| 0|1]| O 0 1

do| 2|71 1] 1] 6 (D)

do|18|6] 7| 5| 1 1(4), 2(1)

du| 5|1/ 6] 1] O (1)

do| 0|0 1 0 0

ds| 0|20 0 2

du| 4|3 2| 2] 1 5(1), 15(1)

TasLE 2. Results on the rank and elementary divisors of thtedi

entials forGLs(Z) .
A] @ | n [ m]Jrank] ker | elementary divisors |
do| 17] 46| 3 3] 43 1(3)
d, | 513|163| 46| 42| 121 1(40), 2(2)
di, | 2053 340 163 | 120 220 1(120)
dis | 4349 544 340 | 220 324 1(217), 2(3)
di4 | 6153 636 | 544 | 324 312 | 1(320), 2(1), 6(2), 12(1
dis | 5378 469 | 636 | 312 157 1(307), 2(3), 60(2)
dis | 2526 200 | 469 | 156 | 44 1(156)
di; | 597 49| 200 44| 5| 1(41),3(1), 6(1), 36(1
de| 43| 5| 49 5] 0 1(5)

TasLE 3. Results on the rank and elementary divisors of thtedi

entials forGLg(Z) .

Our results on the ffierentials in rank 7 are shown in Table 5. While the ma-
trices are sparse, they are not sparse enoughfficiemt computation. They have
a poor conditioning with some dense columns or rows (this ésressequence of
the fact that the complex is not simplicial and non-simplicells can have a large
number of non-trivial intersections with the faces). Weéiabitained full informa-
tion on the rank of the dlierentials. For the computation of the elementary divisors
complete results have been obtained in the case of matfiahsfor 10 < n < 14
and 24< n < 27 only. See [6] for a detailed description of the computatio

4.4. The homology of the Voronoi complexesFrom the computation of the dif-
ferentials, we can determine the homology of Voronoi compRecall that if we
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[A] @ | n [ m Jrank] ker [ elementary divisors |
d 12| 10| 3| 3] 7 103)
ds 28 18] 10| 7] 11 1(7)
do 140 43 18 11| 32 1(11)
dio 613 | 169 43 32| 137 1(32)
O | 2952| 460| 169| 136 324 1(129), 2(6), 6(2)
d | 7614| 815| 460| 323 492 1(318), 2(3), 4(2)
diz | 12395| 1132 | 815 491 | 641 1(491)
Ors | 14966 | 1270 | 1132 | 641 629 1(637), 3(3), 12(1)
Ois | 12714| 970 | 1270 | 629 | 341 | 1(621), 2(5), 6(1), 60(2
0o | 6491 | 434| 970| 339| 95 1(338), 2(1)
O | 1832| 114| 434| 95| 19 1(92), 3(2), 18(0)
dws | 257| 27| 114| 19| 8 1(17), 2(2)
dho 62| 14| 27| 8] 6 1(7), 10(1)
o 28 7 14| 6] 1 (1), 3(4), 504(1)
TasLE 4. Results on the rank and elementary divisors of thtedi
entials forSLg(Z) .

A ] Q | n [ m ] rank | ker | elementary divisors |
dio 8 60 1 1 59 1
dn 1513| 1019 60 59 960 1(59)
diz 37519 8899 1019 960 7939 1(958), 2 (2)
dis 356232 47271 8899 7938 39333 1(7937),2(1)
O, | 1831183| 171375| 47271| 39332| 132043 1(39300), 2 (29), 4 (3
dis | 6080381 460261 171375| 132043| 328218 ?
dis | 14488881 955128| 460261| 328218| 626910 ?
d;7 | 25978098| 1548650| 955128 626910 921740 ?
dig | 35590540| 1955309| 1548650 921740| 1033569 ?
dio | 37322725| 1911130| 1955309| 1033568 877562 ?
dyo | 29893084| 1437547| 1911130 877562| 559985 ?
dy; | 18174775| 822922| 1437547 559985| 262937 ?
d, | 8251000| 349443| 822922 262937 86506 ?
dyz | 2695430 105054| 349443 86505 18549 ?
O | 593892| 21074| 105054| 18549| 2525 1(18544), 2 (&), 4 (1
dzs 81671 2798 21074 2525 273 1(2507), 2 (18)
s 7412 305| 2798 273 32 1(258), 2 (7), 6 (7), 36 (1
dr 600 33 305 32 1| 1(23), 2 (4), 28 (3), 168 (1), 2016 (1

TaBLE 5. Results on the rank and elementary divisors of titedi
entials forGL7(Z) .

have a complex of free abelian groups

f
‘—>Z“—>Zﬁgzy—>~‘

with f andg represented by matrices, then the homology is
ker@)/Im(f) = Z/thZ & - - - @ Z/d,Z @ ZP~Tank(D)-rank@)

whereds, .. ., d, are the elementary divisors of the matrix fof

We deduce from Tables 1-5 the following result on the homptiidhe Voronoi

complex.

