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From Bernoulli-Gaussian deconvolution to

sparse signal restoration
Charles Soussen⋆, Jérôme Idier,Member, IEEE,David Brie, and Junbo Duan

Abstract

Formulated as a least square problem under anℓ0 constraint, sparse signal restoration is a discrete

optimization problem, known to be NP complete. Classical algorithms include, by increasing cost and ef-

ficiency, Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), Orthogonal Least Squares (OLS),

stepwise regression algorithms and the exhaustive search.We revisit the Single Most Likely Replacement

(SMLR) algorithm, developed in the mid-80’s for Bernoulli-Gaussian signal restoration. We show that

the formulation of sparse signal restoration as a limit caseof Bernoulli-Gaussian signal restoration leads

to anℓ0-penalized least square minimization problem, to which SMLR can be straightforwardly adapted.

The resulting algorithm, called Single Best Replacement (SBR), can be interpreted as a forward-backward

extension of OLS sharing similarities with stepwise regression algorithms. Some structural properties of

SBR are put forward. A fast and stable implementation is proposed. The approach is illustrated on two

inverse problems involving highly correlated dictionaries. We show that SBR is very competitive with

popular sparse algorithms in terms of trade-off between accuracy and computation time.
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Index Terms
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mixed ℓ2-ℓ0 criterion minimization; Orthogonal Least Squares; stepwise regression algorithms.

I. INTRODUCTION

Sparse signal restoration arises in inverse problems such as Fourier synthesis, mono- and multidimen-

sional deconvolution, and statistical regression. It consists in the decomposition of a signaly as a linear

combination of a limited number of elements from a dictionary A. While formally very similar, sparse

signal restoration has to be distinguished from sparse signal approximation. In sparse signal restoration,

the choice of the dictionary is imposed by the inverse problem at hand whereas in sparse approximation,

the dictionary has to be chosen according to its ability to represent the data with a limited number of

coefficients.

Sparse signal restoration can be formulated as the minimization of the squared error‖y−Ax‖2 (where

‖ · ‖ refers to the Euclidean norm) under the constraint that theℓ0 pseudo-norm ofx, defined as the

number of non-zero entries inx, is small. This problem is often referred to as subset selection because

it consists in selecting a subset of columns ofA. This yields a discrete problem (since there are a finite

number of possible subsets) which is known to be NP-complete[1]. In this paper, we focus on “difficult”

situations in which some of the columns ofA are highly correlated, the unknown weight vectorx is only

approximately sparse, and/or the data are noisy. To addresssubset selection in a fast and sub-optimal

manner, two approaches can be distinguished.

The first one, which has been the most popular in the last decade, approximates the subset selection

problem by a continuous optimization problem, convex or not, that is easier to solve [2–7]. In partic-

ular, theℓ1 relaxation of theℓ0-norm has been increasingly investigated [2, 3], leading tothe LASSO

optimization problem.

The second approach addresses theexactsubset selection problem using either iterative thresholding [8–

11] or greedy search algorithms. The latter gradually increase or decrease by one the set of active columns.

The simplest greedy algorithms are Matching Pursuit (MP) [12] and the improved version Orthogonal

Matching Pursuit (OMP) [13]. Both are referred to as forwardgreedy algorithms since they start from

the empty active set and then gradually increase it by one element. In contrast, the backward algorithm

of Couvreur and Bresler [14] starts from a complete active set which is gradually decreased by one

element. It is, however, only valid for undercomplete dictionaries. Forward-backward algorithms (also
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known as stepwise regression algorithms) in which insertions and removals of dictionary elements are

both allowed, are known to yield better recovery performance since an early wrong selection can be

counteracted by its further removal from the active set [15–18]. In contrast, the insertion of a wrong

element is irreversible when using forward algorithms. We refer the reader to [18, Chapter 3] for an

overview of the forward-backward algorithms in subset selection.

