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Abstract

This article considers a family of functionals J to be maximized
over the planar convex sets K for which the perimeter and Steiner
point have been fixed. Assuming that J is the integral of a quadratic
expression in the support function h, the maximizer is always either
a triangle or a line segment (which can be considered as a collapsed
triangle). Among the concrete consequences of the main theorem is
the fact that, given any convex body K1 of finite perimeter, the set
in this class that is farthest away in the sense of the L2 distance is
always a line segment. The same property is proved for the Hausdorff
distance.

Keywords: isoperimetric problem, shape optimization, convex geome-
try, polygons, farthest convex set

AMS classification: 52A10, 52A40, 52B60, 49Q10

1



1 Introduction

Given a convex set K1 in the plane, consider the problem of finding a second
convex set that is as far as possible from K1 in the sense of usual distances
like the Hausdorff distance or the L2 distance, subject to two natural ge-
ometric constraints, viz., that the two sets have the same perimeter and
Steiner point, without either of which conditions there are sets arbitrarily
far away from K1. A plausible conjecture, which we prove below, is that the
farthest convex set, subject to the two constraints, is always a “needle,” to
use the colorful terminology of Pólya and Szegő [12] for a line segment in
the plane.

In the case of the L2 distance, the problem of the farthest convex set
can be expressed as the maximization of a quadratic integral functional of
the support function of the desired set, and, as we shall show, with the
same two geometric constraints it is possible to characterize the maximizers
of a wider class of such functionals as either triangles or needles, which,
intuitively, can be considered as collapsed triangles. One of our inspirations
for pursuing the wider class of functionals, the maximizers of which are
triangles, is a recent article [8], in which the maximizers of another class
of convex functionals were shown to be polygons. Now, the maximizers of
a convex functional must lie on the boundary of the feasible set, which is
to say, in our case or that of [8], that the maximizers will be non strictly
convex, but not simple polygons a priori. What restrictions are needed on
the functional to imply furthermore that the maximizer must be triangular?
In this article, we consider functionals that are expressible as integrals of
quadratic expressions in the support function, and show that the maximizers
are always generalized triangles, i.e., triangles or needles.

An advantage of describing shape-optimization problems through the
support function h is that it is easy to express many geometric features,
including perimeter and area, in terms of h. Yet another tool that is available
in the case of functionals that are quadratic in h is that of Fourier series [3],
because through the Parseval relation it is possible to rewrite many such
functionals as series with geometric properties accessible through the form
of the coefficients. Indeed another one of our inspirations was the analysis of
the maximizers of the L2 means of chord lengths of curves through Fourier
series found in [2, 1]. When the means with respect to arc length are replaced
with means weighted by curvature, the problem falls within the category
of quadratic functionals of h considered in this article. Interestingly, the
cases of optimality of the weighted and unweighted problems are completely
different. Because additional analysis is possible for quadratic functionals
when the coefficients in the equivalent series enjoy certain properties, we
shall defer details on the chord problem to a future article [5].

This paper is organized as follows. We begin Section 2 with the main
notation and general optimality conditions. We state our main result in
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Subsection 2.3. Next, Section 3 is devoted to the problem of finding the
farthest convex set. We begin with an inequality involving the minimum
and the maximum of the support function, in the spirit of [10]. We then
consider the case of the Hausdorff distance, and we finish with the case of
the L2 distance, for which our main result is essential.

2 Notation and preliminary results

2.1 Notation

When convenient R2 will be identified with the complex plane, and the dot
product of two vectors x and w with ℜ(x w). Let T be the unit circle,
identified with [0, 2π). For θ ∈ T, we shall denote by hK(θ) (or more simply
h(θ) if not ambiguous) the support function of the convex set K; we recall
that by definition h(θ) is the distance from the origin to the support line of
K having outward unit normal eiθ:

hK(θ) := max{x · eiθ : x ∈ K} .

It is known that the boundary of a planar convex set has at most a countable
number of points of nondifferentiability. More precisely, the two directional
derivatives of the the function defining any portion of the boundary exist at
every point and their difference is uniformly bounded. We refer to [13, 15]
for this and other standard facts about convex regions. It follows from
the regularity of the boundary that the support function h belongs to the
periodic Sobolev space H1(T).

For a polygon K with n sides, we let a1, a2, . . . , an and θ1, θ2, . . . , θn

denote the lengths of the sides and the angles of the corresponding outer
normals. The following characterization of the support function of such a
polygon is classical and will be useful here:

Proposition 2.1. With the notation given above, the support function of
the polygon K satisfies

d2hK

dθ2
+ hK =

n∑
j=1

ajδθj
, (1)

where the derivative is to be understood in the sense of distributions, and
δθj

stands for a Dirac measure at point θj.

Eq. (1) can be proved by a direct calculation. It is a special case of a
formula of Weingarten, whereby for any support function hK of a convex
set K, d2hK

dθ2 +hK = h′′
K +hK is a nonnegative measure, which is interpreted

as the (generalized) radius of curvature R at the point of contact with the
support line corresponding to θ. We shall denote by Sh (or SK if we want to
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emphasize the dependence on the convex set K) the support of this measure.
It will be useful to recover the support function from the radius of curvature.
This can be accomplished by solving the ordinary differential equation:

h′′ + h = R (2)

for a 2π-periodic function h(θ) subject to the conditions∫ 2π

0
h(θ) cos θ dθ =

∫ 2π

0
h(θ) sin θ dθ = 0 . (3)

These orthogonality conditions are imposed because (2) is in the second
Fredholm alternative and hence needs such conditions for uniqueness. They
can always be arranged by a choice of the origin, viz., that it is fixed at the
Steiner point s(K). Recall that the Steiner point s(K) of a convex planar
set K is defined by

s(K) =
1
π

∫ 2π

0
hK(θ)eiθ dθ . (4)

By Fredholm’s condition for existence the function or measure R(θ) on the
right side of (2) must satisfy the same orthogonality, that is,∫ 2π

0
R cos θ dθ =

∫ 2π

0
R sin θ dθ = 0.

Since these restrictions on the radius of curvature are necessary conditions in
any case for the closure of the boundary curve of K, they are automatically
fulfilled.

