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MAHARAM EXTENSION AND STATIONARY STABLE

PROCESSES

EMMANUEL ROY

Abstract. We give a second look at stationary stable processes by interpret-
ing the self-similar property at the level of the Lévy measure as characteristic
of a Maharam system. This allows us to derive structural results and their
ergodic consequences.

1. Introduction

In a fundamental paper [9], Rosiński revealed the hidden structure of stationary
symmetric α-stable (SαS) processes. Namely, he proved that, through what is
called, following Hardin [5], a minimal spectral representation, such a process is
driven by a non-singular dynamical system.

Such a result was proved to classify those processes according to their ergodic
properties such as various kinds of mixing. In [13], we used a different approach as
we considered the whole family of stationary infinitely divisible processes without
Gaussian part (called IDp processes). The key tool there was the Lévy measure
system of the process, which was measure-preserving and not just merely non-
singular. As of today, in the stable case, it remained unclear what the connection
between the Lévy measure and the non-singular system was. This is the purpose
of this paper to fill the gap and go beyond both approaches.

Indeed, we will prove that Lévy measure systems of α-stable processes have the
form of a so-called Maharam system. This observation has some interesting conse-
quences as it allows us to derive very quickly minimal spectral representations in
the SαS case, to reinforce factorization results, and to refine ergodic classification.

Let us explain very loosely the mathematical features of stable distributions we
will be using. Observe that stable distributions are characterized by a self-similar
property which is obvious when observing the corresponding Lévy process:

If Xt is an α-stable Lévy process, then b−
1
αXbt has the same distribution.

However, if not obvious or useful, this property is also present for any α-stable
object but takes another form. The common feature is to be found in the Lévy
measure:

Loosely speaking, if {Xt}t∈S is an α-stable process indexed by a set S, then
for any positive number c, the image of the Lévy measure Q by the map Rc :=
{xt}t∈S 7→ {cxt}t∈S is c−αQ.

This property of the Lévy measure is characteristic of α-stable processes and can
be translated into an ergodic theoretic statement:
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The measurable non-singular flow {Rc}c∈R+
is dissipative and the multiplicative

coefficient c−α has an outstanding importance in that matter, since it reveals the
structure of a Maharam transformation. The importance is even greater when there
is more invariance involved (stationary α-stable processes, etc...), as in the present
paper.

The paper is organised as follows. In Section 2 we recall what a spectral rep-
resentation is and in Section 3, we give the necessary background in non-singular
ergodic theory. Maharam systems are introduced in Section 4 and the link with
Lévy measures of stable processes, together with spectral representations is ex-
posed in Section 5. Section 6 is a refinement of the structure of stable processes.
We deduce from the preceding results some ergodic properties in Section 7.

2. Spectral representation

We warn the reader that we will, most of the time, omit the implicit “µ-a.e.” or
“modulo null sets” throughout the document.

A family of functions {ft}t∈T ⊂ Lα (Ω,F , µ) where (Ω,F , µ) is a σ-finite Lebesgue
space is said to be a spectral representation of SαS process {Xt}t∈T if

{Xt}t∈T =

{
ˆ

Ω

ft (ω)M (dω)

}

t∈T

holds in distribution, M being an independently scattered SαS-random measure
on (Ω,F) with intensity measure µ.

We’ll say that a spectral representation is proper if Supp {ft, t ∈ T } = Ω. Of
course we obtain a proper representation from a general one by removing the com-
plement of Supp {ft, t ∈ T }.

To express that a representation contains the strict minimum to define the pro-
cess, the notion of minimality has been introduced (Hardin [5]):

A spectral representation is said to be {ft}t∈T ⊂ Lα (Ω,F , µ) minimal if it is

proper and σ
(

ft
fs
1{fs 6=0}, s, t ∈ T

)
= F .

Hardin proved in [5] the existence of minimal representations for SαS processes.
In the stationary case (T = R or Z), Rosiński has explained the form of the

spectral representation:

Theorem 1. (Rosiński) Let {ft}t∈T ⊂ Lα (Ω,F , µ) be a minimal representation of
a stationary SαS-process, then there exists nonsingular flow {φt}t∈T on (Ω,F , µ)
and a cocycle {at}t∈T for this flow with values in {−1, 1} (or in |z| = 1 in the
complex case) such that, for each t ∈ T ,

ft = at

{
dµ ◦ φt

dµ

} 1
α

(f0 ◦ φt) .

3. Some terminology

A quadruplet (Ω,F , µ, T ) is called a dynamical system or shortly a system if T
is a non-singular automorphism that is a bijective bi-measurable map such that
T ∗µ ∼ µ. If T∗ (µ) = µ then (Ω,F , µ, T ) is a measure-preserving (abr. m.p.)
dynamical system.

A system (Ω2,F2, µ2, T2) is said to be a non-singular (resp. measure preserving)
factor of the system (Ω1,F1, µ1, T1) if there exists a measurable non-singular (resp.
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measure-preserving) homomorphism between them, that is a measurable map Φ
from Ω1 to Ω2 such that ΦT1 = T2Φ and Φ∗µ1 ∼ µ2 (resp. Φ∗µ1 = µ2) . If Φ is
invertible and bi-measurable it is called a non-singular (resp. measure-preserving)
isomorphism and the system are said to be non-singular (resp. measure-preserving)
isomorphic.

3.1. Krieger types. Consider a non-singular dynamical system (Ω,F , µ, T ). A set
A ∈ F such that µ (A) > 0 is said to be periodic of period n if T iA, 0 ≤ i ≤ n− 1,
are disjoint and T nA = A and wandering if T iA, i ∈ Z are disjoint. A set is
exhaustive if ∪k∈ZT

kA = Ω. A system is conservative if there is no wandering set
and dissipative if there is an exhaustive wandering set.

(Ω,F , µ, T ) is said to be of Krieger type:

• In if there exists an exhaustive set of period n.
• I∞ if it is dissipative.
• II1 if there is no periodic set and exists an equivalent finite T -invariant
measure.

