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From Bernoulli-Gaussian deconvolution to

sparse signal restoration

Charles SoussénJéerdome IdierMember, IEEE David Brie, and Junbo Duan

Abstract

Formulated as a least square problem undefjaconstraint, sparse signal restoration is a discrete
optimization problem, known to be NP complete. Classicgbathms include, by increasing cost and ef-
ficiency, Matching Pursuit (MP), Orthogonal Matching Pur¢@MP), Orthogonal Least Squares (OLS),
stepwise regression algorithms and the exhaustive séAkehevisit the Single Most Likely Replacement
(SMLR) algorithm, developed in the mid-80’s for BernouBiaussian signal restoration. We show that
the formulation of sparse signal restoration as a limit a#$Bernoulli-Gaussian signal restoration leads
to an/y-penalized least square minimization problem, to which \an be straightforwardly adapted.
The resulting algorithm, called Single Best ReplacemeBR)$ can be interpreted as a forward-backward
extension of OLS sharing similarities with stepwise regi@s algorithms. Some structural properties of
SBR are put forward. A fast and stable implementation is psep. The approach is illustrated on two
inverse problems involving highly correlated dictionari&Ve show that SBR is very competitive with

popular sparse algorithms in terms of trade-off betweemr@oy and computation time.
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Index Terms

Sparse signal estimation; inverse problems; Bernoulligs&n signal restoration; SMLR algorithm;

mixed ¢»-¢, criterion minimization; Orthogonal Least Squares; steggwiegression algorithms.

. INTRODUCTION

Sparse signal restoration arises in inverse problems suétoarier synthesis, mono- and multidimen-
sional deconvolution, and statistical regression. It &iasn the decomposition of a signglas a linear
combination of a limited number of elements from a dictignzr. While formally very similar, sparse
signal restoration has to be distinguished from sparseakigpproximation. In sparse signal restoration,
the choice of the dictionary is imposed by the inverse probdt hand whereas in sparse approximation,
the dictionary has to be chosen according to its ability foresent the data with a limited number of
coefficients.

Sparse signal restoration can be formulated as the miniimizaf the squared errdyy — Ax||? (where
|| - || refers to the Euclidean norm) under the constraint that/thpseudo-norm ofe, defined as the
number of non-zero entries in, is small. This problem is often referred to as subset deledtecause
it consists in selecting a subset of columnsAf This yields a discrete problem (since there are a finite
number of possible subsets) which is known to be NP-complétén this paper, we focus on “difficult”
situations in which some of the columns dfare highly correlated, the unknown weight veciois only
approximately sparse, and/or the data are noisy. To addrdsset selection in a fast and sub-optimal
manner, two approaches can be distinguished.

The first one, which has been the most popular in the last @ecgaproximates the subset selection
problem by a continuous optimization problem, convex or, tioat is easier to solve [2—7]. In partic-
ular, the/; relaxation of thefy-norm has been increasingly investigated [2, 3], leadinghto LASSO
optimization problem.

The second approach addressesttactsubset selection problem using either iterative threshglB—

11] or greedy search algorithms. The latter gradually iasesor decrease by one the set of active columns.
The simplest greedy algorithms are Matching Pursuit (MP2)] @nd the improved version Orthogonal
Matching Pursuit (OMP) [13]. Both are referred to as forwgrdedy algorithms since they start from
the empty active set and then gradually increase it by onaerie In contrast, the backward algorithm
of Couvreur and Bresler [14] starts from a complete activevdgich is gradually decreased by one

element. It is, however, only valid for undercomplete diotiries. Forward-backward algorithms (also
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known as stepwise regression algorithms) in which insestiand removals of dictionary elements are
both allowed, are known to yield better recovery perforneasmce an early wrong selection can be
counteracted by its further removal from the active set [B}—In contrast, the insertion of a wrong
element is irreversible when using forward algorithms. \&&er the reader to [18, Chapter 3] for an
overview of the forward-backward algorithms in subset ctida.

The choice of the algorithm depends on the amount of timelaai and on the structure of matrix
A. In favorable cases, the sub-optimal search algorithmsniggtg to the first or the second approach
provide solutions having the same support as the exhaustaeh solution. Specifically, if the unknown
signal is highly sparse and if the correlation between any @lacolumns of A is low, the ¢;-norm
approximation provides optimal solutions [3]. But whentfakjorithms are unsatisfactory, it is relevant
to consider slower algorithms being more accurate and réntaivery fast compared to the exhaustive
search. The Orthogonal Least Squares algorithm (OLS) [1#dmis sometimes confused with OMP [20],
falls into this category. Both OLS and OMP share the sametsire, the difference being that at each
iteration, OLS solves as many least square problems as #neraon-active columns while OMP only
performs one linear inversion. In this paper, we derive avéwd-backward extension of OLS allowing
an insertion or a removal per iteration, each iteration inagi to solven least square problems, where
n is the size ofx.

The proposed forward-backward extension of OLS can be deagea new member of the family of
stepwise regression algorithms. The latter family tracssklio 1960 [15], and other popular algorithms
were proposed in the 1980’s [18] and more recently [21]. Nb& forward-backward extensions of
OMP have also been proposed [22, 23]. In contrast with theragtepwise regression algorithms, our
approach relies on a bi-objective formulation in order todia the trade-off between low residual and
low cardinality. This formulation reads as the minimizatiof the /o-penalized least square cost function
|ly— Az||>+ \|z|/o- Then, we design a heuristic algorithm to minimize this dosttion in a suboptimal
way. While the other forward-backward strategies [15-1722] aim at handling the same trade-off,
most of them are not expressed as optimization algorithenstather as empirical schemes without any
connexion with an objective function. Moreover, some ofnthievolve discrete search parameters that
control variable selection or de-selection [15, 16, 22]le/loithers do not involve any parameter [17, 21].
An exception can be made for Broersen’s algorithm [17] siheéms at minimizing||y — Az||> + |z
for a specifich value corresponding to Mallows”, statistic. However, it is only valid for undercomplete
problems. On the contrary, our proposed algorithm is geraard valid for any\ value. It does not

necessitate to tune any other parameterg.{stopping parameters).