An explicit Green function can be found to solve (2) for h if R is given,
viz., with G(t) := 1

2

(
1 − |t|

π

)
sin |t|,

h(θ) =
1
2

∫ π

−π
G(t)R(θ + t) dt . (5)

The perimeter P (K) of the convex set can be easily calculated from hK :

P (K) =
∫ 2π

0
hK(θ) dθ . (6)

In this article, we work within the class of convex sets whose Steiner
point is at the origin and whose perimeter P (K) is fixed, at a value that
can be chosen as 2π without loss of generality:

A := {K convex set in R2, s(K) = O,P (K) = 2π}. (7)

Given that convexity is equivalent to the nonnegativity of the radius of
curvature R = h′′ + h (in the sense of measures), the geometric set A can
be described in analytic terms by requiring h to lie in the function space:

H := {h ∈ H1(T), h ≥ 0, h′′ + h ≥ 0,∫ 2π
0 hdθ = 2π,

∫ 2π
0 h cos θdθ =

∫ 2π
0 h sin θdθ = 0}. (8)
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The class A contains in particular “needles,” i.e., line segments, which
we regard as degenerate convex bodies in the sense that the perimeter of the
segment is taken as twice its length. We shall let Σα designate the segment
[−iπ

2 eiα, iπ
2 eiα]. Its support function is given by

hα(θ) :=
π

2
| sin(θ − α)| , (9)

which satisfies hα
′′ + hα = π(δα + δπ+α).

2.2 Optimality conditions

If the goal is to maximize a functional J defined on the geometric class
A, and J is expressible in terms of the support function h, then we may
equivalently consider the problem of determining

max{J(h) : h ∈ H}. (10)

We may then analytically derive the conditions for optimality of J .
The Steiner point s of a closed convex set always lies within the set, and

in the case of a convex body (a convex set of nonempty interior), s is an
interior point; see, e.g., (1.7.6) in [14]. It follows that the support function of
K can vanish only if K is a segment. For any convex body in A, hK(θ) > 0
for all θ.

We next derive the first and second order optimality conditions assum-
ing that the optimal set is not a segment, following [8]. Because the Steiner
point has been fixed, the optimality conditions are with respect to variations
in the subspace of functions that are L2-orthogonal to

{
eiθ, e−iθ

}
. Alterna-

tively, we could have imposed this constraint by introducing two additional
Lagrange multipliers.

Theorem 2.2. If h0 > 0 is a solution of (10), where J : H1(T) → R is C2,
then there exist ξ0 ∈ H1(T), ξ0 ≤ 0, and µ ∈ R such that

ξ0 = 0 on Sh0 , (11)

and for all v ∈ H1(T) with
∫ 2π
0 v(θ)e±iθdθ = 0,

⟨
J ′(h0), v

⟩
=

⟨
ξ0 + ξ0

′′, v
⟩

+ µ

∫ 2π

0
v dθ . (12)

Moreover, if v ∈ H1(T) and λ ∈ R satisfy

v′′ + v ≥ λ(h0
′′ + h0),

v ≥ λh0,⟨
ξ0 + ξ0

′′, v
⟩

+ µ
∫ 2π
0 v dθ = 0,

(13)

then ⟨
J ′′(h0), v, v

⟩
≤ 0 . (14)
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The proof of the foregoing theorem is classical and can be achieved using
standard first and second order optimality conditions in infinite dimension
space as in [11]; we refer to [8] for technical details.

Remark 1. If the optimal domain K0 is a segment, then the optimality
condition is more complicated, because the constraint h ≥ 0 needs to be
taken into account. Since it will not be needed here, we do not write the
explicit form.

2.3 Integral functionals

In this section we are interested in quadratic functionals involving the sup-
port function and its first derivative. Let J be the functional defined by

J(K) :=
∫ 2π

0

(
a h2

K + b h′
K

2 + c hK + d h′
K

)
dθ, (15)

where a and b are nonnegative bounded functions of θ, one of them being
positive almost everywhere on T. The functions c, d are assumed to be
bounded. Our main theorem is the following:

Theorem 2.3. Every local maximizer within the class A of the functional
J defined in (15) is either a line segment or a triangle.

Proof. Let K be a local maximizer of the functional J . We have to prove
that the support SK of the measure h′′

K + hK contains no more than three
points. We follow ideas contained in [7] and [8].