The choice of the algorithm depends on the amount of time available and on the structure of matrix

A. In favorable cases, the sub-optimal search algorithms belonging to the first or the second approach

provide solutions having the same support as the exhaustivesearch solution. Specifically, if the unknown

signal is highly sparse and if the correlation between any pair of columns of A is low, the ℓ1-norm

approximation provides optimal solutions [3]. But when fast algorithms are unsatisfactory, it is relevant

to consider slower algorithms being more accurate and remaining very fast compared to the exhaustive

search. The Orthogonal Least Squares algorithm (OLS) [19] which is sometimes confused with OMP [20],

falls into this category. Both OLS and OMP share the same structure, the difference being that at each

iteration, OLS solves as many least square problems as thereare non-active columns while OMP only

performs one linear inversion. In this paper, we derive a forward-backward extension of OLS allowing

an insertion or a removal per iteration, each iteration requiring to solven least square problems, where

n is the size ofx.

The proposed forward-backward extension of OLS can be viewed as a new member of the family of

stepwise regression algorithms. The latter family traces back to 1960 [15], and other popular algorithms

were proposed in the 1980’s [18] and more recently [21]. Notethat forward-backward extensions of

OMP have also been proposed [22, 23]. In contrast with the other stepwise regression algorithms, our

approach relies on a bi-objective formulation in order to handle the trade-off between low residual and

low cardinality. This formulation reads as the minimization of theℓ0-penalized least square cost function

‖y−Ax‖2+λ‖x‖0. Then, we design a heuristic algorithm to minimize this costfunction in a suboptimal

way. While the other forward-backward strategies [15–17, 21, 22] aim at handling the same trade-off,

most of them are not expressed as optimization algorithms, but rather as empirical schemes without any

connexion with an objective function. Moreover, some of them involve discrete search parameters that

control variable selection or de-selection [15, 16, 22] while others do not involve any parameter [17, 21].

An exception can be made for Broersen’s algorithm [17] sinceit aims at minimizing‖y−Ax‖2 +λ‖x‖0

for a specificλ value corresponding to Mallows’Cp statistic. However, it is only valid for undercomplete

problems. On the contrary, our proposed algorithm is general and valid for anyλ value. It does not

necessitate to tune any other parameters (e.g.,stopping parameters).
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Our starting point is the Single Most Likely Replacement (SMLR) algorithm which proved to be a very

efficient tool for the deconvolution of a Bernoulli-Gaussian signal [24–27]. We show that sparse signal

restoration can be seen as a limit case of maximuma posteriori (MAP) Bernoulli-Gaussian restoration

which results in an adaptation of SMLR to subset selection. The paper is organized as follows. In

Section II, we introduce the Bernoulli-Gaussian model and the Bayesian framework from which we

formulate the sparse signal restoration problem. In Section III, we adapt SMLR resulting in the so-

called Single Best Replacement (SBR) algorithm. In SectionIV, we propose a fast and stable SBR

implementation. Finally, Sections V and VI illustrate the method on the sparse spike deconvolution with

a Gaussian impulse response and on the joint detection of discontinuities at different orders in a signal.

II. SPARSE SIGNAL ESTIMATION USING A LIMIT BERNOULLI-GAUSSIAN MODEL

A. Preliminary definitions and working assumptions

Given an observation vectory ∈ Rm and a dictionaryA = [a1, . . . ,an] ∈ Rm×n, a subset selection

algorithm aims at computing a weight vectorx ∈ Rn yielding an accurate approximationy ≈ Ax. The

columnsai corresponding to the non-zero weightsxi are referred to as the active (or selected) columns.

Throughout this paper, no assumption is made on the size ofA: m can be either smaller or larger

than n. A is assumed to satisfy the unique representation property (URP): anymin(m,n) columns of

A are linearly independent. This assumption is usual whenm 6 n; it is stronger than the full rank

assumption [28]. Whenm > n, it amounts to the full rank assumption. Although URP was originally

introduced to guarantee uniqueness of sparse solutions [28], we use this assumption to propose a valid

algorithm. It can actually be relaxed provided that the search strategy guarantees that the selected columns

are linearly independent (see Section VI-C for details).