~
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Theorem 4.3. The non-trivial homology of the Voronoi complexes assedidb
GLn(Z) with N = 5,6 moduloSs is given by:

Hn(VorGL5(Z)) =7, ifn=0914,
Hna(Morglyz) =2, if n=101115,
while in the case S(Z) we get, modul®, that

z, ifn=10111220,

Hn(Vorsia(z) = {ZZ if n=15

Furthermore, for N= 7 we get

Q if n=1213182227,

Hn(MorgL,z) ® Q) = {0 otherwise

Notice that, ifN is odd, SLy(Z) andGLn(Z) have the same homology modulo
S>. Notice also that, for simplicity, in the statement of thealem we did not use
the full information given by the list of elementary divisan Tables 1-5.

4.5. Mass formulae for the Voronoi complex. Let y(SLy(Z)) be the virtual Euler
characteristic of the groupLy(Z). It can be computed in two ways. First, the mass
formula in [4] gives

K@) = ¥ (-fme) L i Z(— )y Z TR

o€k

whereE is a family of representatives of the cells of the Voronoi pter of rank
N modulo the action o6Ly(Z), andT,. is the stabilizer otr in SLy(Z). Second,
by a result of Harder [10], we know that

N
x(S(2) = [ [¢a-1,
k=2
hencey(SLy(Z)) = 0 if N > 3.

A non-trivial check of our computations is to test the conipbitty of these two
formulas, and the corresponding check for ravik= 5 had been performed by
Batut (cf. [1], where a proof of an analogous statement, for id, but instead
pertaining towell-roundedforms, which in our case are precisely the oneXjn
is attributed to Bavard [3]).

If we add together the terrqé‘a—| for cells o of the same dimension to a single
term, then we get foN = 6, starting with the top dimension,

45047 10633 6425 12541

1451520 11520 576 192
7438673 3841271 9238 266865 14205227 14081573

732560 ~ 8640 & 15 448 | 34560 69120
830183 205189 61213 1169 17 1

T11520 11520 < 20736 3840 1008 2880
=x(Sls(Z)) =0

ForN = 7 we obtain similarly
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290879 13994381 31815503 1362329683 6986939119

T107520 103680 13824 | 69120 69120
7902421301 340039739981 174175928729 132108094091

23040 414720 " 120960 69120
27016703389 13463035571 14977461287 22103821919

13824 8640 | 15360 46080
8522164169 17886026827 1764066533 101908213 12961451

46080 322560 " 138240 46080 " 46080
10538393 162617 721 43

T 7414720 T 103680 11520 32256
= x (SLz(2)) = 0.

5. EXPLICIT HOMOLOGY CLASSES

5.1. Equivariant fundamental classes.

Theorem 5.1. The top homology group ddh)(Vors,z) ® Q) has dimension 1.
When N= 4, 5,6 or 7, itis represented by the cycle

1
_O-,
e

whereo runs through the perfect forms of rank N and the orientatibeach cell
is inherited from the one of YT

Proof. The first assertion is clear since, by (3) above and (6) belevhawve

Hany(Morsiy@) ® Q) = Hany-n+1(Sn(Z), Sty ® Q) = H%(SL(Z), Q) = Q.

In order to prove the second claim, write thé&eliential between codimension 0
and codimension 1 cells as a matiof sizen; x ng, with nj = [Zqony-i ()| denoting
the number of codimensiaincells in the Voronoi cell complex. It can be checked
that in each of the; rows of A there are precisely two non-zero entries. Moreover,
the absolute value of the, ()-th entry ofA is equal to the quotienf’;,|/|T';| (an
integen), whereoj € Zo(I') andr; € X1(I'). Finally, one can multiply some columns
by —1 (which amounts to changing the orientation of the corredpwy codimen-
sion 0 cell) in such a way that each row has exactly one pesitid one negative
entry. m|