Assume, for the purpose of a contradiction, that SK contains at least
four points θ1 < θ2 < θ3 < θ4 in (0, 2π). Choose ε > 0 sufficiently small and
such that θ4 + ε − (θ1 − ε) < 2π, and let ρi be any positive Borel measures
that are absolutely continuous with respect to h′′

K + hK and supported in
nonoverlapping intervals (θi − ϵ

2 , θi + ϵ
2). (For example, if h′′

K + hK contains
a point mass at θi, we may choose ρi = δθi

, the Dirac measure at point θi.)
We solve the four differential equations{

v′′i + vi = ρi θ ∈ (θ1 − ε, θ4 + ε)
vi(θ1 − ε) = vi(θ4 + ε) = 0,

(16)

Note that equations (16) have unique solutions since we avoid the first
eigenvalue of the interval. We also extend each function vi by 0 outside
(θ1 − ε, θ4 + ε). We can always find four numbers λi, i = 1, . . . , 4 such
that the three following conditions hold, where we denote by w the function
defined by w =

∑4
i=1 λivi:

w′(θ1 − ε) = w′(θ4 + ε) = 0,

∫ 2π

0
w dθ = 0 .
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Then the function w solves w′′+w =
∑4

i=1 λiρi globally on (0, 2π). Further-
more, since e±iθ solve the associated homogeneous equation, we can subtract
multiples of these functions from w to find another such global solution, de-
noted v, which is orthogonal to e±iθ and thus in the class H. We now use
the optimality conditions (11), (12) for the function v, to obtain

< ξ0 + ξ0
′′, v > +µ

∫ 2π

0
v dθ =< v′′ + v, ξ0 >=

4∑
i=1

λiξi = 0,

where ξi :=
∫ 2π
0 ξ0(θ)dρi. Therefore, v is admissible for the second order op-

timality condition (it is immediate to check that the two first conditions in
(13) are satisfied by choosing λ < 0 with |λ| large enough). Since the func-
tional J is quadratic, however, this would imply that

∫ 2π
0 (av′2 +bv2) dθ ≤ 0,

which is impossible by the assumptions on a and b.

Remark 2. The examples given in the next section may give the impression
that the maximizers for such functionals are always segments. This is not
the case. Indeed, if we choose a = c = d = 0 and let b be a (positive)
function equal to one on an ε-neighborhood of 0, 2π/3 and 4π/3 and very
small elsewhere, the value for the equilateral triangle is of order 12π2ε/27
while the value for the best segment is of order π2ε/4.

3 The farthest convex set

3.1 Introduction

There are many ways to define the distance between convex sets. The most
familiar of these is the Hausdorff distance:

dH(K,L) := max{ρ(K,L), ρ(L,K)},

where ρ is defined by

ρ(A,B) := sup
x∈A

inf
y∈B

|x − y|.

(For a survey of possible metrics we refer to [4]; for a detailed study of the
Hausdorff distance see [6]). It is remarkable that the Hausdorff distance can
also be defined using the support functions, as dH(K,L) = ∥hK − hL∥∞.
Moreover the support function allows a definition of L2 distance, introduced
by McClure and Vitale in [9], by

d2(K,L) :=
(∫ 2π

0
|hK − hL|2 dθ

)1/2

.

In [10], P. McMullen was able to determine the diameter in the sense of the
Hausdorff distance of the class A in any dimension. Specifically, he proved
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that all sets in A are contained in the ball of radius π/2 centered at the
origin. In terms of the support function, this means that, for any convex set
K in A, the maximum of hK is at most π/2 (i.e. P (K)/4). We shall need
the following more precise result:

Theorem 3.1. Let K be any planar convex set the Steiner point of which
is fixed at the origin. Then

max hK ≤ P (K)
4

≤ minhK + max hK , (17)

where both inequalities are sharp: Equality is attained by any line segment.

Proof. The first inequality in (17) is due to McMullen, who proved it in
any dimension; see Theorem 1 in [10]. Let us prove the second inequality.
Letting B denote the unit ball, we introduce

max hK = τ(K) := min{τ > 0 : K ⊂ τB} ,

minhK = ρ(K) := max{ρ > 0 : ρB ⊂ K} .

The function τ(K) is convex with respect to the Minkowski sum, which can
be defined with the support function via

haK+bL = ahK + bhL.

In contrast, the function ρ(K) is concave, and as we are interested in the sum
F (K) := τ(K) + ρ(K) we can call upon no particular convexity property.
The minimum of hK is attained at some point we call P and the maximum
at some point Q (see Figure 2). Let us denote by L the line containing the
points O and P and by σL the reflection across L. If we replace the convex
set K by 1

2K + 1
2σL(K), then we keep the Steiner point at the origin, we

preserve the perimeter, and we decrease τ , because of convexity, without
changing ρ. Therefore, to look for the minimum of F (K), we can restrict
ourselves to convex sets symmetric with respect to the line L passing through
the point where hK attains its minimum. Now, let S be the segment in the
class A that is orthogonal to the line L.

We introduce the family of convex sets Kt := tK + (1 − t)S and study
the behavior of t 7→ F (Kt). Since the ball tρ(K)B is contained in Kt and
touches its boundary at tP , we know that ρ(Kt) = tρ(K). Moreover, by
convexity τ(Kt) ≤ tτ(K) + (1 − t)τ(S). Therefore, since τ(S) = F (S),

F (Kt) ≤ tF (K) + (1 − t)F (S) . (18)

In particular, this implies that if F (K) < F (S), it would follow that F (Kt) <
F (S) for t near 0. Thus, to prove the result it suffices to prove that a seg-
ment is a local minimizer for J . Without loss of generality, we consider the
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segment Σ0 and perturbations of Σ0 preserving the symmetry with respect
to the line θ = 0. Let us therefore consider a perturbation of the segment
Σ0, replacing its “radius of curvature” R0 = π(δ0 + δπ) by

Rt = R0 + t[φ(x) − (βδ0 + (1 − β)δπ)],

where φ(x) is a non-negative measure. Since we can work in the class of
symmetric convex sets, we may assume φ to be even. Moreover, we have
to assume that

∫ 2π
0 Rt = 2π and

∫ 2π
0 Rt cos(θ) = 0. (The last relation∫ 2π

0 Rt sin(θ) = 0 is true by symmetry). This implies that∫ 2π
0 φ = 1, or

∫ π
0 φ = 1

2 ,∫ 2π
0 φ cos θ = 2β − 1, or β = 1

2 +
∫ π
0 φ cos θ .