June 16, 2011 DRAFT



TO BE PUBLISHED IN THE IEEE TRANSACTIONS ON SIGNAL PROCESSBN 4

Our starting point is the Single Most Likely Replacement (3 algorithm which proved to be a very
efficient tool for the deconvolution of a Bernoulli-Gaussisignal [24—-27]. We show that sparse signal
restoration can be seen as a limit case of maxinauposteriori(MAP) Bernoulli-Gaussian restoration
which results in an adaptation of SMLR to subset selectidme Paper is organized as follows. In
Section 1l, we introduce the Bernoulli-Gaussian model amel Bayesian framework from which we
formulate the sparse signal restoration problem. In Sedtip we adapt SMLR resulting in the so-
called Single Best Replacement (SBR) algorithm. In Sectdwnwe propose a fast and stable SBR
implementation. Finally, Sections V and VI illustrate thetimod on the sparse spike deconvolution with

a Gaussian impulse response and on the joint detection obrdisuities at different orders in a signal.

II. SPARSE SIGNAL ESTIMATION USING A LIMIT BERNOULLI-GAUSSIAN MODEL
A. Preliminary definitions and working assumptions

Given an observation vectgy € R™ and a dictionaryd = [ay, ..., a,] € R™*", a subset selection
algorithm aims at computing a weight vecterc R" yielding an accurate approximatign~ Ax. The
columnsa; corresponding to the non-zero weightsare referred to as the active (or selected) columns.

Throughout this paper, no assumption is made on the sizd:aof: can be either smaller or larger
thann. A is assumed to satisfy the unique representation propef@PfUanymin(m,n) columns of
A are linearly independent. This assumption is usual wherS n; it is stronger than the full rank
assumption [28]. Whem: > n, it amounts to the full rank assumption. Although URP wagioglly
introduced to guarantee uniqueness of sparse solutiofsvj28use this assumption to propose a valid
algorithm. It can actually be relaxed provided that the gleatrategy guarantees that the selected columns
are linearly independent (see Section VI-C for details).

The support of a vectog € R” is the setS(x) C {1,...,n} defined byi € S(x) if and only if
x; # 0. We denote by C {1,...,n} the active set and by € {0,1}" the related vector defined by
gi =1ifand only if i € Q. WhenCard[Q] < min(m,n), let Ag be the submatrix of sizex x Card[Q]

formed of the active columns oA. We define the least square solution and the related squanad e

zg £ argmin{&(z) = |y — Az|*} (1)
S(x)CQ
Eo £ E(xg) = |ly — Azol*. 2)
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B. Bayesian formulation of sparse signal restoration

We consider the restoration of a sparse signdtom a linear observationy = Ax + n, wheren
stands for the observation noise. An acknowledged prabtbimodel dedicated to sparse signals is the
Bernoulli-Gaussian (BG) model [24, 25, 27]. For such modelerministic optimization algorithms [27]
and Markov chain Monte Carlo techniques [29] are used to eaenfhe MAP and the posterior mean,
respectively. Hereafter, we define the BG model and thenidenis estimation in the joint MAP sense.

A BG process can be defined using a Bernoulli random vegter{0, 1}" coding for the support and
a Gaussian random vecter~ N (0,021,,), with I,, the identity matrix of size:. Each sampler; of x
is modeled as; = ¢;r; [24,25]. The Bernoulli parametgr= Pr(g; = 1) is the probability of presence
of signal ands? controls the variance of the nonzero amplitudges= r;. The Bayesian formulation
consists in inferringe = (g,r) knowing y. The MAP estimator can be obtained by maximizing the
marginal likelihoodi(q |y) [27] or the joint likelihoodi(q, r | y) [25, 26]. Following [25] and assuming

a Gaussian white noise ~ N (0,021,,), independent fronx, Bayes’ rule leads to:
L(g,r) & —207 log[l(g, 7| y)]
>, T 2
= lly = AAgr|” + 5 lrl” + Allgllo + ¢ 3)
x

where A = 202 log(1/p — 1), A4 is the diagonal matrix of size whose diagonal elements agge (z
readsz = Ag4r), andc is a constant.

Now, a signalx is sparse if some entries; are equal to 0. Since this definition does not impose
constraints on the range of the non zero amplitudes, we ehimogse a limit Bernoulli-Gaussian model
in which the amplitude variance? is set to infinity. Note that a parallel limit development wésne,
independently from our work, in the conference paper [2BAppendix A, we show that the minimization

of £L w.rt. x = (g,r) rereads:

min {J(x;A) = ly — Az||* + Al ]o}. (4)

This formulation is close to that obtained in the Bayesidvssti selection literature [18, Chapter 7] using
an alternative Bernoulli-Gaussian model. In the latter elpthe Gaussian prior relies adRgr instead
of 7, with Rg the Cholesky factor of the Gram matrid; Ao. This leads to a cost function of the
form (4), the difference being that depends on the amplitude varianeg and tends to infinity as2

tends to infinity [30, 31].

Remark 1 (Noise-free case)The Bayesian development above is valid for noisy data.dmtiise-free

case, we define the sparse solution as the limirgfmin_, J(x; A) when\ tends towards 0. According
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to classical results in optimization [32, Chapter 17]{ik;} is a sequence decreasing towards 0 and
is an exact global minimizer of (x; \;), then every limit point of the sequen¢e;} is a solution of
argmin, ||z||o s.t. ||y — Az||* is minimal. In Appendix B, we derive a more precise resulie‘set of
minimizers of7 (x; \) is constant wher is close enough to O\(# 0). It is equal to the set of sparsest
solutions toy = Ax in the overcomplete case, and to the unconstrained leasireq solution in the

undercomplete case.”

In the following, we focus on the minimization problem (4hé hyperparametex is fixed. It controls
the level of sparsity of the desired solution. The algorittivat will be developed relies on an efficient
search of the support of. The search strategy is based on the definition of a neigbbdrrelationship
between two supports: two supports are neighbors if onestedénside the other and the largest support

has one more element.

[1l. SINGLE BEST REPLACEMENT ALGORITHM

We propose to adapt the SMLR algorithm to the minimizatiothefmixed/s-¢, cost function7 (x; \)
defined in (4). To clearly distinguish SMLR which specifigaiims at minimizing (3), the adapted

algorithm will be termed as Single Best Replacement (SBR).

A. Principle of SMLR and main notations

SMLR [24] is a deterministic coordinatewise ascent aldponitto maximize likelihood functions of
the formi(q|vy) (marginal MAP estimation) ot(q,r | y) (joint MAP estimation). In the latter case, it
is easy to check from (3) that givapn the minimizer ofL(q,r) w.r.t. » has a closed form expression
r = r(q). Consequently, the joint MAP estimation reduces to the mizétion of £L(q,r(q)) w.r.t. q.
At each SMLR iteration, all the possible single replacemeftthe supporyy (setq; = 1 — ¢; while
keeping the otheg;, j # i unchanged) are tested, then the replacement yielding tkenmabdecrease of
L(g,r(q)) is chosen. This task is repeated until no single replacecantlecreasg(q, r(q)) anymore.
The number of possible suppogsbeing finite and SMLR being a descent algorithm, it termigatier
a finite number of iterations.