• II∞ if is is conservative with an equivalent infinite T -invariant continuous
measure but no absolutely continuous finite T -invariant measure.

• III if there is no absolutely continuous T -invariant measure.

4. Maharam transformation

Definition 2. A m.p. dynamical system is said to beMaharam if it is isomorphic to(
Ω× R,F ⊗ B, µ⊗ esds, T̃

)
where T is a non singular automorphism of (Ω,F , µ)

and T̃ is defined by

T̃ (ω, s) :=

(
T (ω) , s− ln

dT−1
∗ µ

dµ
(ω)

)
.

Observe that the dissipative flow {τt}t∈R defined by τt := (ω, s) 7→ (ω, s− t)

commutes with T̃ .
Note that we have chosen the usual additive representation but we could (and

eventually will !) use the following multiplicative representation of a Maharam

system. Take 0 < α < 2, we can represent
(
Ω× R,F ⊗ B, µ⊗ esds, T̃

)
by the

system
(
Ω× R

∗
+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
where T̃α is defined by:

T̃α (ω, s) :=

(
T (ω) , s

(
dT−1

∗ µ

dµ
(ω)

) 1
α

)
.

The isomorphism being provided by the map (ω, s) 7→
(
ω, (2− α)

− 1
2−α e(2−α)s

)
.

Observe that, under this isomorphism, {τt}t∈R is changed into
{
S
e

t
α

}
t∈R∗

+

where

St is the multiplication by t on the second coordinate.
In [2], the authors proved the following characterization, as a straightforward

application of Krengel’s representation of dissipative transformations:

Theorem 3. A system (X,A, ν, γ) is Maharam if and only if there exists a measur-
able flow {Zt}t∈R commuting with γ such that (Zt)∗ ν = etν. {Zt}t∈R corresponds
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to {τt}t∈R under the isomorphism with the Maharam system under the additive
representation.

In the original theorem they assumed ergodicity of γ to prove that the resulting
non-singular transformation T in the above representation was actually living on
a non-atomic measure space (Ω,F , µ). The ergodicity assumption is therefore not
necessary in the way we present this theorem.

We end this section by a very natural lemma which is part of folklore. We omit
the proof.

Lemma 4. Consider two Maharam systems
(
Ω1 × R

∗
+,F1 ⊗ B, µ1 ⊗

1
s1+α ds, T̃1

)

and
(
Ω2 × R

∗
+,F2 ⊗ B, µ2 ⊗

1
s1+α ds, T̃2

)
and denote by {St}t∈R∗

+
and {Zt}t∈R∗

+
their

respective multiplicative flows. Assume there exists a (measure-preserving) factor
map (resp. isomorphism) Φ between the two systems such that, for all t ∈ R

∗
+,

StΦ = ZtΦ. Then Φ induces a non-singular factor map (resp. isomorphism) φ

between (Ω1,F1, µ1, T1) and (Ω2,F2, µ2, T1).

Remark 5. Observe also that the Maharam systems associated to (Ω,F , µ1, T ) and
(Ω,F , µ2, T ) where µ1 ∼ µ2 are isomorphic.

4.1. Refinements of type III (see [3]). Since the flow {St}t∈R commutes with T̃ ,

it acts non-singularly on the space (Z, ν) of ergodic components of T̃ and is called
the associated flow of T . This flow is ergodic whenever T is ergodic and its form
allows to classify ergodic type III systems:

• T is of type IIIλ, 0 < λ < 1 if the associated flow is the periodic flow
x 7→ x+ tmod (− logλ).

• T is of type III0 if the associated flow is free.
• T is of type III1 if the associated flow is the trivial flow on a singleton.

In particular T̃ is ergodic if and only if T is of type III1.

5. Lévy measure as Maharam system and spectral representations

5.1. Lévy measure of α-stable processes. For simplicity we will only consider
discrete time stationary processes.

Let us recall, following [8] (see also [13]), that the Lévy measure of stationary
IDp process X of distribution P is the shift-invariant σ-finite measure on R

Z, Q,
such that Q (0RZ) = 0,

´

RZ

(
x2
0 ∧ 1

)
Q
(
d {xn}n∈Z

)
< ∞ and

E

[
exp

(
i

n2∑

k=n1

akXk

)]

= exp

[
ˆ

RZ

(
exp

(
i

n2∑

k=n1

akxk

)
− 1− i

n2∑

k=n1

akc (xk)

)
Q
(
d {xn}n∈Z

)
]

for any choice of −∞ < n1 ≤ n2 < +∞, {ak}n1≤n2
∈ R

n2−n1 .
c is defined by:
c (x) = −1 if x < −1
c (x) = x if −1 ≤ x ≤ 1
c (x) = 1 if x > 1
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The system
(
R

Z,B⊗Z, Q, S
)
where S is the shift on R

Z is called the Lévy measure
system associated to the process X .

The α-stable stationary processes, 0 < α < 2, are (see Chapter 3 in [17]) com-
pletely characterized as those IDp processes such that their Lévy measure satisfies

(5.1) (Rt)∗ Q = t−αQ

for any positive t, Rt being the multiplication by t, i.e.

{xn}n∈Z 7→ {txn}n∈Z .

We also recall the fundamental result of Maruyama that allows to represent any
IDp process with Lévy measure Q as a stochastic integral with respect to a Poisson
measure with intensity Q.

Theorem 6. (Maruyama representation [8]) Let P be the distribution of a station-

ary IDp process with Lévy measure Q and
((

R
Z
)∗

,
(
B⊗Z

)∗
, Q∗, S∗

)
the Poisson

measure over the Lévy measure system
(
R

Z,B⊗Z, Q, S
)
. Set X0 as {xn}n∈Z 7→ x0

and define, on
(
R

Z
)∗
, the stochastic integral I (X0) as the limit in probability, as n

tends to infinity, of the random variables

ν 7→

ˆ

|X0|>
1
n

X0dν −

ˆ

|X0|>
1
n

c (X0) dQ.