Example 5.2 ForN = 5 the diferential matrixdy 4 (cf. Table 2) between codimen-
sion 0 and codimension 1 is given by

40 0 -15
40 -15 0/}’

so the kernel is generated by 88) = 11520535, Ta3 Ta30): While the orders of
the three automorphism groups are 3840, 1440 and 1440 ctashe
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Example 5.3 Similarly, the diferentialdyg : Voo — V1g for rankN = 6 (cf. Table
3) is represented by the matrix

0 0 9% 0 0 0 -21
3240 0 0 0 -22 0 O
0 0O 1440 0 O0 -3 O
0 0 0O 18 0 -6 O
-12960 O 0 O 0 12 O
-3240 0 0 9 0 0 O
0 -360 O 1 0 0 O
-4320 0 0 12 0 0 Of
0 0 960 -6 0 O O
0 -216 9% 0 O O O
-45 45 0 0O o0 0 O
—2592 0O 1152 0 O O ©
-3240 O 1440 O O O O
-432 0 192 0 O O O

Its kernel is generated by
(28,28,63,10080 4320 30240 288)
while the orders of the corresponding automorphism grovpsraspectively,
10368010368046080 288 672 96, 10080,
and we note that 2803680= 63-46080= 10080 288 = 4320 672 = 30240 96.

5.2. An explicit non-trivial homology class for rank N = 5. The kernel of the

6 x 7-matrix ofd;g for GLs(Z), displayed in the proof of Theorem 6.1, equation (4)
below, is spanned by (0,0,0,0, 1, -1) together with (51,-8,16,15,2,2). The
latter one provides a non-trivial homology clas$im(Vorgy(z)) = H5(GLs(2), Z)
(modulo Ss), given as a linear combination of cells (in terms of mininaattor
indices) as follows:

¢([1,15,4,16,10,11, 17, 18,3, 5])
¢([1,15,4,16,10,11, 17,18, 2,5))
¢([1,15,4,10,11,17,18,3,2,5])

+16

+15
+2
+2

¢([1,6,15,4,16,10,11, 17, 18,2])
¢([1,6,15,4,16,10,11 17,18 5])
¢([1,6,7,4,16,10,11 17, 2,5])
¢([1,6,7,19 13 20, 15,10, 11 2]).

Here the indices refer to the following order for the mePé) of minimal vectors

7 8 12 13 14 15 16 17 18 19 20

©

1 2 3 10 11

[63]

1 0 1 0 1 1 0 O 0 1 0 0 1 1 0 0 1 0 0 0
0o 1 1 0 0o -1 1 1 0 0 1 0 0 0 0 1 0 0 1 0
0o 0 0o -1 0 0 0 O 0 0 1 -1 -1 o0 0 0 1 1 -1 1
0 0 0o -1 0 0o 0 -1 1 1 0 0 o -1 -1 1 0 0 0 -1
o -1 -1 1 -1 0 O O -1 -1 -1 o0 0 0 o -1 -1 -1 0 0

ande(u) for a vectoru of indices is the convex hull of the minimal vectors corre-
sponding to those indices, as in §2.2.
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6. SPLITTING OFF THE VORONOI COMPLEX VOIN FROM VOI N1 FOR SMALL N

In this section, we will be concerned with= GLy(Z) only and we adapt the
notationZ,(N) = £,(GLn(2Z)) for the sets of representatives.

6.1. Inflating well-rounded forms. Let A be the symmetric matrix attached to
a formhin CJ. Suppose the cell associated Aois well-rounded i.e., its set
of minimal vectorsS = S(A) spans the underlying vector spak€. Then we
can associate to it a forh with matrix A = (é m?A)) in C,;, Wherem(A)
denotes the minimum positive valueAbnZN. The setS of minimal vectors ofA
contains the ones frorg, each vector being extended by &h< 1)-th coordinate
0. FurthermoreS contains the additional minimal vectoeen,: = +(0,...,0,1),
and hence it spar&N*1, i.e., A is well-rounded as well. In the following, we will
call forms likeA as well as their associated celidlated

The stabilizer oh in GLy(Z) thereby embeds into the onefoinside GLy,1(Z)
(at least modula:Id) under the usual stabilization map.

Note that, by iterating the same argumertimes, A induces a well-rounded
form also inZ} (N +r) which, forr > 2, does not belong tB,(N + r) since there is
an obvious orientation-reversing automorphism of the tefldorm, given by the
permutation which swaps the last two coordinates.