Before adapting SMLR, let us introduce some useful notatigve denote byei a single replacement,
i.e., an insertion or removal into/from the active 2t
QuU{i} ifi¢ Q,

Q\{i}  otherwise

Qei =

June 16, 2011 DRAFT
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When Card[Q] < min(m,n), we define the cost function
Jo(\) £ Eg + ACard[Q] (5)

involving the squared erro€g defined in (2). By definition of7(xg;\) = £g + A||zgallo, Jo(N)
coincides with7 (xg; A) when the support ok is equal toQ.

Although it aims at minimizing7 (x; A), the proposed SBR algorithm involves the computation of
Jo(A) rather than7 (xo; A). We make this choice becaugg(\) can be computed and updated more
efficiently, the computation ato being no longer necessary. In subsection I1I-C, we showftratoisy

data, the replacement of (xo; \) by Jo()) has a negligible effect.

B. The Single Best Replacement algorithm

SMLR can be seen as an exploration strategy for discreten@atiion rather than an algorithm specific
to a posterior likelihood function. Here, we use this sggtéo minimize 7 (x;\). We rename the
algorithm Single Best Replacement to remove any statlistizanotation.

SBR works as follows. Consider the current supp@rtThe n single replacement§ e i are tested,
i.e., we compute the squared errafg,; and we memorize the values gfg,;(\). If the minimum of
Joei(A) is lower than7o (), then we select the index yielding this minimum value:

(€ argmin JTou(N). (6)
ie{l,...,n}
The next SBR iterate is thus defined @s= Q e /. This task is repeated untifo(\) cannot decrease

anymore. By default, we use the initial empty support. Tlgoathm is summarized in Table .

C. Case where some active amplitudes are zero

We show that this case almost surely never arises when thgydat corrupted with “non degenerate”

noise.

Theorem 1 Lety = yo + n whereyy, € R™ is fixed andn is an absolute continuous random vector,
i.e., admitting a probability density w.r.t. the Lebesgueasure. Then, whe@ard[Q] < min(m,n), the

probability that||zgl|o < Card[Q] is equal to O.

Proof: Let k = Card[Q] andtg be the minimizer ofly— Aot||? overRE. to readstg = Voy where
matrix Vo = (AL Ag) 1 AL is of sizek x m, and|zgl|o = [|tallo < k. Denoting byv!, ... v* € R™

the row vectors oVy, ||to|lo < k if and only if there exists such that(y, v¢) = 0 (where(., .) denotes
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TABLE |

SBRALGORITHM. BY DEFAULT, Q; = 0.

Input: A, y, A and supportQ; (Card[Q1] < min(m,n))
Step 1: Seyj = 1.

Step 2: Fori € {1,...,n}, computeJo,ei(A).
Compute/ using (6).
If Jg;ee(N) < To; (M),
SetQji1 = Qj el
else,
Terminate SBR.
End if.
Setj =j+ 1 and go to Step 2.
Output: supportQ; = SBR(Q1; \)

the inner product). Becausé is full rank, Vg is full rank and thervi, »* # 0. Denoting byH*(v?)
the hyperplane olR™ which is orthogonal ta’, we have
k
lzallo < k <= y e |J H (). (7)
=1
Because the sdt), H(v’) has a Lebesgue measure equal to zero and the random yeattmits a
probability density, the probability of event (7) is zero. |
Theorem 1 implies that when dealing with real noisy datas @lmost sure that all active coefficients
x; are non-zero. Hence, each SBR iter@ealmost surely satisfieg (xo; A\) = Jo()A). In any case,
SBR can be applied without restriction and the propertiagedt below €.g., termination after a finite

number of iterations) remain valid when an SBR iterate Batigx oo < Card[Q].

D. Properties of SBR

Proposition 1 Under the assumptions of Theorem 1, each SBR itetajeis almost surely a local

minimizer of 7 (x; ). In particular, the SBR output satisfies this property.

Proof: Let x = xo be an SBR iterate. According to Theorem 1, the suppdgut) = Q almost
surely. Settinge = min;eg |x;| > 0, it is easy to check that i’ € R™ satisfies||z’ — z| < ¢, then
S(x') 2 S(x) = Q, thus||z’||op = ||=|lo.- Assume thate’ satisfies||z’ — x| < e.

o If S(z’) = Q, then, by definition ofx = xg, we havel(x') > £(x). Thus,J(x'; ) > T (z; \).
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« Otherwise,J(z'; ) = E(x') + A||2|lo = E(2) + A(||z]lo + 1). By continuity of £, there exists
a neighborhoodV(x) of x such that ifz’ € V(x), |E(x') — E(x)] < A. Thus, if 2’ € V(x),
|2’ — || < e andS(z') D Q, thenT (x'; \) > E(x) + A||xz|o = T (x; N).
Finally, if ' € V(z) and ||’ — z| < ¢, thenT (2/; \) > T (x; \). [
Termination: Because SBR is a descent algorithm, a supgbkannot be explored twice and SBR
terminates after a finite number of iterations. We emphatiaeno stopping condition is needed unlike
many algorithms which require to set a maximum number o&itens and/or a threshold on the squared
error variation (CoSaMP, Subspace Pursuit, Iterative Hdmaksholding, Iterative Reweightefdl).
OLS as a special caséWhen A = 0, SBR coincides with the well known OLS algorithm [19, 33].
The removal operation never occurs because it yields aeaserof the squared errgip(0) = Eo.

Empty solutions:We characterize tha-values for which SBR yields an empty solution.

Remark 2 SBR(; )\) yields the empty set if and only Xf> A\ = max;((a;, y)?/||a;?).

This result directly follows from checking that any insertitrial fails, i.e., Vi, £y + A > &. It allows
us to design an automatic procedure which sets a numbgyvafues adaptively to the data in order to
compute SBR solutions at different sparsity levels (sedi@e&/1-D).
Relation between SBR and SMLRhe main difference between both algorithms is that SMLRIvies
the inversion of a matrix of the forrthAQ + alcargro) Whereas SBR computes the inverseAiéAQ.
In the case of SMLR, the termIc,.qg) acts as a regularization on the amplitude values. It avoids
instabilities whenAg is ill conditioned at the price of handling the additionalpeyparameter.. On
the contrary, instabilities may occur while using SBR. le thext section, we focus on this issue and

propose a stable implementation.

