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This article considers a family of functionals J to be maximized over the planar convex sets K for which the perimeter and Steiner point have been fixed. Assuming that J is the integral of a quadratic expression in the support function h, the maximizer is always either a triangle or a line segment (which can be considered as a collapsed triangle). Among the concrete consequences of the main theorem is the fact that, given any convex body K 1 of finite perimeter, the set in this class that is farthest away in the sense of the L 2 distance is always a line segment. The same property is proved for the Hausdorff distance.

Introduction

Given a convex set K 1 in the plane, consider the problem of finding a second convex set that is as far as possible from K 1 in the sense of usual distances like the Hausdorff distance or the L 2 distance, subject to two natural geometric constraints, viz., that the two sets have the same perimeter and Steiner point, without either of which conditions there are sets arbitrarily far away from K 1 . A plausible conjecture, which we prove below, is that the farthest convex set, subject to the two constraints, is always a "needle," to use the colorful terminology of Pólya and Szegő [START_REF] Pólya | Isoperimetric inequalities in mathematical physics[END_REF] for a line segment in the plane.

In the case of the L 2 distance, the problem of the farthest convex set can be expressed as the maximization of a quadratic integral functional of the support function of the desired set, and, as we shall show, with the same two geometric constraints it is possible to characterize the maximizers of a wider class of such functionals as either triangles or needles, which, intuitively, can be considered as collapsed triangles. One of our inspirations for pursuing the wider class of functionals, the maximizers of which are triangles, is a recent article [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF], in which the maximizers of another class of convex functionals were shown to be polygons. Now, the maximizers of a convex functional must lie on the boundary of the feasible set, which is to say, in our case or that of [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF], that the maximizers will be non strictly convex, but not simple polygons a priori. What restrictions are needed on the functional to imply furthermore that the maximizer must be triangular? In this article, we consider functionals that are expressible as integrals of quadratic expressions in the support function, and show that the maximizers are always generalized triangles, i.e., triangles or needles.

An advantage of describing shape-optimization problems through the support function h is that it is easy to express many geometric features, including perimeter and area, in terms of h. Yet another tool that is available in the case of functionals that are quadratic in h is that of Fourier series [START_REF] Groemer | Geometric applications of Fourier series and spherical harmonics[END_REF], because through the Parseval relation it is possible to rewrite many such functionals as series with geometric properties accessible through the form of the coefficients. Indeed another one of our inspirations was the analysis of the maximizers of the L 2 means of chord lengths of curves through Fourier series found in [START_REF] Exner | Inequalities for means of chords, with application to isoperimetric problems[END_REF][START_REF] Exner | On the critical exponent in an isoperimetric inequality for chords[END_REF]. When the means with respect to arc length are replaced with means weighted by curvature, the problem falls within the category of quadratic functionals of h considered in this article. Interestingly, the cases of optimality of the weighted and unweighted problems are completely different. Because additional analysis is possible for quadratic functionals when the coefficients in the equivalent series enjoy certain properties, we shall defer details on the chord problem to a future article [START_REF] Harrell | On the maximum of a class of functionals on convex regions, and the means of chords weighted by curvature[END_REF].

This paper is organized as follows. We begin Section 2 with the main notation and general optimality conditions. We state our main result in Subsection 2.3. Next, Section 3 is devoted to the problem of finding the farthest convex set. We begin with an inequality involving the minimum and the maximum of the support function, in the spirit of [START_REF] Mcmullen | The Hausdorff distance between compact convex sets[END_REF]. We then consider the case of the Hausdorff distance, and we finish with the case of the L 2 distance, for which our main result is essential.

Notation and preliminary results

Notation

When convenient R 2 will be identified with the complex plane, and the dot product of two vectors x and w with ℜ(x w). Let T be the unit circle, identified with [0, 2π). For θ ∈ T, we shall denote by h K (θ) (or more simply h(θ) if not ambiguous) the support function of the convex set K; we recall that by definition h(θ) is the distance from the origin to the support line of K having outward unit normal e iθ :

h K (θ) := max{x • e iθ : x ∈ K} .
It is known that the boundary of a planar convex set has at most a countable number of points of nondifferentiability. More precisely, the two directional derivatives of the the function defining any portion of the boundary exist at every point and their difference is uniformly bounded. We refer to [START_REF] Rockafellar | Convex Analysis[END_REF][START_REF] Webster | Convexity[END_REF] for this and other standard facts about convex regions. It follows from the regularity of the boundary that the support function h belongs to the periodic Sobolev space H 1 (T).

For a polygon K with n sides, we let a 1 , a 2 , . . . , a n and θ 1 , θ 2 , . . . , θ n denote the lengths of the sides and the angles of the corresponding outer normals. The following characterization of the support function of such a polygon is classical and will be useful here: Proposition 2.1. With the notation given above, the support function of the polygon K satisfies

d 2 h K dθ 2 + h K = n ∑ j=1 a j δ θ j , ( 1 
)
where the derivative is to be understood in the sense of distributions, and δ θ j stands for a Dirac measure at point θ j .