The support of a vectorx ∈ Rn is the setS(x) ⊆ {1, . . . , n} defined byi ∈ S(x) if and only if

xi 6= 0. We denote byQ ⊆ {1, . . . , n} the active set and byq ∈ {0, 1}n the related vector defined by

qi = 1 if and only if i ∈ Q. WhenCard[Q] 6 min(m,n), let AQ be the submatrix of sizem×Card[Q]

formed of the active columns ofA. We define the least square solution and the related squared error:

xQ , arg min
S(x)⊆Q

{E(x) = ‖y − Ax‖2} (1)

EQ , E(xQ) = ‖y − AxQ‖
2. (2)
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B. Bayesian formulation of sparse signal restoration

We consider the restoration of a sparse signalx from a linear observationy = Ax + n, wheren

stands for the observation noise. An acknowledged probabilistic model dedicated to sparse signals is the

Bernoulli-Gaussian (BG) model [24, 25, 27]. For such model,deterministic optimization algorithms [27]

and Markov chain Monte Carlo techniques [29] are used to compute the MAP and the posterior mean,

respectively. Hereafter, we define the BG model and then consider its estimation in the joint MAP sense.

A BG process can be defined using a Bernoulli random vectorq ∈ {0, 1}n coding for the support and

a Gaussian random vectorr ∼ N (0, σ2
xIn), with In the identity matrix of sizen. Each samplexi of x

is modeled asxi = qiri [24, 25]. The Bernoulli parameterρ = Pr(qi = 1) is the probability of presence

of signal andσ2
x controls the variance of the nonzero amplitudesxi = ri. The Bayesian formulation

consists in inferringx = (q, r) knowing y. The MAP estimator can be obtained by maximizing the

marginal likelihoodl(q |y) [27] or the joint likelihoodl(q, r |y) [25, 26]. Following [25] and assuming

a Gaussian white noisen ∼ N (0, σ2
nIm), independent fromx, Bayes’ rule leads to:

L(q, r) , −2σ2
n log[l(q, r |y)]

= ‖y − A∆qr‖2 +
σ2

n

σ2
x

‖r‖2 + λ‖q‖0 + c (3)

whereλ = 2σ2
n log(1/ρ − 1), ∆q is the diagonal matrix of sizen whose diagonal elements areqi (x

readsx = ∆qr), andc is a constant.

Now, a signalx is sparse if some entriesxi are equal to 0. Since this definition does not impose

constraints on the range of the non zero amplitudes, we choose to use a limit Bernoulli-Gaussian model

in which the amplitude varianceσ2
x is set to infinity. Note that a parallel limit development wasdone,

independently from our work, in the conference paper [23]. In Appendix A, we show that the minimization

of L w.r.t. x = (q, r) rereads:

min
x∈Rn

{J (x;λ) = ‖y − Ax‖2 + λ‖x‖0}. (4)

This formulation is close to that obtained in the Bayesian subset selection literature [18, Chapter 7] using

an alternative Bernoulli-Gaussian model. In the latter model, the Gaussian prior relies onRQr instead

of r, with RQ the Cholesky factor of the Gram matrixAt
QAQ. This leads to a cost function of the

form (4), the difference being thatλ depends on the amplitude varianceσ2
x and tends to infinity asσ2

x

tends to infinity [30, 31].

Remark 1 (Noise-free case)The Bayesian development above is valid for noisy data. In the noise-free

case, we define the sparse solution as the limit ofarg minx J (x;λ) whenλ tends towards 0. According
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to classical results in optimization [32, Chapter 17], if{λk} is a sequence decreasing towards 0 andxk

is an exact global minimizer ofJ (x;λk), then every limit point of the sequence{xk} is a solution of

arg minx ‖x‖0 s.t. ‖y − Ax‖2 is minimal. In Appendix B, we derive a more precise result: “the set of

minimizers ofJ (x;λ) is constant whenλ is close enough to 0 (λ 6= 0). It is equal to the set of sparsest

solutions toy = Ax in the overcomplete case, and to the unconstrained least-squares solution in the

undercomplete case.”