Then the process {I (X0) ◦ Sn
∗ }n∈Z has distribution P.

5.2. Lévy measure as Maharam system.

Theorem 7. Let
(
R

Z,B⊗Z, Q, S
)
be the Lévy measure system of an α-stable sta-

tionary process. Then there exists a probability space (Ω,F , µ), a non singular trans-
formation T , a function f ∈ Lα (µ) such that, if M denotes the map (ω, t) 7→ tf (ω)

then the map Θ := (ω, t) 7→
{
M ◦ T̃ n

α (ω, t)
}
n∈Z

yields an isomorphism of the Ma-

haram system
(
Ω× R+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
with

(
R

Z,B⊗Z, Q, S
)
.

Proof. First observe that Theorem 3 can be applied to
(
R

Z,B⊗Z, Q, S
)
since the

measurable and (obviously) dissipative flow
{
R

e
t
α

}
t∈R

satisfies the hypothesis,

thanks to Eq (5.1). Therefore, there exists an isomorphism Ψ between the Maharam

system
(
Ω× R+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
and

(
R

Z,B⊗Z, Q, S
)
for an appropriate

non-singular system (Ω,F , µ, T ). Set f := Ψ (ω, 1)0 (i.e. Ψ (ω, 1)0 is the 0-th coor-
dinate of the sequence Ψ (ω, 1)) and let us check that f ∈ Lα (µ). Indeed, as Q is
a Lévy measure, we have:

ˆ

RZ

x2
0 ∧ 1Q

(
d {xn}n∈Z

)
< ∞

but since Ψ is an isomorphism and Ψ (ω, t) = Ψ ◦ St (ω, 1) = Rt ◦ Ψ(ω, 1) =
tΨ(ω, 1), we have:
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ˆ

RZ

x2
0 ∧ 1Q

(
d {xn}n∈Z

)
=

ˆ

Ω

ˆ

R+

Ψ(ω, t)
2
0 ∧ 1

1

tα+1
dtµ (dω)

ˆ

Ω

ˆ

R+

(
t2Ψ(ω, 1)20

)
∧ 1

1

tα+1
dtµ (dω) =

(
ˆ

R+

z2 ∧ 1
1

zα+1
dz

)
ˆ

Ω

|Ψ(ω, 1)0|
α
µ (dω)

after the change of variable z := t |Ψ(ω, 1)0|. Therefore
´

Ω |Ψ(ω, 1)0|
α
µ (dω) <

∞. �

In the symmetric case we can precise the theorem:

Theorem 8. Let
(
R

Z,B⊗Z, Q, S
)
be the Lévy measure system of a symmetric α-

stable stationary process. Then there exists a probability space (X,A, ν), a non
singular transformation R, a function f ∈ Lα (ν) and a measurable map ξ : X →
{−1, 1} such that, if M denotes the map (x, t) 7→ tf (x) then the map (x, t) 7→{
M ◦Rα

n
(x, t)

}
n∈Z

yields an isomorphism between
(
X × R

∗,A⊗ B, ν ⊗ 1
|s|1+α ds, Tα

)

with
(
R

Z,B⊗Z, Q, S
)
, Rα being defined by (x, t) 7→

(
Rx, ξ (x) t

(
dR−1

∗
µ

dµ
(x)
) 1

α

)
.

Proof. Start by applying Theorem 7 to the Lévy measure.
Observe that the symmetry involves the presence of a measure preserving invo-

lution I, namely I {xn}n∈Z = {−xn}n∈Z. I also preserves the Lévy measure of the
process. Observe also that I commutes with the shift and with the flow Rt. There-

fore Ĩ := Θ−1IΘ is a measure preserving automorphism of
(
Ω× R

∗
+,F ⊗ B, µ⊗ 1

s1+α ds, T̃
)

and we can apply Lemma 4 to deduce that Ĩ induces a non singular involution φ on
(Ω,F , µ, T ). It is standard that such transformation admits an equivalent finite in-
variant measure so, up to another measure preserving isomorphism, we can assume
that φ preserves the probability measure µ.

Using Rohklin structure theorem, the compact factor associated to the compact
group {Id, φ} tells us that we can represent (Ω,F , µ, T ) as (X × {−1, 1} ,A⊗ P {−1, 1} , ν ⊗m,Rξ)
where R is a non-singular automorphism of (X,A, ν), m is the uniform measure on
({−1, 1} ,P {−1, 1}), ξ a cocyle from X to {−1, 1} and Rξ := (x, ǫ) 7→ (Rx, ξ (x) ǫ).

It is now clear that
(
X × {−1, 1} × R

∗
+, (A⊗ P {−1, 1})⊗ B, ν ⊗m⊗ 1

s1+α ds, S̃ξ

)

is isomorphic to
(
X × R

∗,A⊗ B, ν ⊗ 1
|s|1+α ds,Rα

)
thanks to the mapping (x, ǫ, t) 7→

(
x, 2

1
α ǫt
)
and Rα := (x, t) 7→

(
Rx, ξ (x)

(
dR−1

∗
µ

dµ (x)
) 1

α

t

)
. �

5.3. Spectral representation. It is now very easy to derive spectral representa-
tions from the above results. In particular, if

(
R

Z,B⊗Z, Q, S
)
is the Lévy measure

system of an SαS stationary process, under the notation of Theorem 8, (X,A, ν)
together with the function f ∈ Lα (ν), the cocycle φ and the non-singular auto-
morphism T yields a spectral representation of the process. Indeed, by building

the Poisson measure over
(
X × R

∗,A⊗ B, ν ⊗ 1
|s|1+α ds,Rα

)
and by applying to it,

f and ξ Theorem 3.12.2, page 156 in [16], we recover the SαS process with Lévy
measureQ, which proves the validity of the spectral representation. The minimality
can be obtained without difficulty thanks to Proposition 2.2 in [10].
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5.4. Maharam systems as Lévy measure. We can ask whether if a Maharam

system
(
Ω× R+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
can be coded into a Lévy measure sys-

tem of a stable process. We can answer affirmatively this question in the only
interesting case, that is when the Maharam system has no finite absolutely contin-

uous T̃α-invariant measure, that is, when the resulting Lévy measure system leads
to an ergodic stable process.