IV. IMPLEMENTATION ISSUES

Given the current suppo®, an SBR iteration consists in computing the squared efgprfor any
replacement)’ = Q e, leading to the computation Qf (\) = Eo- + ACard[Q']. Our implementation
is inspired by the fast implementation of the homotopy atgar for ¢; regression [3, 34]. It consists in
maintaining the Cholesky factorization of the Gram matiy = AtQAQ when Q is modified by one
element. The Cholesky factorization takes the fatp = Lo L}, whereLo is a lower triangular matrix
of sizek = Card[Q]. Also, L is better conditioned tha&' o, improving the stability of matrix inversion.

We now give the main updating equations. Full detailed @tion can be found in Appendix C.
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A. Efficient strategy based on the Cholesky factorization

The replacement tests only rely on the current makrix and do not require its update.
1) Single replacement test#in insertion testQ®’ = Q U {i} takes the form:
_ 2
(lo.Lo Ay — aly)
lasl|* — llEg.qll?

with lg; = LélAtQai. This computation mainly requires a triangular system isie& (computation of

Jor(A) = To(A) = A —

(8)

lg; in O(k?) elementary operations) up to the pre-computatiorLgf(Aby) at the beginning of the
current SBR iteration.

According to [18, 35], a removal te€' = Q\{i} reads7o (\) —Jo(\) = xo(i)? /7 — A wherex o (i)
is the ith element in vectorrg and~; is the diagonal element aﬂél corresponding to the position
of a; in Ag. The overall removal tests mainly amount to the inversionhef triangular matrixLo (in
O(k3) operations) as the computation gf for all i and ofGélAto (i.e., the values ofr (7)) from
Lg' are both inO(k?).

Note that insertion and removal tests can be easily doneralpk In Matlab, this parallel implemen-
tation leads to a significant save of computation time dud&SIMD capabilities of Matlab.

2) Updating the Cholesky factorizatiorthe update ofLo can be easily done in the insertion case
by adding the new columm; at the last position inAg ;. The new matrixLo is a2 x 2 block
matrix whose upper left block i€ o (see Appendix C). The removal case requires more care since a
removal breaks the triangular structure o). The update can be done by performing either a series of
Givens planar rotations [21] or a positive rank 1 Choleskdatp [36]. We describe the latter strategy
in Appendix C. The Cholesky factorization update istk?) in the insertion case and i@ ((k — I)?)

in the removal case whetedenotes the position of the column to be removedip.

B. Reduced search

Additionally, we propose an acceleration of SBR yielding tame iterates with a reduced search.
We notice that a column remov&@’ = Q\{i} yields an increase of the squared error and a decrease
of the penalty equal to\. Hence, the maximum decrease &§(A\) which can be expected is. The
acceleration of SBR consists in testing insertions firsary insertion leads td/g(\) — Jo (A) > A,
then removals are not worth being tested. Otherwise, thevals have to be tested as stated in Table I.

We have implemented this acceleration systematically.
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C. Memory requirements and computation burden

The actual implementation may vary depending on the sizetladtructure of matrix4. We briefly
describe the main possible implementations.

When the size ofd is relatively small, the computation and storage of the Graatrix A’ A prior to
any SBR iteration (storage af scalar elements) avoids to recompute the vecﬁg&i which are needed
when the insertion oty; into the active set is tested. The storage of the other dies{mainly L)
that are being updated amounts®gk?) scalar elements and a replacement test c0¢t$) elementary
operations in average.

When A is larger, the storage o’ A is no longer possible, thuAtQaZ- must be recomputed for any
SBR iteration. This computation costs: elementary operations and now represents the most importan
part of an insertion test. When the dictionary has some peatiucture, this limitation can be alleviated,
enabling a fast implementation even for langeFor instance, if a large number of pairs of columns of
A are orthogonal to each othed’A can be stored as a sparse array. Also, finite impulse response
deconvolution problems enable a fast implementation siitd is then a Toeplitz matrix (save north-
west and/or south-east submatrices, depending on the hAoguadnditions). The knowledge of the auto-
correlation of the impulse response is sufficient to descnitmst of the Gram matrix.

All these variants have been implemeritelh the following, we analyze the behavior of SBR for two
difficult problems involving highly correlated dictionas: the deconvolution of a sparse signal with a
Gaussian impulse response (Section V) and the joint detecti discontinuities at different orders in a

signal (Section VI).

V. DECONVOLUTION OF A SPARSE SIGNAL WITH AGAUSSIAN IMPULSE RESPONSE

This is a typical problem for which SMLR was introduced [2[f]Jaffords us to study the ability of SBR
to perform an exact recovery in a simple noise-free caseafaipn of two Gaussian signals) and to test
SBR in a noisy case (estimation of a larger number of Gausseamd compare it with other algorithms.
For simulated problems, we denote By the exact sparse signal, the data reading Ax* + n. The
dictionary columns are always normalizeth;||*> = 1. The signal to noise ratio (SNR) is defined by
SNR = 10 log(P,/P,), where P, = ||Az*||?/m is the average power of the noise-free data &hds

the variance of the noise process

IMatlab codes provided by the authors can be downloadéd &p: / / i eeexpl or e. or g. In our Matlab implementation,

the insertion and removal tests are done in parallel.
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TABLE I
SEPARATION OF TWOGAUSSIAN FEATURES FROM NOISEFREE DATA WITH SBR.d STANDS FOR THE DISTANCE BETWEEN
THE GAUSSIAN FEATURES WE DISPLAY THE SIZE OF THE SUPPORT OBTAINED FOR A SEQUENCE OF DREASING

A-VALUES Ao > A1 > ... > A7. THE LABEL * INDICATES AN EXACT RECOVERY FOR A SUPPORT OF CARDINALITY.

A Ao | A [ A2 | Az | X | As | Ae | A< A7
d=20| O o |2 |2 |20 |20 | 2 2"
d=13 | O 1 3 4 5 |2 | 2* 2*
d= 0 1 1 3 5 6 8 2

A. Dictionary and simulated data

The impulse responsh is a Gaussian signal of standard deviationsampled on a regular grid
at integer locations. It is approximated by a finite impulesponse of lengtlsc by thresholding the
smallest values, allowing for fast implementation evenldoge size problems (see subsection IV-C). The
deconvolution problem leads to a Toeplitz matixwhose columns are obtained by shifting the signal
h. The dimension ofA is chosen to have any Gaussian feature resulting from theo@dion h * x*

belonging to the observation windo{, ... ,m}. This implies thatA is slightly undercompletenf > n).