In the following, we focus on the minimization problem (4). The hyperparameterλ is fixed. It controls

the level of sparsity of the desired solution. The algorithmthat will be developed relies on an efficient

search of the support ofx. The search strategy is based on the definition of a neighborhood relationship

between two supports: two supports are neighbors if one is nested inside the other and the largest support

has one more element.

III. S INGLE BEST REPLACEMENT ALGORITHM

We propose to adapt the SMLR algorithm to the minimization ofthe mixedℓ2-ℓ0 cost functionJ (x;λ)

defined in (4). To clearly distinguish SMLR which specifically aims at minimizing (3), the adapted

algorithm will be termed as Single Best Replacement (SBR).

A. Principle of SMLR and main notations

SMLR [24] is a deterministic coordinatewise ascent algorithm to maximize likelihood functions of

the form l(q |y) (marginal MAP estimation) orl(q, r |y) (joint MAP estimation). In the latter case, it

is easy to check from (3) that givenq, the minimizer ofL(q, r) w.r.t. r has a closed form expression

r = r(q). Consequently, the joint MAP estimation reduces to the minimization ofL(q, r(q)) w.r.t. q.

At each SMLR iteration, all the possible single replacements of the supportq (set qi = 1 − qi while

keeping the otherqj, j 6= i unchanged) are tested, then the replacement yielding the maximal decrease of

L(q, r(q)) is chosen. This task is repeated until no single replacementcan decreaseL(q, r(q)) anymore.

The number of possible supportsq being finite and SMLR being a descent algorithm, it terminates after

a finite number of iterations.

Before adapting SMLR, let us introduce some useful notations. We denote byQ•i a single replacement,

i.e., an insertion or removal into/from the active setQ:

Q • i ,





Q ∪ {i} if i /∈ Q,

Q\{i} otherwise.
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WhenCard[Q] 6 min(m,n), we define the cost function

JQ(λ) , EQ + λCard[Q] (5)

involving the squared errorEQ defined in (2). By definition ofJ (xQ;λ) = EQ + λ‖xQ‖0, JQ(λ)

coincides withJ (xQ;λ) when the support ofxQ is equal toQ.

Although it aims at minimizingJ (x;λ), the proposed SBR algorithm involves the computation of

JQ(λ) rather thanJ (xQ;λ). We make this choice becauseJQ(λ) can be computed and updated more

efficiently, the computation ofxQ being no longer necessary. In subsection III-C, we show thatfor noisy

data, the replacement ofJ (xQ;λ) by JQ(λ) has a negligible effect.

B. The Single Best Replacement algorithm

SMLR can be seen as an exploration strategy for discrete optimization rather than an algorithm specific

to a posterior likelihood function. Here, we use this strategy to minimize J (x;λ). We rename the

algorithm Single Best Replacement to remove any statistical connotation.

SBR works as follows. Consider the current supportQ. The n single replacementsQ • i are tested,

i.e., we compute the squared errorsEQ•i and we memorize the values ofJQ•i(λ). If the minimum of

JQ•i(λ) is lower thanJQ(λ), then we select the index yielding this minimum value:

ℓ ∈ arg min
i∈{1,...,n}

JQ•i(λ). (6)

The next SBR iterate is thus defined asQ′ = Q • ℓ. This task is repeated untilJQ(λ) cannot decrease

anymore. By default, we use the initial empty support. The algorithm is summarized in Table I.

C. Case where some active amplitudes are zero

We show that this case almost surely never arises when the data y are corrupted with “non degenerate”

noise.

Theorem 1 Let y = y0 + n wherey0 ∈ Rm is fixed andn is an absolute continuous random vector,

i.e., admitting a probability density w.r.t. the Lebesgue measure. Then, whenCard[Q] 6 min(m,n), the

probability that‖xQ‖0 < Card[Q] is equal to 0.