(19)

Observe that the support function ht of the perturbed convex set can be
obtained thanks to formula (5):

ht(θ) =
π

2
| sin θ| + t

{∫ π

−π
G(τ)φ(θ + τ) dτ − βG(θ) − (1 − β)G(θ − π)

}
,

where G denotes the Green function. The function ht will have its maximum
near π/2, so to first order,

max ht = ht(
π

2
) + o(t) =

π

2
+ t

{∫ π

−π
G(τ)φ(τ +

π

2
) dτ − 1

2

}
+ o(t) . (20)

In the same way, the minimum of ht will be attained near 0 or near π, so to
first order,

minht = min(ht(0), ht(π)) + o(t) =
t min

{∫ π
−π G(τ)φ(τ) dτ,

∫ π
−π G(τ)φ(τ + π) dτ

}
+ o(t) .

(21)

Therefore, we must prove that∫ π

−π
G(τ)φ(τ +

π

2
) dτ +

∫ π

−π
G(τ)φ(τ) dτ − 1

2
> 0 (22)

and ∫ π

−π
G(τ)φ(τ +

π

2
) dτ +

∫ π

−π
G(τ)φ(τ + π) dτ − 1

2
> 0 . (23)

Let us prove for example (22); the other inequality is similar. Letting

A :=
∫ π

−π
G(τ)φ(τ+

π

2
) dτ+

∫ π

−π
G(τ)φ(τ) dτ =

∫ π

−π
(G(τ)+G(τ−π

2
))φ(τ) dτ

and using the fact that φ is even,

A =
∫ π

0
[G(τ) + G(τ − π

2
) + G(−τ) + G(−τ − π

2
)]φ(τ) dτ .
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Figure 1: The function τ 7→ G(τ) + G(τ − π
2 ) + G(−τ) + G(−τ − π

2 ).

It is elementary to check that the function τ 7→ G4(τ) := G(τ)+G(τ − π
2 )+

G(−τ) + G(−τ − π
2 ) is always greater than or equal to one (see Figure 1),

so A ≥
∫ π
0 φ(τ) dτ = 1

2 . Moreover, since the function G4 is equal to one
only for τ = 0, π/2 or π, the inequality will be strict unless the support of
φ is concentrated at the four points −π/2, 0, π/2, π. This last case actually
corresponds to a (thin) rectangle Kα = [−α, α] × [−π/2 + α, π/2 − α], for
which a direct computation shows that minhKα = α/2 and maxhKα =(
α2 + (π − α)2

)1/2
/2, and F (Kα) > π/2 = F (S) follows immediately.

Another consequence of McMullen’s result cited above is that the Haus-
dorff distance between two sets in A is always less or equal to π/2, the upper
bound being obtained by two orthogonal segments.
In the remainder of this section, we address the question of finding the
farthest convex set in the class A from a given convex set, as measured by
either of the two distances defined above. More exactly, letting C be a given
convex set in the class A, we wish to find the convex set KC such that

d(C,KC) = max{d(C,K) : K ∈ A},

where d may stand either for dH or for d2.
First of all, let us give an existence result for such a problem.

Theorem 3.2. Let d(., .) be a distance function for convex sets that behaves
continuously under uniform convergence of the support functions. Then the
problem

max{d(C,K) : K ∈ A} (24)
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has a solution.

Proof. For the proof we will use the following lemma:

Lemma 3.3. For any h in the set H (defined in (8)),

∥h∥2
H1 :=

∫ 2π

0

(
|h|2 + |h′|2

)
dθ ≤ 16π/3 .

Proof of the lemma. For any h in H, we have

0 ≤
∫ 2π

0
h(h + h′′) dθ =

∫ 2π

0
h2 dθ −

∫ 2π

0
h′2 dθ . (25)

We now use the fact that the first eigenvalues of the problem{
−h′′ = λh

h 2π-periodic

are 0 (associated with the constant eigenfunction), 1 (of multiplicity 2 asso-
ciated with sin θ and cos θ), and 4 (of multiplicity 2 associated with sin 2θ
and cos 2θ). Thus, on A we can write a minimizing formula:

4 = min
v∈A

{∫ 2π
0 v′2 dθ∫ 2π
0 v2 dθ

s.t.