B. Separation of two close Gaussian features

We first analyze the ability of SBR to separate two Gaussiatufes [(x*||o = 2) from noise-free data.
The centers of both Gaussian features lay at a relativendisia (expressed as a number of samples)
and their weightse; are set to 1. We analyze the SBR outputs for decreasimglues by computing
their cardinality and testing whether they coincide witk thue supporS(x*). Table Il shows the results
obtained for a problem of siz&0 x 270 (¢ = 5) with distances equal td = 20, 13, and 6 samples.

It is noticeable that the exact recovery always occurs gexvithat) is sufficiently small. This result
remains true even for smaller distances (frdrs 2). When the Gaussian features strongly overlap,
for d < 13, the size of the output support first increases whildecreases, and then removals start to

occur, enabling the exact recovery for lowes.

C. Behavior of SBR for noisy data

We consider a more realistic simulation in which the data afréarger size {» = 3000 samples)
and noisy. The impulse responaeis of size 301 § = 50) yielding a matrix A of size 3000 x 2700,
and the SNR is set to 20 dB. Fig. 1(a) displays the generated @ae unknown sparse signal is
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Fig. 1. Gaussian deconvolution results. Problem of 8# x 2700 (o = 50). (a) Generated data, with 17 Gaussian features
and with SNR = 20 dB. The exact locations are labeledb. (b,c,d) SBR outputs and data approximations with empirica
settings of\. The estimated amplitudes are shown with vertical spikes. The SBR outputs (supportspésize 5, 12, and 18,
respectively. The computation time always remains belove®sds (Matlab implementation).

composed of 17 spikes that are uniformly located in...,n}. The non-zero amplitudes; are drawn
according to an i.i.d. Laplacian distribution. Let us reknirat the limit Bernoulli-Gaussian model is not
a proper probabilistic model so that one cannot use it togdesimulated data. We choose a Laplacian
distribution since the non-zero amplitudes are more hgreous than with a Gaussian distribution with
finite variance.

On Fig. 1(b-d), we display the SBR results for thre@alues. For large\’s, only the main Gaussian
features are found. Wheh decreases, the smaller features are being recovered ¢ogeittn spurious
features. Removals occur far< 0.8 yielding approximations that are more accurate than thbssmed
with OLS and for the same cardinality (the residljgl — Ax||? is lower) while when\ > 0.8, the
SBR output coincides with the OLS solution of same cardinahlote that the theoretical value of
obtained from (3) is equal t0.3 yielding a support of cardinality 18. The residual is slighbwer

than that obtained withh = 0.5. The exact support ok* is never found because the data are noisy
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Fig. 2. Comparison of sparse algorithms in terms of traddefiween accuracy{(x; A)) and CPU time for the deconvolution
problem of Fig. 1. SBRY = 0.5) is run first yielding a support of cardinalitys,.=18. Then, we run OLS{w,,:), OMP (ksb:),
homotopy for¢; regression [39], and IR()\) [40]. The ¢; result is the homotopy iterate of cardinality,, yielding the least
value of 7(x; ).

and the neighboring columns of are highly correlated. In such difficult case, one needs tfopa a
wider exploration of the discrete s€b, 1}™ by introducing moves that are more complex than single
replacements. Such extensions were already proposed agasizeof SMLR. One can for instance shift an
existing spikez; forwards of backwards [37] or update a block of neighboringpltudes jointly €.9.,

x; andx;11) [38]. Various search strategies are also reported in [T@&per 3].

D. Comparison of SBR with other sparse algorithms

We compared SBR with classical and recent sparse algoritid, OLS, CoSaMP [8], Subspace
Pursuit [9], Iterative Hard Thresholding (IHT) [10, 114, regression [3] and Iterative Reweightéd
(IR¢7) [5, 40]. A general trend is that thresholding algorithmsf@en poorly when the dictionary columns
are strongly correlated. CoSaMP and Subspace Pursuit tyield/orst results: they stop after a very few
iterations as the squared error increases from one itarithe next. On the contrary, IHT guarantees that
the squared error decreases but the convergence is veryasihwhe results remain poor in comparison
with SBR. In the simulation of Fig. 1(c), SBR performs 12 dtéons (only insertions) leading to a support
of cardinality 12. Meanwhile, the number of iterations ofliHefore convergence is huge: both versions
of IHT presented in [10] require at least 10,000 iteratiamsdnverge, leading to an overall computation
time (22 and 384 seconds) that is much larger than the SBR «iatign time (3 seconds).

Fig. 2 is a synthetic view of the performance of SBR, OLS, OMPregression, and IR for a

given sparsity leveh. The computation time and the value gfx; \) are shown on the horizontal and
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vertical axes, respectively. This enables us to define akeategories of algorithms depending on their
locations on the 2D plane: the outputs of fast algorithms FO&hd/;) lay in the upper left region
whereas slower but more efficient algorithms (OLS, SBR, d@R)l yield points laying in the lower
right region. We chose not to represent the outputs of tladaig algorithms since they yield poorer
performancei.e., points located either in the upper right (IHT) or upper I&bSaMP, Subspace Pursuit)
regions. In details, we observed that regression tends to overestimate the support cardinalitiyta
place several spikes at very close locations. We used Ddndloonotopy implementation [3, 39] and
found that it requires many iterations: homotopy runs du00 iterations before reaching a support of
cardinality 18 when processing the data of Fig. 1 (we redslt homotopy starts from the empty set
and performs a single support replacement per iterationg gerformance of; regression fluctuates
around that of OMP depending on the trials and the sparsigl.IRegarding IR;, we used the Adaptive
LASSO implementation from Zou [40] since it is dedicatedhe tninimization of7 (x; \). We stopped
the algorithm when two successi¥giterates share the same support. For the simulation of FidR4A
and SBR yield comparable results in that one algorithm da¢uatperform the other for alh values,
but IR?; generally performs slightly better (Fig. 2). We designéaeotsimulations in which the nonzero
weightsz; are spread over a wider interval. In this case, SBR most gfelds the best approximations.
Fig. 2 is representative of the empirical results obtainddlerperforming many trials. Obviously, the
figure may significantly change depending on several facarsng which the\-value and the tuning
parameters of IR . The goal is definitely not to conclude that an algoritalwwaysoutperforms the others
but rather to sketch a classification of groups of algorittaosording to the trade-off between accuracy

and computation time.