Eq. ( 1) can be proved by a direct calculation. It is a special case of a formula of Weingarten, whereby for any support function

h K of a convex set K, d 2 h K dθ 2 + h K = h ′′ K + h K is a
nonnegative measure, which is interpreted as the (generalized) radius of curvature R at the point of contact with the support line corresponding to θ. We shall denote by S h (or S K if we want to emphasize the dependence on the convex set K) the support of this measure. It will be useful to recover the support function from the radius of curvature. This can be accomplished by solving the ordinary differential equation:

h ′′ + h = R (2)
for a 2π-periodic function h(θ) subject to the conditions

∫ 2π 0 h(θ) cos θ dθ = ∫ 2π 0 h(θ) sin θ dθ = 0 . ( 3 
)
These orthogonality conditions are imposed because ( 2) is in the second Fredholm alternative and hence needs such conditions for uniqueness. They can always be arranged by a choice of the origin, viz., that it is fixed at the Steiner point s(K). Recall that the Steiner point s(K) of a convex planar set K is defined by

s(K) = 1 π ∫ 2π 0 h K (θ)e iθ dθ . ( 4 
)
By Fredholm's condition for existence the function or measure R(θ) on the right side of (2) must satisfy the same orthogonality, that is,

∫ 2π 0 R cos θ dθ = ∫ 2π 0 R sin θ dθ = 0.
Since these restrictions on the radius of curvature are necessary conditions in any case for the closure of the boundary curve of K, they are automatically fulfilled.

An explicit Green function can be found to solve [START_REF] Exner | Inequalities for means of chords, with application to isoperimetric problems[END_REF] for

h if R is given, viz., with G(t) := 1 2 ( 1 -|t| π ) sin |t|, h(θ) = 1 2 ∫ π -π G(t)R(θ + t) dt . ( 5 
)
The perimeter P (K) of the convex set can be easily calculated from h K :

P (K) = ∫ 2π 0 h K (θ) dθ . ( 6 
)
In this article, we work within the class of convex sets whose Steiner point is at the origin and whose perimeter P (K) is fixed, at a value that can be chosen as 2π without loss of generality:

A := {K convex set in R 2 , s(K) = O, P (K) = 2π}. ( 7 
)
Given that convexity is equivalent to the nonnegativity of the radius of curvature R = h ′′ + h (in the sense of measures), the geometric set A can be described in analytic terms by requiring h to lie in the function space:

H := {h ∈ H 1 (T), h ≥ 0, h ′′ + h ≥ 0, ∫ 2π 0 hdθ = 2π, ∫ 2π 0 h cos θdθ = ∫ 2π 0 h sin θdθ = 0}. ( 8 
)
The class A contains in particular "needles," i.e., line segments, which we regard as degenerate convex bodies in the sense that the perimeter of the segment is taken as twice its length. We shall let Σ α designate the segment [-i π 2 e iα , i π 2 e iα ]. Its support function is given by

h α (θ) := π 2 | sin(θ -α)| , (9) 
which satisfies h α ′′ + h α = π(δ α + δ π+α ).

Optimality conditions

If the goal is to maximize a functional J defined on the geometric class A, and J is expressible in terms of the support function h, then we may equivalently consider the problem of determining max{J(h) : h ∈ H}. [START_REF] Mcmullen | The Hausdorff distance between compact convex sets[END_REF] We may then analytically derive the conditions for optimality of J. The Steiner point s of a closed convex set always lies within the set, and in the case of a convex body (a convex set of nonempty interior), s is an interior point; see, e.g., (1.7.6) in [START_REF] Schneider | Convex bodies: the Brunn-Minkowski Theory[END_REF]. It follows that the support function of K can vanish only if K is a segment. For any convex body in A, h K (θ) > 0 for all θ.

We next derive the first and second order optimality conditions assuming that the optimal set is not a segment, following [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF]. Because the Steiner point has been fixed, the optimality conditions are with respect to variations in the subspace of functions that are L 2 -orthogonal to { e iθ , e -iθ } . Alternatively, we could have imposed this constraint by introducing two additional Lagrange multipliers. Theorem 2.2. If h 0 > 0 is a solution of [START_REF] Mcmullen | The Hausdorff distance between compact convex sets[END_REF], where J : H 1 (T) → R is C 2 , then there exist ξ 0 ∈ H 1 (T), ξ 0 ≤ 0, and µ ∈ R such that ξ 0 = 0 on S h 0 , [START_REF] Maurer | First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems[END_REF] and for all v ∈ H 1 (T) with

∫ 2π 0 v(θ)e ±iθ dθ = 0, ⟨ J ′ (h 0 ), v ⟩ = ⟨ ξ 0 + ξ 0 ′′ , v ⟩ + µ ∫ 2π 0 v dθ . ( 12 
)
Moreover, if v ∈ H 1 (T) and λ ∈ R satisfy v ′′ + v ≥ λ(h 0 ′′ + h 0 ), v ≥ λh 0 , ⟨ ξ 0 + ξ 0 ′′ , v ⟩ + µ ∫ 2π 0 v dθ = 0, ( 13 
)
then ⟨ J ′′ (h 0 ), v, v ⟩ ≤ 0 . ( 14 
)
The proof of the foregoing theorem is classical and can be achieved using standard first and second order optimality conditions in infinite dimension space as in [START_REF] Maurer | First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems[END_REF]; we refer to [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF] for technical details.

Remark 1. If the optimal domain K 0 is a segment, then the optimality condition is more complicated, because the constraint h ≥ 0 needs to be taken into account. Since it will not be needed here, we do not write the explicit form.

Integral functionals

In this section we are interested in quadratic functionals involving the support function and its first derivative. Let J be the functional defined by

J(K) := ∫ 2π 0 ( a h 2 K + b h ′ K 2 + c h K + d h ′ K ) dθ, ( 15 
)
where a and b are nonnegative bounded functions of θ, one of them being positive almost everywhere on T. The functions c, d are assumed to be bounded. Our main theorem is the following:

Theorem 2.3. Every local maximizer within the class A of the functional J defined in ( 15) is either a line segment or a triangle.