Recall that a Maharam system has no finite absolutely continuous T̃α-invariant
measure if and only if the non-singular system (Ω,F , µ, T ) has the same property.
But then a famous theorem of Krengel [7] shows that such a system possesses a
2-generator, that is, there exists a measurable function f : Ω → {0, 1}, µ {f = 1} <

∞, such that σ {f ◦ T n, n ∈ Z} = F .
To be more precise, this means that, up to isomorphism, these Maharam sys-

tems can be represented as
(
{0, 1}Z × R

∗
+,B

(
{0, 1}Z

)
⊗ B, µ⊗ 1

s1+α ds, Tα

)
for an

appropriate measure µ. But if ϕ is the map
(
{xn}n∈Z , t

)
7→ {txn}n∈Z and Q =

ϕ∗

(
µ⊗ 1

s1+α

)
, we obtain a Lévy measure system of an α-stable system

(
R

Z,B⊗Z, Q, S
)

as {xn}n∈Z 7→ {x0} is in Lα (µ) (see the proof of Theorem 8). Moreover, the
sequence {yn}n∈Z takes only two values, 0 or sup {yn}n∈Z Q-almost everywhere
({yn}n∈Z can’t be identically zero as it would violate the II∞ property), therefore,

ϕ−1 exists and is defined by {yn}n∈Z 7→

(
sup {yn}n∈Z ,

{
yn

sup{yn}n∈Z

}
n∈Z

)
.

6. Refinements of the representation

Ergodic stationary processes are building blocks of stationary processes, prime
numbers are the building blocks of integers, factors are building blocks of Von Neu-
mannn algebras etc. What are the building blocks of stationary infinitely divisible
processes ? Let’s get more precise:

Given a stationary ID process X , what are the solutions to the equation (in
distribution):

X = X1 +X2

where X1 and X2 are independent stationary ID processes. Of course, if Q is the
Lévy measure of X , then taking X1 with Lévy measure c1Q and X2 with Lévy
measure c2Q with c1 + c2 = 1 gives a solution. If these are the only solutions, we
said in [12] that X is pure, meaning that is impossible to reduce X to “simpler”
pieces. It was then very easy to show that X is pure if and only if its Lévy measure
is ergodic:

Proposition 9. A stationary IDp process X is pure if and only if its Lévy measure
Q is ergodic

Proof. Assume Q is not ergodic. There exists a partition of R
Z into two shift

invariant sets A and B both of positive measure. Therefore, Q|A and Q|B can be
taken as Lévy measures of two stationary IDp processes XA and XB and taking
them independent leads to

X = XA +XB

in distribution, as Q = Q|A +Q|B.
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In the converse, assume Q is ergodic and suppose there exist independent sta-
tionary IDp processes X1 and X2 with Lévy measure Q1 and Q2 such that

X = X1 +X2

holds in distribution. As Q = Q1 + Q2 we get Q1 ≪ Q. But as Q is ergodic,
this in turns implies that there exists c > 0 such that Q1 = cQ and thus Q2 =
(1− c)Q. �

In this section, we will try to comment the above equation according to the
Krieger type of the associated non-singular transformation. A description of the
interesting class of those stable processes driven by non-singular transformations of
type III0 is unknown.

6.1. The type III1 case, pure stable processes. It was an open question whether
there exist pure stable processes. It can now be solved thanks to the Maharam struc-
ture of the Lévy measure: an α-stable process is pure if and only if the underlying
non-singular system is of type III1.

The existence of pure stable processes (guaranteed by the comments made in
Section 5.4) is reassuring as it validates the specific study of stable processes.

6.2. The type IIIλ case, 0 < λ < 1. In this section we derive the form of those α-
stable processes associated with an ergodic, type IIIλ non-singular automorphism,
0 < λ < 1.

6.2.1. Semi-stable stationary processes. An infinitely divisible probability measure
µ on R

d is called α-semi-stable with span b if its Fourier transform satisfies:

µ̂ (z)
bα

= µ̂ (bz) ei〈c,z〉

for some c ∈ R
d.

By extension, an α-semi-stable process process is a process whose finite dimen-
sional distributions are α-semi-stable. Using once again results of Chapter 3 in [17],
one gets the following characterization of α-semi-stable stationary processes:

A shift-invariant Lévy measure Q on
(
R

Z,B⊗Z
)
is the Lévy measure of an α-

semi-stable stationary process of span b > 0 if and only if it satisfies

(Rb)∗ Q = b−αQ

where Rb is the multiplication by b

{xn}∈Z 7→ {bxn}∈Z .

Of course by iterating Rb, we easily observe that (Rbn)∗ Q = b−nαQ for all n ∈ Z.

6.2.2. Discrete Maharam extension. Assume (Ω,F , µ, T ) is a non-singular system

such that there exists λ > 0 so that
dT−1

∗
µ

dµ ∈ {λn, n ∈ Z} µ-almost everywhere. We

can form its discrete Maharam extension, that is, the m.p. system
(
Ω× Z,F ⊗ B, µ⊗ λndn, T̃

)

where λndn stands for the measure
∑

n∈Z

λnδn on (Z,B) and T̃ is defined by

T̃ (ω, n) =

(
Tω, n− logλ

dT−1
∗ µ

dµ
(ω)

)
.
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6.2.3. Ergodic decomposition of Maharam extension of type IIIλ transformations.
Let (Ω,F , µ, T ) be an ergodic type IIIλ system. Up to a change of measure we can
assume that the Radon Nykodim derivative take its values in the group {λn, n ∈ Z}
where r (T ) = {0, λn, n ∈ Z,+∞} is the ratio set of T (see [6]). Therefore, the dis-

crete Maharam extension
(
Ω× Z,F ⊗ B, βµ⊗ λndn, T̃

)
, where β :=

´ − lnλ

0 e−sds,

exists. Now form the product system
(
Ω× Z× [0,− lnλ[ ,F ⊗ B ⊗ B ([0,− lnλ[) , βµ⊗ λndn⊗

e−s

β
ds, T̃ × Id

)
.