VI. JOINT DETECTION OF DISCONTINUITIES AT DIFFERENT ORDERS IN AISNAL

We now consider another challenging problem: the jointcéie of discontinuities at different orders
in a signal [41, 42]. We process both simulated and real dadacampare the performance of SBR with
respect to OMP, Bayesian OMP (BOMP) which is an OMP basedduivackward algorithm [23],
OLS, ¢; regression [3], and IR [5,7,40]. Firstly, we formulate the detection of discomiiies at a
single order as a spline approximation problem. Then, we #akvantage of this formulation to introduce

the joint detection problem.
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Fig. 3. Signalsa? related to thepth order discontinuities at location a? is the Heaviside step functiom,; is the ramp

function, anda? is the one-sided quadratic function. Each signal is equaldblocation; and its support is equal t@, . .., m}.

A. Approximation of a spline of degree

Following [41], we introduce the dictionarA? of sizem x (m — p) formed of shifted versions of
the one-sided power functioh — [max(k,0)]? for all possible shifts (see Fig. 3) and we address the
sparse approximation @f by the piecewise polynomialli?x? (actually, we impose as initial condition
that the spline function is equal to O fér< 0). It consists in the detection of the discontinuity locaso
(also referred to as knots in the spline approximationdiiére) and the estimation of their amplitudes:
=¥ codes for the amplitude of a jump at locatiorfp = 0), the change of slope at locatian(p = 1),

etc. Here, the notion of sparsity is related to the number of difoaity locations.

B. Piecewise polynomial approximation

We formulate the joint detection of discontinuities of asle = 0, ..., P by appending the elementary
dictionaries A” in a global dictionaryA = [A°, ..., A”]. The productAz yields a sum of piecewise
polynomials of degree lower thaR with a limited number of pieces. The dictionady is overcomplete
since it is of sizem x s, with s = (P + 1)(m — P/2) > m for P > 1. Moreover, any column
al of AP overlapsall other columnSaE’. because their respective supports are the inteduals . ,m}
and {j,...,m}. The discontinuity detection problem is difficult as mosjalthms are very likely to

position wrong discontinuities in their first iterationsarfexample, when approximating a signal with two
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discontinuities at distinct locatiorisandj, greedy algorithms start to position a first (wrong) disamunty

in betweeni andj, and forward greedy algorithms cannot remove it.

C. Adaptation of SBR

The above defined dictionary does not satisfy the uniqueessmtation property. Indeed, it is easy to
check that the difference between two discrete ramps atitotsai andi -+ 1 yields the discrete Heaviside
function at locationi: a; — a},; = af. We thus need to slightly modify SBR in order to ensure that
only full rank matricesAo are explored. The modification is based on the following psijoon which

gives a sufficient condition for full rankness @o.

Proposition 2 Let n; denote the number of columas$, p € {0, ..., P} which are active for sample
Let us define the binary conditiaf(7):

o if n; =0, C(3) = 1;

e ifn;>1, C(i) £ {niy;=0,j=1,...,n; — 1}

If Q satisfiesvi, C(i) = 1, then Ao is full rank.

Proposition 2 is proved in Appendix D. Basically, it stateattwe can allow several discontinuities to be
active at the same locatianbut then, the next samplés 1, ..., i+n;—1 must not host any discontinuity.
This condition ensures that there are at mgsdliscontinuities in the intervas, ... ,i+n; — 1} of length
n;. The SBR adaptation consists in testing an insertion onlgnMine new suppor®’ = Q U {(i,p)}

satisfies the above condition.

D. Numerical simulations

We first setP = 1 leading to the piecewise affine approximation problem. Tdisetfree daty = Ax*
of Fig. 4(a) are of sizen = 1000 with ||z*||o = 18 discontinuities. According to Remark 2, we compute
the valueAmax above which the SBR output is the empty set, and we run SBR Wit Ay 1077/2
for 5 = 0,...,20. For the leastA-value, SBR yields an exact recovery (see Fig. 4(a)). Forpasison
purpose, we also run 27 iterations of OMP and OLS. Thet;)” curves represented on Fig. 4(b) express
the squared residudly — Az||? versus the cardinalityjz||o for each algorithm (we plot the first 27
iterates of OMP and OLS and for aj| we plot the output of SBRY;) after full convergence of SBR).
Whatever the cardinality, SBR yields the least residuat. sy data, the £5-¢;” curve corresponding
to SBR still lays below the OMP and OLS curves for most caditiea. In the next paragraph, we also

consider the Bayesian OMP, regression, and IR algorithms for further comparisons.
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Fig. 4. Joint detection of discontinuities of orders 0 andlie dictionary is of sizd 000 x 1999 and the data signal includes
18 discontinuities. The true and estimated discontinuwigations are represented with unfilled black and filled gebels. The
shape of the labels (circular or triangular) indicates tisea@htinuity order. The dashed gray and solid black curegsesent the
data signaly and its approximatiomAx for the leasth\-value. (a) Approximation from noise-free data. The recpus exact.
(b) “¢2-£o" curves showing the squared residual versus the cardinfalitthe SBR, OLS, and OMP solutions. (c,d) Similar
results for noisy data (SNR = 20 dB).

E. AFM data processing

In Atomic Force Microscopy (AFM), a force curve measuresittieratomic forces exerting between a
probe associated to a cantilever and a nano-object. Sgdlgifithe recorded signal — y(z) shows the
force evolution versus the probe-sample distanoexpressed in nanometers. Researching discontinuities
(location, order, and amplitude) in a force curve is a cimglieg task because they are used to provide
a precise characterization of the physico-chemical ptagsepf the nano-object (topography, energy of
adhesiongtc) [43].

The data displayed on Fig. 5(a) are related to a bacteribStelwanella putrefaciefaying in agueous
solution, interacting with the tip of the AFM probe [44]. Atraction force curve is recorded by positioning

the tip in contact with the bacterial cell, and then graduaditracting the tip from the sample until it

June 16, 2011 DRAFT



TO BE PUBLISHED IN THE IEEE TRANSACTIONS ON SIGNAL PROCESSBN 19

160 ‘ ‘ ‘ ‘ ‘ ‘ ‘ --- omP
)
[}
?
Z100F .
Z g
0 =3
O -
(@ g (b) 3
o ol
L 40f 5
40}
a4
-20 : . . . . . . "
-3200 -3100 -3000 -2900  -2800  -2700 0 10 20 30 40 50
Z (nm) CARDINALITY
300 --- OMP
— oLS
250p SBR
n
200
w
=150
(© F
{100
4
50t
0 . i i i i
0 10 20 30 40 50

CARDINALITY

Fig. 5. Joint detection of discontinuities of orders 0, 1d @& (problem of size&2167 x 6498). (a) Experimental AFM data
showing the force evolution versus the probe-sample distan (b) Squared residual versus cardinality for the SBR, OLS,

and OMP solutions. (c) Time of reconstruction versus cailiin

loses contact. In the retraction curve shown on Fig. 5(agethiegions of interest can be distinguished
from right to left. The linear region on the right charactes the rigid contact between the probe and
the sample. It describes the mechanical interactions ofdinéilever and the sample. The rigid contact is
maintained untilz ~ —2840 nm. The interactions occurring in the intervak [—3050, —2840] nm are
adhesion forces during the tip retraction. In the flat parttenleft, no interaction occurs as the cantilever
has lost contact with the sample.