Proof: Let k = Card[Q] andtQ be the minimizer of‖y−AQt‖2 overRk. tQ readstQ = VQy where

matrix VQ = (At
QAQ)−1At

Q is of sizek×m, and‖xQ‖0 = ‖tQ‖0 6 k. Denoting byv1, . . . ,vk ∈ Rm

the row vectors ofVQ, ‖tQ‖0 < k if and only if there existsi such that〈y,vi〉 = 0 (where〈. , .〉 denotes
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TABLE I

SBRALGORITHM . BY DEFAULT,Q1 = ∅.

Input: A, y, λ and supportQ1 (Card[Q1] 6 min(m,n))

Step 1: Setj = 1.

Step 2: Fori ∈ {1, . . . , n}, computeJQj•i(λ).

Computeℓ using (6).

If JQj•ℓ(λ) < JQj
(λ),

SetQj+1 = Qj • ℓ.

else,

Terminate SBR.

End if.

Set j = j + 1 and go to Step 2.

Output: supportQj = SBR(Q1; λ)

the inner product). BecauseAQ is full rank, VQ is full rank and then∀i, vi 6= 0. Denoting byH⊥(vi)

the hyperplane ofRm which is orthogonal tovi, we have

‖xQ‖0 < k ⇐⇒ y ∈
k⋃

i=1

H⊥(vi). (7)

Because the set
⋃

i H
⊥(vi) has a Lebesgue measure equal to zero and the random vectory admits a

probability density, the probability of event (7) is zero.

Theorem 1 implies that when dealing with real noisy data, it is almost sure that all active coefficients

xi are non-zero. Hence, each SBR iterateQ almost surely satisfiesJ (xQ;λ) = JQ(λ). In any case,

SBR can be applied without restriction and the properties stated below (e.g., termination after a finite

number of iterations) remain valid when an SBR iterate satisfies ‖xQ‖0 < Card[Q].

D. Properties of SBR

Proposition 1 Under the assumptions of Theorem 1, each SBR iteratexQ is almost surely a local

minimizer ofJ (x;λ). In particular, the SBR output satisfies this property.

Proof: Let x = xQ be an SBR iterate. According to Theorem 1, the supportS(x) = Q almost

surely. Settingε = mini∈Q |xi| > 0, it is easy to check that ifx′ ∈ Rn satisfies‖x′ − x‖ < ε, then

S(x′) ⊇ S(x) = Q, thus‖x′‖0 > ‖x‖0. Assume thatx′ satisfies‖x′ − x‖ < ε.

• If S(x′) = Q, then, by definition ofx = xQ, we haveE(x′) > E(x). Thus,J (x′;λ) > J (x;λ).
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• Otherwise,J (x′;λ) = E(x′) + λ‖x′‖0 > E(x′) + λ(‖x‖0 + 1). By continuity of E , there exists

a neighborhoodV(x) of x such that ifx′ ∈ V(x), |E(x′) − E(x)| < λ. Thus, if x′ ∈ V(x),

‖x′ − x‖ < ε andS(x′) ⊃ Q, thenJ (x′;λ) > E(x) + λ‖x‖0 = J (x;λ).

Finally, if x′ ∈ V(x) and‖x′ − x‖ < ε, thenJ (x′;λ) > J (x;λ).

Termination: Because SBR is a descent algorithm, a supportQ cannot be explored twice and SBR

terminates after a finite number of iterations. We emphasizethat no stopping condition is needed unlike

many algorithms which require to set a maximum number of iterations and/or a threshold on the squared

error variation (CoSaMP, Subspace Pursuit, Iterative HardThresholding, Iterative Reweightedℓ1).

OLS as a special case:When λ = 0, SBR coincides with the well known OLS algorithm [19, 33].

The removal operation never occurs because it yields an increase of the squared errorJQ(0) = EQ.

Empty solutions:We characterize theλ-values for which SBR yields an empty solution.

Remark 2 SBR(∅;λ) yields the empty set if and only ifλ > λmax , maxi(〈ai,y〉
2/‖ai‖

2).