Proof. Let K be a local maximizer of the functional J. We have to prove that the support S K of the measure h ′′ K + h K contains no more than three points. We follow ideas contained in [START_REF] Lachand-Robert | Newton's problem of the body of minimal resistance in the class of convex developable functions[END_REF] and [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF].

Assume, for the purpose of a contradiction, that S K contains at least four points θ 1 < θ 2 < θ 3 < θ 4 in (0, 2π). Choose ε > 0 sufficiently small and such that θ 4 + ε -(θ 1 -ε) < 2π, and let ρ i be any positive Borel measures that are absolutely continuous with respect to h ′′ K + h K and supported in nonoverlapping intervals (θ i -ϵ 2 , θ i + ϵ 2 ). (For example, if h ′′ K + h K contains a point mass at θ i , we may choose ρ i = δ θ i , the Dirac measure at point θ i .) We solve the four differential equations

{ v ′′ i + v i = ρ i θ ∈ (θ 1 -ε, θ 4 + ε) v i (θ 1 -ε) = v i (θ 4 + ε) = 0, (16) 
Note that equations ( 16) have unique solutions since we avoid the first eigenvalue of the interval. We also extend each function v i by 0 outside (θ 1 -ε, θ 4 + ε). We can always find four numbers λ i , i = 1, . . . , 4 such that the three following conditions hold, where we denote by w the function defined by w = ∑ 4 i=1 λ i v i :

w ′ (θ 1 -ε) = w ′ (θ 4 + ε) = 0, ∫ 2π 0 w dθ = 0 .
Then the function w solves w ′′ + w = ∑ 4 i=1 λ i ρ i globally on (0, 2π). Furthermore, since e ±iθ solve the associated homogeneous equation, we can subtract multiples of these functions from w to find another such global solution, denoted v, which is orthogonal to e ±iθ and thus in the class H. We now use the optimality conditions [START_REF] Maurer | First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems[END_REF], [START_REF] Pólya | Isoperimetric inequalities in mathematical physics[END_REF] for the function v, to obtain

< ξ 0 + ξ 0 ′′ , v > +µ ∫ 2π 0 v dθ =< v ′′ + v, ξ 0 >= 4 ∑ i=1 λ i ξ i = 0,
where ξ i := ∫ 2π 0 ξ 0 (θ)dρ i . Therefore, v is admissible for the second order optimality condition (it is immediate to check that the two first conditions in [START_REF] Rockafellar | Convex Analysis[END_REF] are satisfied by choosing λ < 0 with |λ| large enough). Since the functional J is quadratic, however, this would imply that ∫ 2π 0 (av ′ 2 + bv 2 ) dθ ≤ 0, which is impossible by the assumptions on a and b.

Remark 2.

The examples given in the next section may give the impression that the maximizers for such functionals are always segments. This is not the case. Indeed, if we choose a = c = d = 0 and let b be a (positive) function equal to one on an ε-neighborhood of 0, 2π/3 and 4π/3 and very small elsewhere, the value for the equilateral triangle is of order 12π 2 ε/27 while the value for the best segment is of order π 2 ε/4.

The farthest convex set 3.1 Introduction

There are many ways to define the distance between convex sets. The most familiar of these is the Hausdorff distance:

d H (K, L) := max{ρ(K, L), ρ(L, K)},
where ρ is defined by

ρ(A, B) := sup x∈A inf y∈B |x -y|.
(For a survey of possible metrics we refer to [START_REF] Gruber | The space of convex bodies, Handbook of convex geometry[END_REF]; for a detailed study of the Hausdorff distance see [START_REF] Henrot | Variation et optimisation de formes[END_REF]). It is remarkable that the Hausdorff distance can also be defined using the support functions, as

d H (K, L) = ∥h K -h L ∥ ∞ .
Moreover the support function allows a definition of L 2 distance, introduced by McClure and Vitale in [START_REF] Mcclure | Polygonal approximation of plane convex bodies[END_REF], by

d 2 (K, L) := (∫ 2π 0 |h K -h L | 2 dθ ) 1/2 .
In [START_REF] Mcmullen | The Hausdorff distance between compact convex sets[END_REF], P. McMullen was able to determine the diameter in the sense of the Hausdorff distance of the class A in any dimension. Specifically, he proved that all sets in A are contained in the ball of radius π/2 centered at the origin. In terms of the support function, this means that, for any convex set K in A, the maximum of h K is at most π/2 (i.e. P (K)/4). We shall need the following more precise result:

Theorem 3.1. Let K be any planar convex set the Steiner point of which is fixed at the origin. Then

max h K ≤ P (K) 4 ≤ min h K + max h K , ( 17 
)
where both inequalities are sharp: Equality is attained by any line segment.

Proof. The first inequality in ( 17) is due to McMullen, who proved it in any dimension; see Theorem 1 in [START_REF] Mcmullen | The Hausdorff distance between compact convex sets[END_REF]. Let us prove the second inequality.