The dissipative non singular flow St : (ω, n, s) 7→
(
ω, n+

⌊
s−t

− lnλ

⌋
, s− t+ lnλ

⌊
s−t

− lnλ

⌋)

satisfies St ◦ T̃ × Id = T̃ × Id◦St and (St)∗ µ⊗λndn⊗ e−sds = e−tµ⊗λndn⊗ e−sds
and it is very easy to see that (Z× [0,− lnλ[ ,B ⊗ B ([0,− lnλ[) , λndn⊗ e−sds) is
just a reparametrization of (R,B, esds) thanks to the mapping (n, s) 7→ −n lnλ−s.

Therefore
(
Ω× Z× [0,− lnλ[ ,F ⊗ B ⊗ B ([0,− lnλ[) , µ⊗ λndn⊗ e−sds, T̃ × Id

)

can be seen as the Maharam extension of (Ω,F , µ, T ).

It remains to prove the ergodicity of
(
Ω× Z,F ⊗ B, βµ⊗ λndn, T̃

)
, this follows,

for example, from Corollary 5.4 in [18], as the ratio set is precisely the set of essential
values of Radon-Nykodim cocycle.

We then obtain the ergodic decomposition of the Maharam extension: it is

the discrete Maharam extension
(
Ω× Z,F ⊗ B, βµ⊗ λndn, T̃

)
randomized by the

measure e−s

β
ds on [0,− lnλ[.

6.2.4. Application to stable processes. Let
(
R

Z,B⊗Z, Q, S
)
be the Lévy measure sys-

tem of an α-stable process driven by an ergodic type IIIλ system (Ω,F , µ, T ) and let
f ∈ Lα (µ) be given as in Theorem 7. Let b > 1 so that b−α = λ, we need to obtain
a multiplicative version of the above structure adapted to our parameters. Up to

a change of measure we can assume that
(

dT−1
∗

µ

dµ

) 1
α

∈ {bn, n ∈ Z} µ-almost every-

where. Consider the discrete Maharam extension
(
Ω×Gb,F ⊗ B, βµ⊗mb, T̃

)
(in

a multiplicative representation) where β =
´ b

1
1

s1+α ds, mb is the measure
∑

g∈Gb

g−αδg

on Gb := {bn, n ∈ Z} and T̃ := (ω, g) 7→

(
Tω, g

(
dT−1

∗
µ

dµ (ω)
) 1

α

)
. Form the

system
(
R

Z,B⊗Z, Qr, S
)
as a factor of

(
Ω×Gb,F ⊗ B, βµ⊗mb, T̃

)
given by the

mapping ϕ := (ω, g) 7→
{
M ◦ T̃ n (ω, g)

}
n∈Z

where M (ω, g) = gf (ω) and Qr =

ϕ∗ (βµ⊗mb).
Now, as above, we recover the Maharam extension of (Ω,F , µ, T ) by consid-

ering
(
Ω×Gb × [1, b[ ,F ⊗ B ⊗ B ([1, b[) , βµ⊗mb ⊗

1
βs1+α ds, T̃ × Id

)
. As the sys-

tem
(
Gb × [1, b[ ,B ⊗ B ([1, b[) ,mb ⊗

1
s1+α ds

)
is isomorphic to

(
R

∗
+,B,

1
s1+α ds

)
thanks

to (g, t) 7→ gt, we obtain
(
R

Z,B⊗Z, Q, S
)
by applying the map

(
{xn}n∈Z , t

)
7→

{txn}n∈Z to
(
R

Z × [1, b[ ,B⊗Z ⊗ B ([1, b[) , Qr ⊗ 1
βs1+α ds, S × Id

)
. At last, we can

check that Qr is a Lévy measure, indeed we know that
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ˆ

RZ

(
x2
0 ∧ 1

)
Q
(
d {xn}n∈Z

)
< +∞

but
ˆ

RZ

(
x2
0 ∧ 1

)
Q
(
d {xn}n∈Z

)
=

ˆ b

1

(
ˆ

RZ

(
(sx0)

2 ∧ 1
)
Qr
(
d {xn}n∈Z

)) 1

βs1+α
ds

therefore, for some 1 ≤ s < b,
´

RZ

(
(sx0)

2 ∧ 1
)
Qr
(
d {xn}n∈Z

)
< +∞ and this

is enough to prove that Qr is a Lévy measure.(
R

Z,B⊗Z, Qr, S
)
is the Lévy measure system of an α-semi-stable stationary pro-

cess with span b. Heuristically, if X has Lévy measure Q, X can be thought
as the continuous sum of independent processes Y t, 1 ≤ t < b weighted by the
probability measure 1

βs1+αds where 1
t
Y t has Lévy measure Qr. More formally, if(

(Ω×Gb × [1, b[)
∗
, (F ⊗ B ⊗ B ([1, b[))

∗
,
(
βµ⊗mb ⊗

1
βs1+α ds

)∗
,
(
T̃ × Id

)
∗

)
denotes

the Poisson suspension over
(
Ω×Gb × [1, b[ ,F ⊗ B ⊗ B ([1, b[) , βµ⊗mb ⊗

1
βs1+α ds, T̃ × Id

)
,

then, if I denotes the stochastic integral as in Theorem 6,X :=
{
I {M1} ◦

(
T̃ × Id

)n
∗

}
n∈Z

has Lévy measure Q and Y :=
{
I {M2} ◦

(
T̃ × Id

)n
∗

}
n∈Z

where M1 (ω, g, s) =

sgf (ω) and M2 (ω, g, s) = gf (ω).
We therefore observe that X is entirely determined by a pure α-semi-stable

stationary process with span b, Y . It is very easy to see that X and Y share the
same type of mixing.