∫ 2π

0
v =

∫ 2π

0
v cos θ =

∫ 2π

0
v sin θ = 0

}
. (26)

Applying (26) to v = h − 1 yields∫ 2π

0
h′2 ≥ 4

∫ 2π

0
(h − 1)2 = 4

∫ 2π

0
h2 − 8π ,

or ∫ 2π

0
h2 ≤ 1

4

∫ 2π

0
h′2 + 2π . (27)

Combining (25) with (27) leads to

3
4

∫ 2π

0
h2 ≤ 2π,

and the result follows, once again applying (25) and summing the two last
inequalities. 2

We return to the proof of Theorem 3.2. Let Kn be a maximizing sequence
of convex sets and hn be the corresponding support functions. Since the
perimeter of Kn is uniformly bounded and the sets Kn contain the origin, the
Blaschke selection theorem applies: there exists a subsequence, still denoted
with the same index, which converges in the Hausdorff sense to a convex
set K. According to Lemma 3.3, the support functions hn are bounded
in H1(T), and consequently we may assume that the sequence converges
uniformly to a function h, which is necessarily the support function of K.
Finally, since the distance d has been assumed continuous for this kind of
convergence, the existence of a maximizer follows.
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3.2 The farthest convex set in the Hausdorff distance

For the Hausdorff distance, we are able to prove that the farthest convex set
is always a segment:

Theorem 3.4. If C is a given convex set in the class A, then the convex
set KC for which

dH(C,KC) = max{dH(C,K) : K ∈ A}

is a segment. More precisely, it is a segment orthogonal to any line OQ,
where Q is a point at which hC is maximal.

O

P

Q

Σ

Figure 2: The farthest segment Σ for the Hausdorff distance.

Proof. Let B1 be the largest ball centered at O and contained in C and B2

the smallest ball centered at O that contains C. We denote by R1 (resp.
R2) the radius of B1 (resp. B2). Let P , resp. Q, be contact points of these
balls with the boundary of C (see Figure 2). We also denote by Σ1 the
segment (centered at 0) containing P and by Σ the segment (centered at 0)
orthogonal to OQ.

It is easy to see that Σ1 is optimal, among all segments S, to maximize
ρ(S,C) while Σ is optimal to maximize ρ(C,S). Next we shall prove that,
for any convex set K in A:

ρ(K,C) ≤ ρ(Σ1, C) and ρ(C,K) ≤ ρ(C, Σ) . (28)
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For the first inequality, let us consider any point M in K. By construction
of the ball B1:

d(M,C) ≤ d(M,B1) = OM − R1 .

Since by the first inequality of Theorem 3.1, OM ≤ P (K)/4 = π/2, the
result follows taking the supremum in M since ρ(Σ1, C) = π/2 − R1.

We prove now the second inequality in (28) for any convex body K (the
result is already clear for segments as mentioned above). Since the Steiner
point lies in the interior, for any point M ∈ ∂C,

d(M,K) < OM ≤ OQ = ρ(C,Σ) .

Therefore, taking the supremum in M , ρ(C,K) ≤ ρ(C,Σ).
From (28) it follows that for any set K:

dH(K,C) ≤ max(dH(Σ1, C), dH(Σ, C)) .

Now, we use the second inequality in Theorem 3.1, which can be written

ρ(Σ1, C) = π/2 − R1 ≤ R2 = ρ(C,Σ) .

Since, however, ρ(C,Σ1) ≤ ρ(C, Σ), we have

dH(Σ1, C) ≤ ρ(C, Σ) ≤ dH(Σ, C),

which yields the desired result.

Remark 3. As suggested by the referee, it may be interesting to extend
the previous results to any dimension. Following McMullen (see [10]), the
good class of convex sets seems to be

AN := {K convex set in RN , s(K) = O,w(K) = 2} (29)

where s(K) is the Steiner point and w(K) is the intrinsic width, defined as

w(K) =
1

κN−1

∫
SN−1

hK dσ

where κN−1 is the volume of the unit ball in RN−1 and SN−1 is the unit
sphere in RN . In particular, the segments in the class AN are centered at 0
and have length 2.

As in the two-dimensional case, we have

Theorem 3.5. For any convex set C in the class AN , the convex set KC

that realizes
dH(C,KC) = max{dH(C,K) : K ∈ AN}

is a segment.
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The difference from Theorem 3.4 is that in general we cannot characterize
the segment that achieves the maximum. The proof begins as before: Keep-
ing the same notation, we can prove the two inequalities, for any K ∈ AN :

ρ(K,C) ≤ ρ(Σ1, C) and ρ(C,K) ≤ ρ(C, Σ) .

It is clear that the quantity dH(S,C) has a maximizer among all segments
S in the class AN , say S0, and that

dH(K,C) ≤ max(ρ(Σ1, C), ρ(C, Σ)) ≤ max(dH(Σ1, C), dH(C, Σ)) ≤ dH(S0, C),

which shows that S0 is the farthest convex set for C.
We cannot be more precise because the inequality

1
2
w(K) ≤ minhK + max hK (30)

that was proved in two dimensions is no longer valid in higher dimension! For
example, let us consider in R3 a (vertical) cylinder with height 2 and radius
of the base ℓ ≤ 1. In spherical coordinates, its support function depends
only on the angle φ and is given by hK(θ, φ) = ℓ cos φ + sin φ,φ ∈ [0, π/2]
(by symmetry, it suffices to know it for φ ∈ [0, π/2]). In particular, we have

minhK + max hK = ℓ +
√

1 + ℓ2

while

1
2
w(K) =

1
2π

∫
S2

hK =
∫ 2π

0
dθ

∫ π/2

−π/2
hK(θ, φ) cos φdφ = 1 +

ℓπ

2

and it is clear that the inequality cannot hold, for any ℓ < 1.
Nevertheless, we are able to prove a weaker inequality, namely

1
2
w(K) ≤ π

2
(minhK + max hK) . (31)

Indeed, let P be some point in K where hK attains its minimum. Let Π be
any plane containing the line OP and σΠ be the reflection with respect to
Π. Then, the convex set 1

2 (K + σΠ(K)) is still in the class A3, its support
function has the same minimum and a smaller maximum (by convexity of
the maximum). Since this is true for any such plane Π, we can restrict
ourselves to three dimensional convex sets which are axisymmetric with the
axis OP . Now, the support function of the three dimensional axisymmetric
convex set K coincides with the support function of a plane section K0, so
we can apply Theorem 3.1, yielding

1
4

∫ π

−π
hK0 ≤ minhK0 + max hK0 = minhK + max hK . (32)

14



Since hK only depends on the polar angle φ, we have

1
2
w(K) =

1
2π

∫
S2

hK =
∫ π/2

−π/2
hK0 cos φ dφ .