6.2. The caseN = 5.

Theorem 6.1. The compleXorg 4z is isomorphic to a direct factor oforg,z),
with degrees shifted by 1.

Proof. The Voronoi complex oL5(Z) can be represented by the following weighted
graph with levels




14 Pi. ELeaz-VINCENT, H. GaNGL aND C. SOULE

Here the nodes in ling(marked on the left) represent the elementBdi)-(5),
i.e. we have 3, 2,0, 1, 6, 7 and 1 cells in codimensions 0, 1, 2, 8 and 6, re-
spectively, and arrows show incidences of those cells,entilmbers attached to
arrows give the corresponding incidence multiplicitiesnc® entering the multi-
plicities relating codimensions 4 and 5 would make the grapier unwieldy, we
give them instead in terms of the matrix corresponding tadifferentiald;g con-
necting dimension 10 to 9 (columns refer, in this ordewrfo. .., o-f, while rows
refer toos,..., 09

-5 0 -50-1 0 O
0 -2 0 2-2 0 O
2 -2 1 0 0 0 O
() 0O 0 2 1 0 0 O
-1 -2 1 0 1 0 O
0O 4 0 0 0 -1 -1

As is apparent from the picture, there are two connected oaemgs in that
graph. The corresponding graph f8L4(Z) has three connected components, two
of which are "isomorphic" (as weighted graphs with levetsitte one above for
GLs(Z), except for a shift in codimension by(8.g. codimension 0 cells B, (5)
correspond to codimension 5 cellsig(6)), i.e. a shift in dimension by 1.

In fact, it is possible, after appropriate coordinate tfamaations, to identify
the minimal vectors (viewed up to sign) of any given cell ie tivo inflated com-
ponents ok, (6) alluded to above with the minimal vectors of another egilich is
inflated from one i, (5), except preciselgneminimal vector (up to sign) which
is fixedunder the stabilizer of the cell.

Let us illustrate this correspondence for the top-dimeraicello- of the perfect
form P} € £14(5), also denoted(5, 1) in [11] andDs in [12], with the listm(P})
of minimal vectors given already at the end of §85.2.

Using the algorithm described in §4.1, the correspondifigted cello in X15(6)
can be found to be, in terms of its 21 minimal vectors of thdgmérform Pé in
Jaquet's notation (see [11] and 85.2 for the full ﬁa{Pé)),

Vi V2 Vg Vs Vip Vi Viz Vig Vi Va7 Vig Voo Vo4 Vo5 Vg Vo7 Vo9 V33 V34 V35 V3e

1 0 0 o -1 1 1 0 1 1 0 1 0 0 1 0 0 1
0 1 -1 0O 0 0o -1 0 1 0 1 1 0 1 0 1 0 0 1 0 1
0 0 1 1 0o -1 0 o -1 0 o -1 0 o -1 -1 o -1 -1 o -1
0 0 0 0 1 0 0 o -1 -1 -1 0 0 o -1 -1 -1 0 0 0o -1
0 0 0 0 0 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0o -1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2

The transformation

0 -1 -1 0 0 O
0 0 -1 0 -1 -1
o o o 1 0o 1
Yo o0 o 1 0 o0
0 0 1 -1 0 O
1 -1 -1 0 -1 0

sendsy; t0 (0,0,0,0,0, 1) and sends each of the other vectors to the corresponding
one of the form ¥, 0) wherev is the corresponding minimal vector fé’é (in the
order given above).
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One can verify that the other two perfect forrﬁ%and Pg (denoted by Voronoi
As and ¢,, respectively) give rise to a corresponding inflated celtig(6) in a
similar way.

Concerning the cells giositivecodimension irk,(5), it turns out that these all
have a representative which is a facetinFurthermore, the matrix induces an
isomorphism from the subcomplex Bf(6) spanned by and all its facets to the
complex obtained by inflation, as in §6.1 above, from the desmppanned by
and all its facets. Finally, one can verify that the cellselied toPZ and P are
conjugate, after inflation, to cells Ey5(6), and that the dierentials for Vog, and
Vorgi, agree on these. This ends the proof of the theorem. O

6.3. Other cases. A similar situation holds fok,(3) andZ,(4), but asZ,(3) con-
sists of a single cell only, the picture is far less significan

For N = 4, there is only one cell leftover iB,(4), in fact inXZg(4), and it is
already inflated fronZs(3), as shown in 86.3. Hence its imagexi#(5) will allow
an orientation reversing automorphism and hence will nowshp inX7(5). This
illustrates the remark at the end of 6.1.