Letting B denote the unit ball, we introduce

max h K = τ (K) := min{τ > 0 : K ⊂ τ B} , min h K = ρ(K) := max{ρ > 0 : ρB ⊂ K} .
The function τ (K) is convex with respect to the Minkowski sum, which can be defined with the support function via

h aK+bL = ah K + bh L .
In contrast, the function ρ(K) is concave, and as we are interested in the sum F (K) := τ (K) + ρ(K) we can call upon no particular convexity property. The minimum of h K is attained at some point we call P and the maximum at some point Q (see Figure 2). Let us denote by L the line containing the points O and P and by σ L the reflection across L. If we replace the convex set K by 1 2 K + 1 2 σ L (K), then we keep the Steiner point at the origin, we preserve the perimeter, and we decrease τ , because of convexity, without changing ρ. Therefore, to look for the minimum of F (K), we can restrict ourselves to convex sets symmetric with respect to the line L passing through the point where h K attains its minimum. Now, let S be the segment in the class A that is orthogonal to the line L.

We introduce the family of convex sets K t := tK + (1 -t)S and study the behavior of t → F (K t ). Since the ball tρ(K)B is contained in K t and touches its boundary at tP , we know that ρ(K t ) = tρ(K). Moreover, by convexity τ (K t ) ≤ tτ (K) + (1 -t)τ (S). Therefore, since τ (S) = F (S),

F (K t ) ≤ tF (K) + (1 -t)F (S) . ( 18 
)
In particular, this implies that if F (K) < F (S), it would follow that F (K t ) < F (S) for t near 0. Thus, to prove the result it suffices to prove that a segment is a local minimizer for J. Without loss of generality, we consider the segment Σ 0 and perturbations of Σ 0 preserving the symmetry with respect to the line θ = 0. Let us therefore consider a perturbation of the segment Σ 0 , replacing its "radius of curvature" R 0 = π(δ 0 + δ π ) by

R t = R 0 + t[φ(x) -(βδ 0 + (1 -β)δ π )],
where φ(x) is a non-negative measure. Since we can work in the class of symmetric convex sets, we may assume φ to be even. Moreover, we have to assume that ∫ 2π 0 R t = 2π and

∫ 2π 0 R t cos(θ) = 0. (The last relation ∫ 2π 0 R t sin(θ) = 0 is true by symmetry). This implies that ∫ 2π 0 φ = 1, or ∫ π 0 φ = 1 2 , ∫ 2π 0 φ cos θ = 2β -1, or β = 1 2 + ∫ π 0 φ cos θ . ( 19 
)
Observe that the support function h t of the perturbed convex set can be obtained thanks to formula (5):

h t (θ) = π 2 | sin θ| + t {∫ π -π G(τ )φ(θ + τ ) dτ -βG(θ) -(1 -β)G(θ -π) } ,
where G denotes the Green function. The function h t will have its maximum near π/2, so to first order,

max h t = h t ( π 2 ) + o(t) = π 2 + t {∫ π -π G(τ )φ(τ + π 2 ) dτ - 1 2 } + o(t) . ( 20 
)
In the same way, the minimum of h t will be attained near 0 or near π, so to first order,

min h t = min(h t (0), h t (π)) + o(t) = t min { ∫ π -π G(τ )φ(τ ) dτ, ∫ π -π G(τ )φ(τ + π) dτ } + o(t) . ( 21 
)
Therefore, we must prove that

∫ π -π G(τ )φ(τ + π 2 ) dτ + ∫ π -π G(τ )φ(τ ) dτ - 1 2 > 0 (22) and ∫ π -π G(τ )φ(τ + π 2 ) dτ + ∫ π -π G(τ )φ(τ + π) dτ - 1 2 > 0 . ( 23 
)
Let us prove for example (22); the other inequality is similar. Letting

A := ∫ π -π G(τ )φ(τ + π 2 ) dτ + ∫ π -π G(τ )φ(τ ) dτ = ∫ π -π (G(τ )+G(τ - π 2 
))φ(τ ) dτ and using the fact that φ is even, 

A = ∫ π 0 [G(τ ) + G(τ - π 2 ) + G(-τ ) + G(-τ - π 2 )]φ(τ ) dτ .
G(τ ) + G(τ -π 2 ) + G(-τ ) + G(-τ -π 2 ). It is elementary to check that the function τ → G 4 (τ ) := G(τ ) + G(τ -π 2 ) + G(-τ ) + G(-τ -π
2 ) is always greater than or equal to one (see Figure 1), so A ≥ ∫ π 0 φ(τ ) dτ = 1 2 . Moreover, since the function G 4 is equal to one only for τ = 0, π/2 or π, the inequality will be strict unless the support of φ is concentrated at the four points -π/2, 0, π/2, π. This last case actually corresponds to a (thin) rectangle

K α = [-α, α] × [-π/2 + α, π/2 -α],
for which a direct computation shows that min h K α = α/2 and max h K α = ( α 2 + (π -α) 2 ) 1/2 /2, and F (K α ) > π/2 = F (S) follows immediately.

Another consequence of McMullen's result cited above is that the Hausdorff distance between two sets in A is always less or equal to π/2, the upper bound being obtained by two orthogonal segments.

In the remainder of this section, we address the question of finding the farthest convex set in the class A from a given convex set, as measured by either of the two distances defined above. More exactly, letting C be a given convex set in the class A, we wish to find the convex set K C such that

d(C, K C ) = max{d(C, K) : K ∈ A},
where d may stand either for d H or for d 2 .