Now, the maximization problem

max{

∫ π/2
−π/2 h(φ) cos φdφ∫ π/2

−π/2 h(φ) dφ
, h + h′′ ≥ 0,

∫ π/2

−π/2
h(φ) sin φdφ = 0}

can be solved using Theorem 2.2, the solution being h(φ) = cos φ. This
shows that the inequality∫ π/2

−π/2
hK0(φ) cos φdφ ≤ π

4

∫ π/2

−π/2
hK0(φ) dφ =

π

8

∫ π

−π
hK0(φ) dφ (33)

holds, and the result follows from (32) and (33).
More generally, in any dimension, one can state an inequality of the form

1
2
w(K) ≤ c∗N (minhK + max hK),

and it would be interesting to know the optimal constant c∗N in dimension N .
We have shown that c∗2 = 1 and that π

4 + 1
π ≤ c∗3 ≤ π

2 . (The first inequality
comes from the optimal cylinder.) It would be also very interesting to know
which convex set saturates the inequality, since it is definitely not a segment
in dimension N ≥ 3.

3.3 The farthest convex set for the L2 distance

For the L2 distance, the result is similar: the convex set farthest from any
given convex set will be a segment. The proof is more complicated and relies
on Theorem 2.3.

Theorem 3.6. For any given convex set C in the class A, the convex set
KC for which

d2(C,KC) = max{d2(C,K) : K ∈ A}

is a segment. More precisely, it is any segment Σα for which α maximizes
the one-variable function α 7→

∫ π
0 hC(θ + α) sin θ dθ.

Proof. Fix a convex set C in the class A. An immediate consequence of
Theorem 2.3 applied to the functional J defined by

J(K) =
∫ 2π

0
(hK − hC)2 dθ =

∫ 2π

0
(h2

K − 2hChK + h2
C) dθ

is that the farthest convex set is either a triangle or a segment. Thus, to
prove the result we need to exclude the first possibility.

15



Let T be a triangle that we assume to be a critical point for the functional
J : K 7→ d2

2(C,K). Each triangle in the class A will be uniquely charac-
terized by its three angles (θ1, θ2, θ3) such that eiθk is the normal vector to
each side. The only restrictions we need to put on these angles are

0 < θ2 − θ1 < π, 0 < θ3 − θ2 < π, 0 < 2π + θ1 − θ3 < π . (34)

The lengths of the sides will be denoted by a1, a2, a3. According to the Law
of Sines, given that the perimeter of T is 2π, the three lengths are given by:

a1 =
2π sin(θ3 − θ2)

sin(θ3 − θ2) + sin(θ2 − θ1) + sin(θ1 − θ3)
,

a2 =
2π sin(θ1 − θ3)

sin(θ3 − θ2) + sin(θ2 − θ1) + sin(θ1 − θ3)
,

a3 =
2π sin(θ2 − θ1)

sin(θ3 − θ2) + sin(θ2 − θ1) + sin(θ1 − θ3)
.

(35)

Note that the denominator sin(θ3 − θ2) + sin(θ2 − θ1) + sin(θ1 − θ3) can also
be written 4 sin ((θ3 − θ2)/2) sin ((θ2 − θ1)/2) sin ((θ1 − θ3)/2).

If A1, A2, A3 denote the vertices of the triangle, then from the relation
⃗A1A2 + ⃗A2A3 + ⃗A3A1 = 0⃗ rotated by π/2, we get

a1 cos θ1 +a2 cos θ2 +a3 cos θ3 = 0 and a1 sin θ1 +a2 sin θ2 +a3 sin θ3 = 0 .
(36)

With the Steiner point at the origin, the support function hT (θ) of the
triangle T can be calculated with the aid of formula (5), using the fact that
the radius of curvature of T is given by R = a1δθ1 +a2δθ2 +a3δθ3 , according
to (1). One possible expression for h is:

hT (θ) =



1
2π

3∑
k=1

akθk sin(θ − θk), θ ≤ θ1 or θ ≥ θ3

1
2π

3∑
k=1

akθk sin(θ − θk) + a1 sin(θ − θ1), θ1 ≤ θ ≤ θ2

1
2π

3∑
k=1

akθk sin(θ − θk) − a3 sin(θ − θ3), θ2 ≤ θ ≤ θ3,

(37)
where we have used the fact that, by (36), for any θ,

∑3
k=1 ak sin(θ−θk) = 0.

We denote by ϕ(θ) the function

ϕ(θ) =
1
2π

3∑
k=1

akθk sin(θ − θk) .
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Now, if T is a critical point of the functional
∫ 2π
0 (hK − hC)2 dθ among any

convex set in A, it is also a critical point among triangles. So we can express
that the derivatives with respect to θ1, θ2, θ3 of

J(θ1, θ2, θ3) =
∫ 2π

0
(hT − hC)2 dθ ,

where hT is defined in (37), are zero, that is∫ 2π

0
(hT − hC)

∂hT

∂θj
dθ = 0, j = 1, 2, 3 .