Finally, for N = 6, the cells in the third component of the incidence graph for
GLg(Z) mentioned in the proof of Theorem 6.1 above appear, in adl&rm, in
the Voronoi complex fofGL7(Z) which inherits the homology of that component,
since in the weighted graph &L;(Z), which is connected, there is only one in-
cidence of an inflated cell with a non-inflated one. Therefweedo not have a
splitting in this case.

7. Tue COHOMOLOGY OF MODULAR GROUPS

7.1. Preliminaries. Recall the following simple fact:

Lemma 7.1. Assume that p is a prime andg GLn(R) has order p. Then
N+ 1.

Proof. The minimal polynomial of is the cyclotomic polynomiakP-1 + xP-2 +
---+1. By the Cayley-Hamilton theorem, this polynomial dividies characteristic
polynomial ofg. Thereforep— 1 < N. O

We shall also need the following result:

Lemma 7.2. The action ofGLN(R) on the symmetric spaceypreserves its ori-
entation if and only if N is odd.

Proof. The subgroup GL(R)* c GLn(R) of elements with positive determinant
is the connected component of the identity, therefore isgmees the orientation
of Xn. Any g € GLy(R) which is not in GLy(R)* is the product of an element
of GLn(R)* with the diagonal matrixx = diag(-1,1,...,1), so we just need to
check where preserves the orientation ¥f. The tangent spaceXy of Xy at the
origin consists of real symmetric matrices= (mj;) of trace zero. The action af
is given bym- & = et me (cf. §2.1) and we get

(M- &)ij = m
unless = 1orj=1andi # j, in which caserQ- g)j; = —mjj. Letd;; be the matrix

with entry 1 in rowi and columnj, and zero elsewhere. A basisKy consists of
the matricesi; + ¢ji, i # ], together withN — 1 diagonal matrices. For this basis,
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the action ofe mapsN — 1 vectorsv to their opposite-v and fixes the other ones.
The lemma follows. ]

7.2. Borel-Serre duality. According to Borel and Serre ([5], Thm. 11.4.4 and
Thm. 11.5.1), the group’ = SLn(Z) or GLn(Z) is a virtual duality group with
dualizing module
HYN(T, Z[I]) = SR Z,
wherev(N) = N(N — 1)/2 is the virtual cohomological dimension BfandZ is the
orientation module oKy. It follows that there is a long exact sequence
(5) -+ — Hp(T, Sty) » HMN™(T, Z) > N1, Z) - Hy o (T, Sty) — - -
whereH* is the Farrell conomology aof [8]. From Lemma 7.1 and the Brown
spectral sequence ([4], X (4.1)) we deduce tHa{T", Z) lies in Sn+1. Therefore
(6) Hn(T, Sty) = H'™N(T, Z) , moduloSy.1.
WhenN is odd, then Gi(Z) is the product of Sk(Z) by Z/2, therefore
H™(GLN(Z),Z) = H™(SLn(Z), Z) , moduloSs.
WhenN is even, then the action of GI(Z) onZ is given by the sign of the deter-
minant (see Lemma 7.2) and Shapiro’s lemma gives
(7) H™(SLn(2), Z) = H™(GLN(Z), M),
with L)
Ln(Z) o _ 5
M= IndSLg‘(Z) Z=7®7Z, moduloSs.
To summarize: whel = SLy(Z) or GLy(Z), whereN < 7, we knowH™(T, Z) by
combining (3) (end of §3.4), Theorem 4.3 and (6). This allosgo compute the
cohomology ofGLn(Z). The results are given in Theorem 7.3 below.

7.3. The cohomology of modular groups.
Theorem 7.3. (i) ModuloSs we have

Z if m=0,5
H™(SLs(2),Z) = 7
(Sls(2).2) {0 otherwise

(i) ModuloS7 we have

Z if m=0,528
H™GLg(Z),Z) = T
(GLe(2).7) {O otherwise

and
7% if m=5,
HM(SLs(2),Z) =372 if m=0,89,10,
0 otherwise
(i) For N = 7, we have,

Q if m=0,5111415

Hm(SL7(Z), Q) = {0 otherwise

Remark 7.4 Morita asks in [14] whether the class of infinite ordeHA(G Ls(Z), Z)
survives in the cohomology of the group of outer automomkisf the free group
of rank five.
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