First of all, let us give an existence result for such a problem. Proof. For the proof we will use the following lemma: Lemma 3.3. For any h in the set H (defined in ( 8)),

∥h∥ 2 H 1 := ∫ 2π 0 ( |h| 2 + |h ′ | 2 ) dθ ≤ 16π/3 .
Proof of the lemma. For any h in H, we have

0 ≤ ∫ 2π 0 h(h + h ′′ ) dθ = ∫ 2π 0 h 2 dθ - ∫ 2π 0 h ′ 2 dθ . ( 25 
)
We now use the fact that the first eigenvalues of the problem { -h ′′ = λh h 2π-periodic are 0 (associated with the constant eigenfunction), 1 (of multiplicity 2 associated with sin θ and cos θ), and 4 (of multiplicity 2 associated with sin 2θ and cos 2θ). Thus, on A we can write a minimizing formula:

4 = min v∈A { ∫ 2π 0 v ′ 2 dθ ∫ 2π 0 v 2 dθ s.t. ∫ 2π 0 v = ∫ 2π 0 v cos θ = ∫ 2π 0 v sin θ = 0 } . (26) Applying (26) to v = h -1 yields ∫ 2π 0 h ′ 2 ≥ 4 ∫ 2π 0 (h -1) 2 = 4 ∫ 2π 0 h 2 -8π , or ∫ 2π 0 h 2 ≤ 1 4 ∫ 2π 0 h ′ 2 + 2π . ( 27 
)
Combining ( 25) with (27) leads to 3 4

∫ 2π 0 h 2 ≤ 2π,
and the result follows, once again applying (25) and summing the two last inequalities. 2 We return to the proof of Theorem 3.2. Let K n be a maximizing sequence of convex sets and h n be the corresponding support functions. Since the perimeter of K n is uniformly bounded and the sets K n contain the origin, the Blaschke selection theorem applies: there exists a subsequence, still denoted with the same index, which converges in the Hausdorff sense to a convex set K. According to Lemma 3.3, the support functions h n are bounded in H 1 (T), and consequently we may assume that the sequence converges uniformly to a function h, which is necessarily the support function of K. Finally, since the distance d has been assumed continuous for this kind of convergence, the existence of a maximizer follows.

The farthest convex set in the Hausdorff distance

For the Hausdorff distance, we are able to prove that the farthest convex set is always a segment: Proof. Let B 1 be the largest ball centered at O and contained in C and B 2 the smallest ball centered at O that contains C. We denote by R 1 (resp. R 2 ) the radius of B 1 (resp. B 2 ). Let P , resp. Q, be contact points of these balls with the boundary of C (see Figure 2). We also denote by Σ 1 the segment (centered at 0) containing P and by Σ the segment (centered at 0) orthogonal to OQ.

Theorem 3.4. If C is a given convex set in the class A, then the convex set K C for which d H (C, K C ) = max{d H (C, K) : K ∈ A}
It is easy to see that Σ 1 is optimal, among all segments S, to maximize ρ(S, C) while Σ is optimal to maximize ρ(C, S). Next we shall prove that, for any convex set K in A:

ρ(K, C) ≤ ρ(Σ 1 , C) and ρ(C, K) ≤ ρ(C, Σ) . ( 28 
)
For the first inequality, let us consider any point M in K. By construction of the ball B 1 :

d(M, C) ≤ d(M, B 1 ) = OM -R 1 .
Since by the first inequality of Theorem 3.1, OM ≤ P (K)/4 = π/2, the result follows taking the supremum in

M since ρ(Σ 1 , C) = π/2 -R 1 .
We prove now the second inequality in (28) for any convex body K (the result is already clear for segments as mentioned above). Since the Steiner point lies in the interior, for any point M ∈ ∂C,

d(M, K) < OM ≤ OQ = ρ(C, Σ) .
Therefore, taking the supremum in M , ρ(C, K) ≤ ρ(C, Σ). From (28) it follows that for any set K:

d H (K, C) ≤ max(d H (Σ 1 , C), d H (Σ, C)) .
Now, we use the second inequality in Theorem 3.1, which can be written

ρ(Σ 1 , C) = π/2 -R 1 ≤ R 2 = ρ(C, Σ) . Since, however, ρ(C, Σ 1 ) ≤ ρ(C, Σ), we have d H (Σ 1 , C) ≤ ρ(C, Σ) ≤ d H (Σ, C),
which yields the desired result.

Remark 3.

As suggested by the referee, it may be interesting to extend the previous results to any dimension. Following McMullen (see [START_REF] Mcmullen | The Hausdorff distance between compact convex sets[END_REF]), the good class of convex sets seems to be

A N := {K convex set in R N , s(K) = O, w(K) = 2} ( 29 
)
where s(K) is the Steiner point and w(K) is the intrinsic width, defined as

w(K) = 1 κ N -1 ∫ S N -1 h K dσ
where κ N -1 is the volume of the unit ball in R N -1 and S N -1 is the unit sphere in R N . In particular, the segments in the class A N are centered at 0 and have length 2.

As in the two-dimensional case, we have Theorem 3.5. For any convex set C in the class A N , the convex set

K C that realizes d H (C, K C ) = max{d H (C, K) : K ∈ A N } is a segment.
The difference from Theorem 3.4 is that in general we cannot characterize the segment that achieves the maximum. The proof begins as before: Keeping the same notation, we can prove the two inequalities, for any K ∈ A N :

ρ(K, C) ≤ ρ(Σ 1 , C) and ρ(C, K) ≤ ρ(C, Σ) .
It is clear that the quantity d H (S, C) has a maximizer among all segments S in the class A N , say S 0 , and that

d H (K, C) ≤ max(ρ(Σ 1 , C), ρ(C, Σ)) ≤ max(d H (Σ 1 , C), d H (C, Σ)) ≤ d H (S 0 , C),
which shows that S 0 is the farthest convex set for C.