According to (37), we have (note that hT is continuous):

∂hT

∂θ1
=

∂ϕ

∂θ1
+ (

∂a1

∂θ1
sin(θ − θ1) − a1 cos(θ − θ1))χ[θ1,θ2] −

∂a3

∂θ1
sin(θ − θ3)χ[θ2,θ3] ,

∂hT

∂θ2
=

∂ϕ

∂θ2
+

∂a1

∂θ2
sin(θ − θ1)χ[θ1,θ2] −

∂a3

∂θ2
sin(θ − θ3)χ[θ2,θ3] ,

∂hT

∂θ3
=

∂ϕ

∂θ3
+

∂a1

∂θ3
sin(θ − θ1)χ[θ1,θ2] − (

∂a3

∂θ3
sin(θ − θ3) − a3 cos(θ − θ3))χ[θ2,θ3] .

(38)
But since for j = 1, 2, 3, ∂ϕ

∂θj
is a linear combination of sin(θ−θk) and cos(θ−

θk), the contributions
∫ 2π
0 (hT − hC)

∂ϕ

∂θk
dθ are zero because

∫ 2π
0 h cos θdθ =∫ 2π

0 h sin θdθ = 0 for both hT and hC . Therefore, the optimality conditions
at the critical triangle T can be written

∂a1

∂θ1

∫ θ2

θ1
(hT − hC) sin(θ − θ1) − a1

∫ θ2

θ1
(hT − hC) cos(θ − θ1)−

∂a3

∂θ1

∫ θ3

θ2
(hT − hC) sin(θ − θ3) = 0

∂a1

∂θ2

∫ θ2

θ1
(hT − hC) sin(θ − θ1) −

∂a3

∂θ2

∫ θ3

θ2
(hT − hC) sin(θ − θ3) = 0

∂a1

∂θ3

∫ θ2

θ1
(hT − hC) sin(θ − θ1) + a3

∫ θ3

θ2
(hT − hC) cos(θ − θ3)−

∂a3

∂θ3

∫ θ3

θ2
(hT − hC) sin(θ − θ3) = 0 .

(39)
Using (35), we can explicitly compute each partial derivative ∂ai

∂θj
. For ex-

ample, for a1 they work out to be

∂a1

∂θ2
= π

2 cot
(

θ1−θ3
2

)
/ sin2

(
θ2−θ1

2

)
,

∂a1

∂θ3
= −π

2 cot
(

θ2−θ1
2

)
/ sin2

(
θ1−θ3

2

)
∂a1

∂θ1
= −∂a1

∂θ2
− ∂a1

∂θ3
= −π

4

sin(θ1 − θ2) + sin(θ1 − θ3)
sin2 θ2−θ1

2 sin2 θ1−θ3
2

.

(40)
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In order to simplify the partial derivatives, we introduce the following inte-
grals:

I1 =
∫ θ2

θ1
(hT − hC) sin(θ − θ1) I2 =

∫ θ2

θ1
(hT − hC) sin(θ − θ2)

J1 =
∫ θ3

θ2
(hT − hC) sin(θ − θ2) J2 =

∫ θ3

θ2
(hT − hC) sin(θ − θ3)

K1 =
∫ θ1+2π
θ3

(hT − hC) sin(θ − θ3) K2 =
∫ θ1+2π
θ3

(hT − hC) sin(θ − θ1)
(41)

In consequence, the second equality in (39) simplifies to:

1
sin2 θ2−θ1

2

I1 +
1

sin2 θ3−θ2
2

J2 = 0 (42)

We also introduce the integral

I =
∫ 2π

0
(hT − hC)hT dθ, (43)

which is nothing else than half the derivative of the functional J at hT . Using
the notation (41) and formulae (37), together with the fact that

∫ 2π
0 (hT −

hC)ϕdθ = 0, we get I = a1I1 − a3J2. Thanks to (35) and (42), we can
rewrite I1 and J2 in terms of I,

I = − 1
2 sin2 θ2−θ1

2

I1 =
1

2 sin2 θ3−θ2
2

J2 . (44)

Obviously, by symmetry and using other equivalent expressions of the sup-
port function hT , we can also conclude that

I = − 1
2 sin2 θ3−θ2

2

J1 =
1

2 sin2 θ1−θ3
2

K2 = − 1
2 sin2 θ1−θ3

2

K1 =
1

2 sin2 θ2−θ1
2

I2 .

(45)
Note that we can easily express any of the integrals

∫ θj+1

θj
(hT − hC) sin θ dθ

or
∫ θj+1

θj
(hT − hC) cos θ dθ in terms of the six integrals defined in (41) and

therefore entirely in terms of I.
Now summing the three equations in (39) and taking into account that

∂a1
∂θ1

+ ∂a1
∂θ2

+ ∂a1
∂θ3

= 0, and the analogous relation for a3, yields

a3

∫ θ3

θ2

(hT − hC) cos(θ − θ3) − a1

∫ θ2

θ1

(hT − hC) cos(θ − θ1) = 0 .

We can use the previous expressions to write this last inequality in terms of
the integral I, so that

cos
(

θ3 − θ2

2

)
(sin(θ2 − θ1) − sin(θ1 − θ3)) I = 0 . (46)

By symmetry, we get the similar relations obtained by permutation. Since
the cosine is positive (the difference between two angles is less than π), we
deduce from relation (46) and its analogues that
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1. either I = 0

2. or θ3−θ2 = θ2−θ1 = 2π +θ1−θ3, that is, T is an equilateral triangle.