6.2.5. Examples. It is not difficult to exhibit examples of stable processes of the
kind described above as the structure detailed allows to build such processes. We
can, for example, consider the systems Tp,

1
2 < p < 1 introduced in [4]. We will

follow the presentation given in [1] (page 104).
Let Ω be the group of dyadic integers, let τ acts by translation by 1 on Ω and

for 1
2 < p < 1, let µp be a probability measure on Ω defined on cylinders by

µp ([ǫ1, . . . , ǫn]) =
n∏

k=1

p (ǫk) ,

where p (0) = 1− p and p (1) = p.

If we set 1−p
p

= λ, we get:

dτ−1
∗ µp

dµp

= λφ

where φ (x) = min {n ∈ N, xn = 0}−2. It is proved in [4] that the discrete Maharam
extension (Ω⊗ Z,F ⊗ B, µ⊗ λndn, τ̃) is ergodic.

We can form a new system, which will be the Lévy measure system of a stationary
semi-stable process with span λα, thanks to the following map

f : (ω, n) 7→ λαn
∑

i≥1

ωi2
−i

The Lévy measureQr is the image of µ⊗λndn by the map (ω, n) 7→
{
f ◦ τ̃k (ω, n)

}
k∈Z

.
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By randomizing this Lévy measure as explained above, we obtain the Lévy
measure Q of a stationary α-stable process, that is Q is the image measure of
Qr ⊗ 1

βs1+α ds by the map
(
{xn}n∈Z , t

)
7→ {txn}n∈Z .

To obtain a realization of these two processes as stochastic integrals over Poisson
suspensions, we can proceed as explained at the end of the preceding section.

Anticipating next sections, we derive the ergodic properties of these processes:
τ being of type IIIλ, the Maharam extension is of type II∞ which means that

the Lévy measure system of the corresponding stationary α-stable process (with
Lévy measure Q) is of type II∞. Therefore the associated Poisson suspension is
weakly mixing. As stochastic integrals with respect to this Poisson suspension,
both processes (with Lévy measures Q and Qr) are weakly mixing.

Thanks to Lemma 1.2.10 page 30 in [1], τ is rigid for the sequence {2n}n∈N.
Therefore, by Theorem 18 (or with a slight adaptation for the semi-stable case),
both processes are also rigid for the same sequence.

6.3. The type I and II cases. This case is easy to deal with as we can assume the
associated ergodic nonsingular system is actually measure preserving, that is, the

Lévy measure system
(
R

Z,B⊗Z, Q, S
)
is isomorphic to

(
Ω× R

∗
+,F ⊗ B, µ⊗ 1

s1+α ds, T̃
)

where T preserves µ and T̃ acts as T × Id, i.e. T̃ (ω, t) = (Tω, t). Consider-

ing f ∈ Lα (µ) furnished by Theorem 7,
(
Ω× R

∗
+,F ⊗ B, µ⊗ 1

s1+α ds, T̃
)

is iso-

morphic to
(
R

Z × R
∗
+,B

⊗Z ⊗ B, Qs ⊗ 1
s1+α ds, S × Id

)
through the map (ω, t) 7→(

{f ◦ T n (ω)}n∈Z , t
)
and

ˆ

RZ

(
x2
0 ∧ 1

)
Q
(
d {xn}n∈Z

)
=

ˆ

Ω

ˆ

R+

(
(tf (ω))

2 ∧ 1
) 1

tα+1
dtµ (dω)

=

ˆ

R+

(
ˆ

RZ

(
(tx0)

2 ∧ 1
)
Qs
(
d {xn}n∈Z

)) 1

tα+1
dt < +∞

For the same reason as above Qs is a Lévy measure. We draw the same con-
clusions as in the preceding section taking into account that the weight is now the
infinite measure 1

tα+1dt on R
∗
+ and Qs can be any Lévy measure (of a stationary

IDp process).

7. Ergodic properties

Some ergodic properties of general IDp stationary processes have been given in
terms of ergodic properties of the Lévy measure system in [13]. For an α-stable
stationary processes, it is more interesting to give them in terms of the associated
non-singular system (Ω,F , µ, T ). This work has been undertaken in the symmetric
(SαS) case in a series of papers (see in particular [11] and [15]).

We have a new tool to deal with this problem:
As the Lévy measure of an α-stable stationary processes can now be seen as the

Maharam extension
(
Ω× R

∗
+,F ⊗ B, µ⊗ 1

s1+α ds, T̃
)
of the system (Ω,F , µ, T ), it

suffices to connect ergodic properties of T and T̃ , then apply the general results
relating ergodic properties of a stationary IDp process with respect to those of its
Lévy measure system.
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Observe that linking ergodic properties of T and T̃ is a general problem in non-
singular ergodic theory which is of great interest.

We’ll illustrate this in the following sections dealing with mixing, K-property
and rigidity, the last two having been neglected in the α-stable literature.

7.1. Mixing. First recall that if S is a non singular transformation of a measure
space (X,A,m), it induces a unitary operator US on L2 (m) by

USf (x) =

√
dS−1

∗ µ

dµ
(x)f ◦ S (x)

We first prove a general result, whose proof, that we sketch here, can be extracted
from [11]:

Proposition 10. The Maharam system
(
Ω× R

∗
+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
is of

zero type if and only if for all f ∈ L2 (µ), 〈Un
T f, f〉L2(µ) → 0 as n tends to infinity.

Proof. The “if” part follows from Cauchy-Schwarz inequality which leads to:

〈
Un

T̃α
f ⊗ g, f ⊗ g

〉
L2(µ⊗ 1

s1+α ds)
≤ ‖g‖22 〈U

n
T f, f〉L2(µ) ,

for f ∈ L2 (µ) and g ∈ L2
(

1
s1+α ds

)
.