We cannot be more precise because the inequality

1 2 w(K) ≤ min h K + max h K (30)
that was proved in two dimensions is no longer valid in higher dimension! For example, let us consider in R 3 a (vertical) cylinder with height 2 and radius of the base ℓ ≤ 1. In spherical coordinates, its support function depends only on the angle φ and is given by h

K (θ, φ) = ℓ cos φ + sin φ, φ ∈ [0, π/2]
(by symmetry, it suffices to know it for φ ∈ [0, π/2]). In particular, we have

min h K + max h K = ℓ + √ 1 + ℓ 2 while 1 2 w(K) = 1 2π ∫ S2 h K = ∫ 2π 0 dθ ∫ π/2 -π/2 h K (θ, φ) cos φ dφ = 1 + ℓπ 2
and it is clear that the inequality cannot hold, for any ℓ < 1. Nevertheless, we are able to prove a weaker inequality, namely

1 2 w(K) ≤ π 2 (min h K + max h K ) . (31) 
Indeed, let P be some point in K where h K attains its minimum. Let Π be any plane containing the line OP and σ Π be the reflection with respect to Π. Then, the convex set 1 2 (K + σ Π (K)) is still in the class A 3 , its support function has the same minimum and a smaller maximum (by convexity of the maximum). Since this is true for any such plane Π, we can restrict ourselves to three dimensional convex sets which are axisymmetric with the axis OP . Now, the support function of the three dimensional axisymmetric convex set K coincides with the support function of a plane section K 0 , so we can apply Theorem 3.1, yielding 1 4

∫ π -π h K 0 ≤ min h K 0 + max h K 0 = min h K + max h K . ( 32 
)
Since h K only depends on the polar angle φ, we have

1 2 w(K) = 1 2π ∫ S 2 h K = ∫ π/2 -π/2 h K 0 cos φ dφ .
Now, the maximization problem max{

∫ π/2 -π/2 h(φ) cos φ dφ ∫ π/2 -π/2 h(φ) dφ , h + h ′′ ≥ 0, ∫ π/2 -π/2 h(φ) sin φ dφ = 0}
can be solved using Theorem 2.2, the solution being h(φ) = cos φ. This shows that the inequality

∫ π/2 -π/2 h K 0 (φ) cos φ dφ ≤ π 4 ∫ π/2 -π/2 h K 0 (φ) dφ = π 8 ∫ π -π h K 0 (φ) dφ (33)
holds, and the result follows from (32) and (33). More generally, in any dimension, one can state an inequality of the form

1 2 w(K) ≤ c * N (min h K + max h K ),
and it would be interesting to know the optimal constant c * N in dimension N . We have shown that c * 2 = 1 and that π 4

+ 1 π ≤ c * 3 ≤ π 2 .
(The first inequality comes from the optimal cylinder.) It would be also very interesting to know which convex set saturates the inequality, since it is definitely not a segment in dimension N ≥ 3.

The farthest convex set for the L 2 distance

For the L 2 distance, the result is similar: the convex set farthest from any given convex set will be a segment. The proof is more complicated and relies on Theorem 2.3. Theorem 3.6. For any given convex set C in the class A, the convex set

K C for which d 2 (C, K C ) = max{d 2 (C, K) : K ∈ A} is a segment. More precisely, it is any segment Σ α for which α maximizes the one-variable function α → ∫ π 0 h C (θ + α) sin θ dθ. Proof. Fix a convex set C in the class A.
An immediate consequence of Theorem 2.3 applied to the functional J defined by

J(K) = ∫ 2π 0 (h K -h C ) 2 dθ = ∫ 2π 0 (h 2 K -2h C h K + h 2 C ) dθ
is that the farthest convex set is either a triangle or a segment. Thus, to prove the result we need to exclude the first possibility.

Let T be a triangle that we assume to be a critical point for the functional J : K → d 2 2 (C, K). Each triangle in the class A will be uniquely characterized by its three angles (θ 1 , θ 2 , θ 3 ) such that e iθ k is the normal vector to each side. The only restrictions we need to put on these angles are

0 < θ 2 -θ 1 < π, 0 < θ 3 -θ 2 < π, 0 < 2π + θ 1 -θ 3 < π . ( 34 
)
The lengths of the sides will be denoted by a 1 , a 2 , a 3 . According to the Law of Sines, given that the perimeter of T is 2π, the three lengths are given by:

a 1 = 2π sin(θ 3 -θ 2 ) sin(θ 3 -θ 2 ) + sin(θ 2 -θ 1 ) + sin(θ 1 -θ 3 ) , a 2 = 2π sin(θ 1 -θ 3 ) sin(θ 3 -θ 2 ) + sin(θ 2 -θ 1 ) + sin(θ 1 -θ 3 ) , a 3 = 2π sin(θ 2 -θ 1 ) sin(θ 3 -θ 2 ) + sin(θ 2 -θ 1 ) + sin(θ 1 -θ 3 ) . ( 35 
)
Note that the denominator sin(θ 3 -θ 2 ) + sin(θ 2 -θ 1 ) + sin(θ 1 -θ 3 ) can also be written 4 sin ((θ 3 -θ 2 )/2) sin ((θ 2 -θ 1 )/2) sin ((θ 1 -θ 3 )/2).