We search for the discontinuities of orders 0, 1, and 2. &intd the processing of simulated data, we
run SBR with 14\-values and we run OLS and OMP until iteration 41. For eacbrélym, we plot the
“l5-¢y” curve and the curve displaying the time of reconstructi@nsus the cardinality (Figs. 5(b,c)).
These figures show that the performance of SBR is at least aqdaometimes better than that of OLS.
Both algorithms yield results that are far more accurate tB&MP at the price of a larger computation
time.

Fig. 6 displays the approximations yielded by the three ritlyms together with the BOMR,;, and
IR¢, approximations. For the largest valdg, SBR runs during 6 iterations (4 insertions and 2 removals)

yielding a support of cardinality 2. SBR performs betterntlmaher algorithms (Figs. 6(a-f)). Although
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Fig. 6. AFM data processing: joint detection of discontiias at orders 0, 1, and 2. The estimated discontinuitieare

represented with vertical spikes and with a label indigathre discontinuity order.
and 2 removals have been domg & 120). (b-f) OLS and OMP outputs after 2 iterations, BOMP andIR40] outputs for

(a) SBR output of cardinality Zndertions

A = A1, homotopy iterate (LASSO) leading to the minimal value6fx; A1).
(A2 = 8.5). The SBR output is of cardinality 5 (7 insertions and 2 reais\

(g-) Same simulation with a lowek-value

IR/, yields the most accurate approximation, it relies on 4 diry columns leading to a larger value of
J(x; \1). We observed the same behavior for the lowest valuésubfigures (g-1)). Again, SBR yields
the least value of7 (x; \2) among all algorithms. Moreover, SBR provides a very preldsalization of
both first order discontinuities (subfigure (a)) which anactal information for the physical interpretation
of the data. On the contrary, all other algorithms fail foe thighest sparsity level, and some do not
even succeed for the lowest. Specifically, OLS accuratedatks both first order discontinuities when
5 iterations have been performed (the desired disconisuiire the first and the last ones among the

5) while OMP fails even after 5 iterations. LASSO and BOMPIgigery poor approximations for the
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highest sparsity level and approximations with many diwity columns for the lowest sparsity level. In
terms of value of the cost functioff (x; ), BOMP and LASSO fluctuate around OMP but they are far
outperformed by OLS, SBR, and 4R

VIlI. CONCLUSION
A. Discussion

We performed comparisons for two problems involving higbéyrelated dictionary columns. SBR is
at least as accurate as OLS and sometimes more accuratea wiiphtly larger cost of computation.
We also considered sparse algorithms that are slower th&h GBR was found to be very competitive
in terms of trade-off between accuracy and computation.titihough OLS based forward-backward
algorithms yield a relatively large computational cost feration, we have noticed that for correlated
dictionaries, the number of SBR iterationise(, of elementary modifications of the support) is much
lower than the number of support modifications performed déyegrl other algorithms. Typically, IHT
and IR/; can often be more expensive than SBR. Additionally, SBR itgaites within a finite number
of iterations, thus it does not require to tune any empiritapping parameter. The limitation of SBR in
terms of speed arises when the dictionahyjis unstructured and the size &f is too large to stored’ A.
The inner product&la; must then be recomputed for each iteration, which is redtiburdensome.

In the recent literature, it is often acknowledged that thetdunction 7 (x; A) has a large number
of local minimizers therefore discouraging its direct apgation [5, 7]. Many authors thus choose to
minimize an approximate cost function in which thenorm|z; |, is replaced with a nonconvex continuous
function ¢(z;). However, when the range of values of the (expected) norempitudesz; # 0 is wide,
it is difficult to find a good approximatiomn(x;) of |z;|o for all ;. Selecting an appropriate function
generally relies on the introduction of a degree of freeddmse tuning is not obvious [5, 6]. For instance,
the IR/, algorithm can be interpreted as an approximaté, minimization method where th& norm
is replaced withp(z;;¢) = log(|z;| + €) [5,7]. The parameter controls the “degree of nonconvexity”
of the surrogate function (?).

Although J (x; \) has a large number of local minima, we have found that SBRtenads accurate
as algorithms based on the nonconvex approximatioff oMoreover, SBR is simple to use. The good

behavior of SBR is somehow related to the result of Propmsili which states that any SBR iterate is

2In the comparisons with SBR, we set= 0 following [40].
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almost surely a local minimizer Qf . We conclude that SBR is actually capable to “skip” local imia

with a large cost7 (x; \).

B. Perspectives

In the proposed approach, the main difficulty relies in theiof of theA-value. If a specific cardinality
or approximation residual is desired, one can resort toah &md error procedure in which a number
of A-values are tried until the desired approximation leveloisnid. In [45], we sketched a continuation
version in which a series of SBR solutions are computed faradesing levels of sparsity, and the
A-values are recursively computed. This continuation wers$ showing promising results and will be
the subject of a future extended contribution. A similargpexctive was actually proposed by Zhang to
generalize his FoBa algorithm in a path-following algarmitiisee the discussion section in [22]).

Another important perspective is to investigate whetheRSEn guarantee exact recovery in the
noise-free case under some conditions on mattiand on the unknown sparse signal. According
to Remark 1, we will study the behavior of SBR wh&n— 0. In the simulations done in Sections V
and VI, we observed that SBR is able to perform exact recesqrrovided thah is sufficiently small.

This promising result is a first step towards a more genergirttical study.

APPENDIX A

DETAILED DEVELOPMENT OF LIMIT BG SIGNAL RESTORATION

Consider the Bernoulli-Gaussian model= (q,r) introduced in Section II-B and the joint MAP
formulation (3) involving the cost functiof (g, r). Giveng, let us splitr into two subvectors:, and¢
indexed by the null and non-null entries @f respectively. Sincér||? = ||¢||> and AA,r = Agt do not
depend oru, we havemin,, £(q,t,u) = L(q,t,0). Thus, the joint MAP estimation problem reduces to

the minimization of£(g, t,0) w.r.t. (g,t). In the limit cases? — oo, this problem rereads:
min{£(q.£,0) = [ly — Aot|” + Mlalo}. ©)
The equivalence between (9) and (4) directly follows frora tihange of variablee = {q,t} whereq

andt are the support and non-zero amplitudescof

APPENDIX B

PROOF OFREMARK 1

The proof of the result stated in Remark 1 is based on the tWowimg lemmas.
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Lemma 1 For A > 0, any minimizer of7 (z; \) takes the formrg with Card[Q] < min(m,n).