The “only if” part can be obtain by assuming that µ is a probability measure
and by considering g (s) = s

α
2
−ǫ1s≥1 and g′ (s) = s

α
2
−ǫ1s≥c. A direct computation,

using Jensen inequality with the concave function x 7→ x
1

1+ 2ǫ
α gives:

(
2ǫ
〈
Un

T̃α
1⊗ g, 1⊗ g′

〉
L2(µ⊗ 1

s1+α ds)

) 1

1+ 2ǫ
α

≥

ˆ

Ω

√
dT−n

∗ µ

dµ
(ω)1√

dT
−n
∗ µ

dµ
(ω)≤c−α

µ (dω)

Moreover, as
´

Ω

√
dT−n

∗ µ
dµ (ω)1√

dT
−n
∗ µ

dµ
(ω)>c−α

µ (dω) ≤ c
α
2 (thanks to Cauchy-

Schwarz and Markov inequality), we get:

ˆ

Ω

√
dT−n

∗ µ

dµ
(ω)µ (dω) ≤

ˆ

Ω

√
dT−n

∗ µ

dµ
(ω)1√

dT
−n
∗ µ

dµ
(ω)≤c−α

µ (dω) + c
α
2

Therefore, if T̃α is of zero type,
´

Ω

√
dT−n

∗ µ
dµ (ω)µ (dω) goes to zero as n tends to

infinity which is sufficient to prove that 〈Un
T f, f〉L2(µ) → 0 as n tends to infinity,

for all f ∈ L2 (µ). �

Combining this result with the characterization of the Lévy measure system as
a Maharam system and the mixing criteria found in [13], we obtain the following
theorem, already known in the SαS-case (see [11]):

Theorem 11. A stationary stable process
(
R

Z,B⊗Z,P, S
)
with associated system

(Ω,F , µ, T ) is mixing if and only if for all f ∈ L2 (µ), 〈Un
T f, f〉L2(µ) → 0 as n tends

to infinity.

In the forthcoming sections, we are interested in less known ergodic properties
(K property and rigidity) that have been neglected in the α-stable literature.
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7.2. K property.

Definition 12. (see [19]) A conservative non-singular system (Ω,F , µ, T ) is a K-
system if there exists a sub-σ-algebra G ⊂ F such that T−1G ⊂ G, T−nG ↓ {Ω, ∅},

T nG ↑ F and dµ
dT∗µ

is G-measurable.

A K-system is always ergodic (see [19]) .

Definition 13. A measure-preserving system (X,A,m, S) is remotely infinite if
there exists a sub-σ-algebra C ⊂ A such that T−1C ⊂ C, SnC ↑ A and

⋂
n≥1 S

−nC
contains zero or infinite measure sets only.

Proposition 14. If (Ω,F , µ, T ) is a K-system which is not of type II1 then its

Maharam extension
(
Ω× R

∗
+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
is remotely infinite.

Proof. Let G be as in Definition 12. Observe that, as dµ
dT∗µ

is G-measurable, G⊗B+

is T̃α-invariant, that is T̃
−1
α G ⊗ B+ ⊂ G ⊗ B+. Indeed, take g G-measurable and f

B+-measurable, we get:

g ⊗ f
(
T̃α (ω, s)

)
=

(
g (Tω) , s

(
dT−1

∗ µ

dµ
(ω)

) 1
α

)
=

(
g (Tω) , s

(
dµ

dT∗µ
(Tω)

) 1
α

)
.

We are going to show that P :=
⋂

n∈N

T̃−n
α G ⊗ B+ only contains sets of zero or

infinite measure. Observe that, as St commutes with T̃α and preserves G ⊗ B+

for all t > 0 then , S−1
t

(
T̃−n
α G ⊗ B+

)
⊂ T̃−n

α G ⊗ B+ and therefore S−1
t P ⊂ P

for all t > 0. Now consider the measurable union, say K, of P-measurable sets of

finite and positive measure. It is a T̃α-invariant set and a St-invariant set as well.
Recall that the non-singular action of the flow St on the ergodic components of(
Ω× R

∗
+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
is ergodic, therefore, if K 6= ∅ then K = Ω×R

∗
+

mod. ν ⊗ 1
s1+α ds.

Assume K = Ω×R
∗
+, this implies that the measure µ⊗ 1

s1+α ds is σ-finite on P

and therefore P is a factor of
(
Ω× R

∗
+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
. Now consider the

quotient space
(
Ω× R

∗
+

)
�P

that we can endow, with a slight abuse of notation with

the σ-algebra P . Let ρ be the image measure of µ⊗ 1
s1+α ds by the projection map

π. On
((

Ω× R
∗
+

)
�P

,P , ρ
)
T̃α and the dissipative flow St induce a transformation

U and a dissipative flow Zt that satisfy

π ◦ T̃α = U ◦ π, π ◦ St = U ◦ π and U ◦ Zt = Zt ◦ U

Of course, thanks to Theorem 3,
((

Ω× R
∗
+

)
�P

,P , ρ, U
)

is a Maharam sys-

tem, therefore, we can represent it as
(
Y × R

∗
+,K⊗ B+, σ ⊗ 1

s1+α ds, L̃α

)
for a

non-singular system (Y,K, σ, L). Applying Lemma 4, π induces a non-singular
factor map Γ from (Ω,G, µ, T ) to (Y,K, σ, L), which means that there exists a R-
invariant σ-algebra Z ⊂ G such that Γ−1K = Z. But we can observe, that for

all n > 0, the factor T̃−n
α G ⊗ B+ corresponds to a Maharam system that corre-

sponds to the factor T−nG of (Ω,G, µ, T ). Therefore, for all n > 0, Z ⊂ T−nG,
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i.e. Z ⊂
⋂

n∈N

T−nG = {Ω, ∅}. This means that K = {Y, ∅}, or, in other words, that

(Y,K, σ, L) is the trivial (one point) system.
(
Y × R

∗
+,K⊗ B+, σ ⊗ 1

s1+α ds, L̃α

)

then possesses lots of invariant sets of positive finite measure, for example A :=
Y × [1, 2]. But π−1 (A) is in turn a positive and finite measure invariant set for the

system
(
Ω× R

∗
+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
and the existence of such set is impos-

sible in a Maharam extension of an ergodic system which doesn’t posses a finite
T -invariant probability measure ν ≪ µ . We can conclude that K = ∅.