If A 1 , A 2 , A 3 denote the vertices of the triangle, then from the relation

⃗ A 1 A 2 + ⃗ A 2 A 3 + ⃗ A 3 A 1 = ⃗ 0 rotated by π/2
, we get a 1 cos θ 1 + a 2 cos θ 2 + a 3 cos θ 3 = 0 and a 1 sin θ 1 + a 2 sin θ 2 + a 3 sin θ 3 = 0 .

(36) With the Steiner point at the origin, the support function h T (θ) of the triangle T can be calculated with the aid of formula (5), using the fact that the radius of curvature of T is given by R = a 1 δ θ 1 + a 2 δ θ 2 + a 3 δ θ 3 , according to (1). One possible expression for h is:

h T (θ) =                      1 2π 3 ∑ k=1 a k θ k sin(θ -θ k ), θ ≤ θ 1 or θ ≥ θ 3 1 2π 3 ∑ k=1 a k θ k sin(θ -θ k ) + a 1 sin(θ -θ 1 ), θ 1 ≤ θ ≤ θ 2 1 2π 3 ∑ k=1 a k θ k sin(θ -θ k ) -a 3 sin(θ -θ 3 ), θ 2 ≤ θ ≤ θ 3 ,
(37) where we have used the fact that, by (36), for any θ, ∑ 3 k=1 a k sin(θ -θ k ) = 0. We denote by ϕ(θ) the function

ϕ(θ) = 1 2π 3 ∑ k=1 a k θ k sin(θ -θ k ) .
Now, if T is a critical point of the functional ∫ 2π 0 (h K -h C ) 2 dθ among any convex set in A, it is also a critical point among triangles. So we can express that the derivatives with respect to θ 1 , θ 2 , θ 3 of

J(θ 1 , θ 2 , θ 3 ) = ∫ 2π 0 (h T -h C ) 2 dθ ,
where h T is defined in (37), are zero, that is

∫ 2π 0 (h T -h C ) ∂h T ∂θ j dθ = 0, j = 1, 2, 3 .
According to (37), we have (note that h T is continuous):

∂h T ∂θ 1 = ∂ϕ ∂θ 1 + ( ∂a 1 ∂θ 1 sin(θ -θ 1 ) -a 1 cos(θ -θ 1 ))χ [θ 1 ,θ 2 ] - ∂a 3 ∂θ 1 sin(θ -θ 3 )χ [θ 2 ,θ 3 ] , ∂h T ∂θ 2 = ∂ϕ ∂θ 2 + ∂a 1 ∂θ 2 sin(θ -θ 1 )χ [θ 1 ,θ 2 ] - ∂a 3 ∂θ 2 sin(θ -θ 3 )χ [θ 2 ,θ 3 ] , ∂h T ∂θ 3 = ∂ϕ ∂θ 3 + ∂a 1 ∂θ 3 sin(θ -θ 1 )χ [θ 1 ,θ 2 ] -( ∂a 3 ∂θ 3 sin(θ -θ 3 ) -a 3 cos(θ -θ 3 ))χ [θ 2 ,θ 3 ] .
(38) But since for j = 1, 2, 3, ∂ϕ ∂θ j is a linear combination of sin(θ -θ k ) and cos(θθ k ), the contributions

∫ 2π 0 (h T -h C )
∂ϕ ∂θ k dθ are zero because ∫ 2π 0 h cos θdθ = ∫ 2π 0 h sin θdθ = 0 for both h T and h C . Therefore, the optimality conditions at the critical triangle T can be written

              ) ∂a 1 ∂θ 1 = - ∂a 1 ∂θ 2 - ∂a 1 ∂θ 3 = -π 4 sin(θ 1 -θ 2 ) + sin(θ 1 -θ 3 ) sin 2 θ 2 -θ 1 2 sin 2 θ 1 -θ 3 2 . ( 40 
)
In order to simplify the partial derivatives, we introduce the following integrals:

I 1 = ∫ θ 2 θ 1 (h T -h C ) sin(θ -θ 1 ) I 2 = ∫ θ 2 θ 1 (h T -h C ) sin(θ -θ 2 ) J 1 = ∫ θ 3 θ 2 (h T -h C ) sin(θ -θ 2 ) J 2 = ∫ θ 3 θ 2 (h T -h C ) sin(θ -θ 3 ) K 1 = ∫ θ 1 +2π θ 3 (h T -h C ) sin(θ -θ 3 ) K 2 = ∫ θ 1 +2π θ 3 (h T -h C ) sin(θ -θ 1 ) (41 
) In consequence, the second equality in (39) simplifies to:

1 sin 2 θ 2 -θ 1 2 I 1 + 1 sin 2 θ 3 -θ 2 2 J 2 = 0 (42)
We also introduce the integral

I = ∫ 2π 0 (h T -h C )h T dθ, (43) 
which is nothing else than half the derivative of the functional J at h T . Using the notation (41) and formulae (37), together with the fact that ∫ 2π 0 (h Th C )ϕ dθ = 0, we get I = a 1 I 1 -a 3 J 2 . Thanks to (35) and (42), we can rewrite I 1 and J 2 in terms of I,

I = - 1 2 sin 2 θ 2 -θ 1 2 I 1 = 1 2 sin 2 θ 3 -θ 2 2 J 2 . ( 44 
)
Obviously, by symmetry and using other equivalent expressions of the support function h T , we can also conclude that