Now, in the case of an equilateral triangle, it is also possible to simplify
the integral I. The support function hT of the equilateral triangle θ1, θ2 =
θ1 + 2π/3, θ3 = θ1 + 4π/3 is also given by:

hT (θ) =



2π

3
√

3
cos(θ − θ1 − π/3) θ1 ≤ θ ≤ θ2

2π

3
√

3
cos(θ − θ1 − π) θ2 ≤ θ ≤ θ3

2π

3
√

3
cos(θ − θ1 − 5π/3) θ3 ≤ θ ≤ θ1 + 2π .

(47)

Then we have:

I =
2π

3
√

3

(∫ θ2

θ1
(hT − hC) cos(θ − θ1 − π/3) +

∫ θ3

θ2
(hT − hC) cos(θ − θ1 − π)

+
∫ θ1+2π
θ3

(hT − hC) cos(θ − θ1 − 5π/3)
)

.

Using the notation introduced in (41), a straightforward computation pro-
duces

I =
2π

9
(I1 − I2 + J1 − J2 + K1 − K2) .

Replacing each I1, I2, . . . on the right side by its expression in terms of I
obtained in (44), Eq. (45) yields I = −2πI. Thus, we also get I = 0 in this
case.

To conclude the proof, it remains to show that it is impossible that I = 0 at
a (local) maximum. Thus, let us assume that I, as defined in (43), is equal
to 0. We consider the family of convex sets Kt = (1− t)T + tΣα where Σα is
a segment. The derivative of t 7→ J(Kt, C) at t = 0 is 2

∫ 2π
0 (hT −hC)(hΣα −

hT ) dθ. Since I = 0, this derivative is actually

g(α) := π

∫ 2π

0
(hT − hC)(θ)| sin(θ − α)| dθ .

We can also write g(α) as

g(α) := 2π

∫ π

0
(hT − hC)(θ + α) sin(θ) dθ .

Note that this function is π-periodic and continuous in the variable α, and
that its integral over (0, 2π) is

2π

∫ 2π

0

∫ π

0
(hT − hC)(θ + α) sin(θ) dθdα = 0 .
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Therefore, either g(α) takes both positive and negative values, in which case
T cannot be a local maximizer, or else g(α) is identically 0. In the latter
case, we come back to the optimality condition (among all convex sets)
given in Theorem 2.2. There exist ξ0 ∈ H1(T), nonpositive, vanishing on
the support of T , and µ ∈ R such that, for any v ∈ H1(T), the derivative of
the functional is given by

< dJ(T ), v >=
∫ 2π

0
(hT − hC)v(θ) dθ =< ξ0 + ξ0

′′, v > +µ

∫ 2π

0
v dθ . (48)

Applying (48) to v = hΣα − hT , since the left side is zero and
∫ 2π
0 hΣα =∫ 2π

0 hT = 2π, it follows that for any α ∈ (0, π), ξ0(α) + ξ0(α + π) = 0. Since
ξ0 ≤ 0, this implies that ξ0 = 0. Now applying (48) once again to v = hΣα ,
we get

0 =
∫ 2π

0
(hT − hC)hΣα dθ = 2πµ.

Thus µ = 0 and the derivative of the L2 distance at T is identically zero.
This implies that C = T , and is thus actually the global minimizer.

The final claim of the theorem follows easily from the expansion∫ 2π

0
(hΣα − hC)2 dθ =

π3

4
+

∫ 2π

0
h2

C dθ − π

∫ 2π

0
hC | sin(θ − α)| dθ

and the equality∫ 2π

0
hC | sin(θ − α)| dθ = 2

∫ π

0
hC(θ + α) sin θ dθ .

Remark 4. The farthest segment according to the L2 distance is not nec-
essarily unique. Apart from the trivial example of a disc, for a body of
constant width, every segment in A is equally distant. This can easily be
seen using the Fourier series expansion of the support function of a body C
of constant width, which is known to contain only odd terms other than the
constant:

hC(θ) = 1 +
∑

k ̸=−1

c2k+1e
(2k+1)iθ,

while the Fourier series expansion of the support function hα of a segment Σα

contains only even terms. This is due to the relation h′′
α+hα = π

2 (δα+δπ+α),
which when applied to e−inθ yields the following equality for the n-th Fourier
coefficient γn of hα:

(1 − n2)γn =
π

2
e−inα(1 + e−inπ) .
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The L2 distance between C and Σα is

d2(C, Σα) =
∫ 2π

0
h2

α dθ − 2
∫ 2π

0
hChα dθ +

∫ 2π

0
h2

C dθ .

Now, using the Parseval relation and the orthogonality properties of the
Fourier coefficients of the two support functions, we see that the integral∫ 2π
0 hChα dθ is always equal to 2π, and therefore the L2 distance between C

and a segment does not depend on the segment within the class A.

Σ∞

Σ
2

C

Figure 3: The farthest segments Σ2 and Σ∞ do not generally coincide.

Remark 5. The farthest segment for the L2 distance and for the Hausdorff
distance do not generally coincide. The Figure 3 shows the farthest segment
Σ2 (for the L2 distance) and Σ∞ (for the Hausdorff distance) of the convex
set C whose support function is hC(θ) = 1 − 0.1 cos(2θ) + 0.05 cos(3θ).
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