To prove that
(
Ω× R

∗
+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
is remotely infinite, it remains

to show that
∨

n∈Z T̃
−n
α G ⊗B+ = F ⊗B+. We only sketch the proof which consists

into verifying that the operation of taking natural extension andMaharam extension
commute:

Of course, we have
∨

n∈Z T̃
−n
α G ⊗ B+ ⊂ F ⊗ B+. It is not difficult to check that∨

n∈Z T̃
−n
α G ⊗ B+ corresponds to a Maharam system that comes from a σ-algebra

H ⊂ F . But we also have G ⊂ H and as T−1H = H, we get
∨

n∈Z T
−nG ⊂ H. By

assumption,
∨

n∈Z T
−nG = F and we deduce H = F which implies

∨
n∈Z T̃

−n
α G ⊗

B+ = F ⊗ B+. �

As before we deduce the following result for α-stable stationary processes:

Theorem 15. Let
(
R

Z,B⊗Z,P, S
)
be a stationary stable process with associated

system (Ω,F , µ, T ). If (Ω,F , µ, T ) is K and not of type II1, then
(
R

Z,B⊗Z,P, S
)

is K.

Proof. From Proposition 14, we know that the Lévy measure system of the stable
process is remotely infinite. The corresponding Poisson suspension is K by a result
from [14]. By applying Maruyama’s representation Theorem (Theorem 6), we re-
cover the stable process as a factor of the suspension, which therefore inherits the
K property. �

Recall that in the probability preserving context, K is strictly stronger than mix-
ing. In [11], to produce examples of mixing α-stable stationary processes that were
not based on dissipative non-singular systems, the authors considered indeed null
recurrent Markov chains as base systems. These systems are well known examples
of K-systems, therefore Theorem 15 shows that the associated α-stable stationary
processes are not just merely mixing but are indeed K.

7.3. Rigidity. We recall that a system (Ω,F , µ, T ) is rigid if there exists an increas-
ing sequence nk such that T nk → Id in the group of non-singular automorphism
on (Ω,F , µ)(the convergence being equivalent to the weak convergence in L2 (µ) of

the associated unitary operators UTnk : f 7→
√

dT
−nk
∗ µ
dµ f ◦T nk to the identity). Ob-

serve that in the finite measure case, rigidity doesn’t imply ergodicity but prevents
mixing.

Proposition 16. The Maharam system
(
Ω× R

∗
+,F ⊗ B+, µ⊗ 1

s1+α ds, T̃α

)
is rigid

for the sequence nk if and only (Ω,F , µ, T ) is rigid for the sequence nk.

Proof. First observe that the map T 7→ T̃α is a continuous group homomorphism
from the group of non-singular automorphism of (Ω,F , µ) to the group of measure



MAHARAM EXTENSION AND STATIONARY STABLE PROCESSES 15

preserving automorphism of
(
Ω× R

∗
+,F ⊗ B+, µ⊗ 1

s1+α ds
)
. As T nk → Id then

T̃ nk
α → Id therefore T̃ nk

α is rigid for the sequence nk.

Conversely, if T̃α is rigid for the same sequence, then, as

〈
Unk

T̃α

f ⊗ g, f ⊗ g
〉
L2(µ⊗ 1

s1+α ds)
≤ ‖g‖22 〈U

nk

T f, f〉
L2(µ) ≤ ‖g‖22 ‖f‖

2
2

and
〈
Unk

T̃α

f ⊗ g, f ⊗ g
〉
L2(µ⊗ 1

s1+α ds)
→ ‖g‖22 ‖f‖

2
2, we get 〈U

nk

T f, f〉
L2(µ) → ‖f‖22

thus T is rigid. �

We need the following general result:

Proposition 17. A stationary IDp stationary process
(
R

Z,B⊗Z,P, S
)
is rigid for

the sequence nk if and only if its Lévy measure system
(
R

Z,B⊗Z, Q, S
)
is rigid for

the sequence nk.

Proof. Consider X := {Xn}n∈Z where Xn := {xk}k∈Z 7→ xn on R
Z and let 〈a,X〉

be a finite linear combination of the coordinates. exp i 〈a,X〉 − E [exp i 〈a,X〉] is
a centered square integrable vector under P whose spectral measure (under P) is

λa := |E [exp i 〈a,X〉]|2
∞∑

k=1

1
k!σ

∗k
a where σa is the spectral measure of exp i 〈a,X〉−1

under Q (see [13]). Therefore σ̂a (nk) → σ̂a (0) if and only if λ̂a (nk) → λ̂a (0). This
implies that exp i 〈a,X〉−E [exp i 〈a,X〉] is a rigid vector for nk under P if and only
if exp i 〈a,X〉 − 1 is a rigid vector for nk under Q. Observe now that the smallest
σ-algebra generated by vectors of the kind exp i 〈a,X〉 − E [exp i 〈a,X〉] under P is
B⊗Z, and the same is true with vectors of the kind exp i 〈a,X〉 − 1 under Q. As
in any dynamical system if there exists a rigid vector for the sequence nk there
exists a non trivial factor which is rigid for the sequence nk, we get the announced
result. �

Theorem 18. A stationary stable process
(
R

Z,B⊗Z,P, S
)
with associated system

(Ω,F , µ, T ) is rigid for the sequence nk if and only (Ω,F , µ, T ) is rigid for the
sequence nk.

Proof. This is the combination of the last two results. �
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13, 99 avenue J.B. Clément, F-93430 Villetaneuse, France

E-mail address: roy@math.univ-paris13.fr