I = - 1 2 sin 2 θ 3 -θ 2 2 J 1 = 1 2 sin 2 θ 1 -θ 3 2 K 2 = - 1 2 sin 2 θ 1 -θ 3 2 K 1 = 1 2 sin 2 θ 2 -θ 1 2 I 2 .
(45) Note that we can easily express any of the integrals

∫ θ j+1 θ j (h T -h C ) sin θ dθ or ∫ θ j+1 θ j (h T -h C
) cos θ dθ in terms of the six integrals defined in (41) and therefore entirely in terms of I. Now summing the three equations in (39) and taking into account that ∂a 1 ∂θ 1 + ∂a 1 ∂θ 2 + ∂a 1 ∂θ 3 = 0, and the analogous relation for a 3 , yields

a 3 ∫ θ 3 θ 2 (h T -h C ) cos(θ -θ 3 ) -a 1 ∫ θ 2 θ 1 (h T -h C ) cos(θ -θ 1 ) = 0 .
We can use the previous expressions to write this last inequality in terms of the integral I, so that cos

( θ 3 -θ 2 2 ) (sin(θ 2 -θ 1 ) -sin(θ 1 -θ 3 )) I = 0 . ( 46 
)
By symmetry, we get the similar relations obtained by permutation. Since the cosine is positive (the difference between two angles is less than π), we deduce from relation (46) and its analogues that

1. either I = 0 2. or θ 3 -θ 2 = θ 2 -θ 1 = 2π + θ 1 -θ 3 , that is, T is an equilateral triangle.
Now, in the case of an equilateral triangle, it is also possible to simplify the integral I. The support function h T of the equilateral triangle θ 1 , θ 2 = θ 1 + 2π/3, θ 3 = θ 1 + 4π/3 is also given by:

h T (θ) =              2π 3 √ 3 cos(θ -θ 1 -π/3) θ 1 ≤ θ ≤ θ 2 2π 3 √ 3 cos(θ -θ 1 -π) θ 2 ≤ θ ≤ θ 3 2π 3 √ 3 cos(θ -θ 1 -5π/3) θ 3 ≤ θ ≤ θ 1 + 2π . ( 47 
)
Then we have:

I = 2π 3 √ 3 ( ∫ θ 2 θ 1 (h T -h C ) cos(θ -θ 1 -π/3) + ∫ θ 3 θ 2 (h T -h C ) cos(θ -θ 1 -π) + ∫ θ 1 +2π θ 3 (h T -h C ) cos(θ -θ 1 -5π/3)
) .

Using the notation introduced in (41), a straightforward computation produces

I = 2π 9 (I 1 -I 2 + J 1 -J 2 + K 1 -K 2 ) .
Replacing each I 1 , I 2 , . . . on the right side by its expression in terms of I obtained in (44), Eq. ( 45) yields I = -2πI. Thus, we also get I = 0 in this case.

To conclude the proof, it remains to show that it is impossible that I = 0 at a (local) maximum. Thus, let us assume that I, as defined in (43), is equal to 0. We consider the family of convex sets

K t = (1 -t)T + tΣ α where Σ α is a segment. The derivative of t → J(K t , C) at t = 0 is 2 ∫ 2π 0 (h T -h C )(h Σα - h T ) dθ. Since I = 0, this derivative is actually g(α) := π ∫ 2π 0 (h T -h C )(θ)| sin(θ -α)| dθ .
We can also write g(α) as g(α) := 2π

∫ π 0 (h T -h C )(θ + α) sin(θ) dθ .
Note that this function is π-periodic and continuous in the variable α, and that its integral over (0, 2π) is 2π

∫ 2π 0 ∫ π 0 (h T -h C )(θ + α) sin(θ) dθdα = 0 .
Therefore, either g(α) takes both positive and negative values, in which case T cannot be a local maximizer, or else g(α) is identically 0. In the latter case, we come back to the optimality condition (among all convex sets) given in Theorem 2.2. There exist ξ 0 ∈ H 1 (T), nonpositive, vanishing on the support of T , and µ ∈ R such that, for any v ∈ H 1 (T), the derivative of the functional is given by < dJ(T ), v >= Remark 4. The farthest segment according to the L 2 distance is not necessarily unique. Apart from the trivial example of a disc, for a body of constant width, every segment in A is equally distant. This can easily be seen using the Fourier series expansion of the support function of a body C of constant width, which is known to contain only odd terms other than the constant:

∫ 2π 0 (h T -h C )v(θ) dθ =< ξ 0 + ξ 0 ′′ , v > +µ
h C (θ) = 1 + ∑ k̸ =-1
c 2k+1 e (2k+1)iθ , while the Fourier series expansion of the support function h α of a segment Σ α contains only even terms. This is due to the relation h ′′ α +h α = π 2 (δ α +δ π+α ), which when applied to e -inθ yields the following equality for the n-th Fourier coefficient γ n of h α :

(1 -n 2 )γ n = π 2 e -inα (1 + e -inπ ) .

The L 2 distance between C and Σ α is

d 2 (C, Σ α ) = ∫ 2π 0 h 2 α dθ -2 ∫ 2π 0 h C h α dθ + ∫ 2π 0 h 2 C dθ .
Now, using the Parseval relation and the orthogonality properties of the Fourier coefficients of the two support functions, we see that the integral ∫ 2π 0 h C h α dθ is always equal to 2π, and therefore the L 2 distance between C and a segment does not depend on the segment within the class A. 
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 2 Figure 2: The farthest segment Σ for the Hausdorff distance.
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 235 Figure 3: The farthest segments Σ 2 and Σ ∞ do not generally coincide.