Proof of lemma: According to the URP assumption, anyin(m,n) columns of A yield an
unconstrained minimizer dfy — Ax||%. Let s be such minimizer, with|z s||o < min(m,n), and let
u be a minimizer of7 (x; \). J (u; \) < J(xs; ) implies that||ullp < ||zis]lo+ (E(zLs) — E(u)) /A <
lzisllo < min(m, n).
We denote byQ the support ofu. The related least-square solutieg obviously satisfie€ (xg) <
E(u) and||zgllo < Card[Q] = ||ullo, thus T (xg; ) < J(u; A). Sincew is a minimizer of 7 (x; A),
we haveJ (xgo; \) = J(u; \) hencef(xg) = £(u). Because of the URP assumption, the least-squares

minimizer overQ is unique, thusu = xo. [ |

Lemma 2 There existS\min > 0 such that for0 < A\ < Amin, the minimizers of/ (x; \) are unconstrained

minimizers of||y — Az|?.

Proof of lemma: When A tends towards 0, we have for all, J(xg;\) = Eg + A||zgllo — Eo.
In particular, 7 (zg,s; \) — Eg,s With g, an unconstrained minimizer dfy — Ax||? yielded by a
subsetQ, s of cardinality min(m,n). Because the number of possible subg2tis finite and for allQ,
Eo = &g, there exists\pin > 0 such that for0 < A < Ayin, the subsetD* minimizing J(xzo; \)
satisfy £o- = £g,.. Consequently, the minimizers of (x; \) are unconstrained least-squares solutions
according to Lemma 1. [ |
Proof of Remark 1: The proof directly follows from the application of Lemma 2.eVdenote by
X the set of minimizers of7 (x; \).

In the undercomplete case, there is a unique unconstrai@estd-$quare minimizer,s. Thus, Xy =
{zLs} for 0 < A < Amin.

In the overcomplete case, we denote by the set of sparsest solutions o= Ax. To show that
X\ = X* for 0 < A\ < Amin, We consideec € X* andx’ € X). According to Lemma 2¢’ satisfiesy =
Az, thenJ (z'; \) = \||z'||o. By definition of X*, we havey = Az and 7 (z; \) = \||z|lo < T (z'; \).
Becausexr’ € X) is a minimizer of 7, we deduce thalz’'||y = ||=||o, thena’ € X* andx € X). We

have proved that’y = X™* for 0 < A < Amin. [ ]

APPENDIXC

UPDATE OF THECHOLESKY FACTORIZATION

A

At each SBR iteration linear systems of the forty = GélAtgy must be solved, the corresponding
squared errors readino = |y — Aotol?> = |lyl|> — y'Agto. Using the Cholesky factorization
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—tr—1
Gg = LoLy, tg rereadsg = Ly Ly ALy, thus
2 —1 4t 2
Eo = [lylI” — [ Lg Agyll”. (10)

Insertion of a new column after the existing columh=luding a new column leads tdo: = [Ag, a;].
Thus, the new Gram matrix reads ag a 2 block matrix:
G Ala;
Go = < o™
(Aga)  ail?

and the Cholesky factor airo: can be straightforwardly updated:

Lo 0
Lo = (11)
lo;  Vlaill* =gl
with lg; = LélA’ani. The update (8) of/o(\) = Eg + ACard[Q)] directly follows from (10) and (11).
Removal of an arbitrary columnwWhen removing a columa;, updatingL o remains possible although
more complex. This idea was developed byetal. [46] who update the Cholesky factorization of matrix
Gél. We adapt it to the direct (simpler) factorization Gfy. Let I be the position ofa; in Ag (with

1 < I < Card[Q]). Lo can be written in a block matrix form:

A 0 O
Lo=|b d 0 (12)

C e F
where the lowercase characters refer to the scdaarid vector quantitiesh( e) appearing in the'th
row and in thelth column. The computation afg = LoLY, and the removal of théth row and the

Ith column inGg lead to

A O At Ct 0
Gg = + [0 € ]
C F 0 F? e

By identification withG o = LQ’LtQ/ and because the Cholesky factorization is unidug, necessarily
reads:
A O

LQ’ = ) (13)
C X

whereX is a lower triangular matrix satisfyink X* = FF* + ee’. The problem of computingl from
F ande is classical; it is known as a positive rank 1 Cholesky updaie there exists a stable algorithm
in O(f?) operations, wherg = Card[Q] — I is the size ofF [36].
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APPENDIXD

PROOF OFPROPOSITION2

Let us first introduce some notations specific to the piea@wadynomial dictionary problem. Consider
a subse®© of columnsa? and leti~ = min{i |n;, > 0} denote the lowest location of an active entry (we
recall thatn; denotes the number of active columns for samipldJp to a reordering of the columns
of Ag, Ag rereadsAy = [A;-, ﬁi_] where A;- gathers they;- active columnsa? such thati = i~
and A;- gathers the remaining active columns (with- i~). The following lemma is a key element to

prove Proposition 2.

Lemma 3 Assume thalQ satisfies the condition of Proposition Z.Er is full rank, thenAg is full

rank.

Proof: Let I = n;- denote the number of discontinuities at locationand let0 < p1 <p2 < ... <

pr denote their orders, sorted in the ascending order. Supibasehere exist two families of scalars

{pf2, ... Pt} and{u! |i # i~ andi is active at ordep} such that
I
Z,ufﬁ al’ + Z Zuf al = 0. (14)
Jj=1 A P

Let us show that all:-values are then equal to 0.

Rewriting the first/ nonzero equations in this system and beca@sesatisfies the condition of
Proposition 2, we have, for akt € {i—,...,i" + 1 — 1}, Z§:1u§’1 (k+i~ —1)»» = 0. Hence, the
polynomial F(X) = Z§:1 Mfﬁ XPi hasI positive roots. Because any non-zero polynomial formed of
monomials of different degree has at mést 1 positive roots [47, p. 76]F is the zero polynomial, thus
all scalarsti are 0. We deduce from (14) and from the full ranknessAgf that p2 = 0 for all (4, p).

We have shown that the column vectorsAf are linearly independenite., that Ao is full rank. m
The proof of Proposition 2 directly results from the recuesapplication of Lemma 3. Starting from the

empty set, all the indices, sorted by decreasing order, wreessively included.
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