This result directly follows from checking that any insertion trial fails, i.e., ∀i, E{i} + λ > E∅. It allows

us to design an automatic procedure which sets a number ofλ-values adaptively to the data in order to

compute SBR solutions at different sparsity levels (see Section VI-D).

Relation between SBR and SMLR:The main difference between both algorithms is that SMLR involves

the inversion of a matrix of the formAt
QAQ +αICard[Q] whereas SBR computes the inverse ofAt

QAQ.

In the case of SMLR, the termαICard[Q] acts as a regularization on the amplitude values. It avoids

instabilities whenAQ is ill conditioned at the price of handling the additional hyperparameterα. On

the contrary, instabilities may occur while using SBR. In the next section, we focus on this issue and

propose a stable implementation.

IV. I MPLEMENTATION ISSUES

Given the current supportQ, an SBR iteration consists in computing the squared errorEQ′ for any

replacementQ′ = Q• i, leading to the computation ofJQ′(λ) = EQ′ + λCard[Q′]. Our implementation

is inspired by the fast implementation of the homotopy algorithm for ℓ1 regression [3, 34]. It consists in

maintaining the Cholesky factorization of the Gram matrixGQ , At
QAQ whenQ is modified by one

element. The Cholesky factorization takes the formGQ = LQLt
Q whereLQ is a lower triangular matrix

of sizek = Card[Q]. Also, LQ is better conditioned thanGQ, improving the stability of matrix inversion.

We now give the main updating equations. Full detailed derivation can be found in Appendix C.
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A. Efficient strategy based on the Cholesky factorization

The replacement tests only rely on the current matrixLQ and do not require its update.

1) Single replacement tests:An insertion testQ′ = Q∪ {i} takes the form:

JQ′(λ) − JQ(λ) = λ −

(
ltQ,iL

−1
Q At

Qy − at
iy

)2

‖ai‖2 − ‖lQ,i‖2
(8)

with lQ,i = L−1
Q At

Qai. This computation mainly requires a triangular system inversion (computation of

lQ,i in O(k2) elementary operations) up to the pre-computation ofL−1
Q (At

Qy) at the beginning of the

current SBR iteration.

According to [18, 35], a removal testQ′ = Q\{i} readsJQ′(λ)−JQ(λ) = xQ(i)2/γi−λ wherexQ(i)

is the ith element in vectorxQ and γi is the diagonal element ofG−1
Q corresponding to the position

of ai in AQ. The overall removal tests mainly amount to the inversion ofthe triangular matrixLQ (in

O(k3) operations) as the computation ofγi for all i and of G−1
Q At

Qy (i.e., the values ofxQ(i)) from

L−1
Q are both inO(k2).

Note that insertion and removal tests can be easily done in parallel. In Matlab, this parallel implemen-

tation leads to a significant save of computation time due to the SIMD capabilities of Matlab.

2) Updating the Cholesky factorization:The update ofLQ can be easily done in the insertion case

by adding the new columnai at the last position inAQ∪{i}. The new matrixLQ′ is a 2 × 2 block

matrix whose upper left block isLQ (see Appendix C). The removal case requires more care since a

removal breaks the triangular structure ofLQ. The update can be done by performing either a series of

Givens planar rotations [21] or a positive rank 1 Cholesky update [36]. We describe the latter strategy

in Appendix C. The Cholesky factorization update is inO(k2) in the insertion case and inO((k − I)2)

in the removal case whereI denotes the position of the column to be removed inAQ.

B. Reduced search

Additionally, we propose an acceleration of SBR yielding the same iterates with a reduced search.

We notice that a column removalQ′ = Q\{i} yields an increase of the squared error and a decrease

of the penalty equal toλ. Hence, the maximum decrease ofJQ(λ) which can be expected isλ. The

acceleration of SBR consists in testing insertions first. Ifany insertion leads toJQ(λ) − JQ′(λ) > λ,

then removals are not worth being tested. Otherwise, the removals have to be tested as stated in Table I.

We have implemented this acceleration systematically.
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C. Memory requirements and computation burden

The actual implementation may vary depending on the size andthe structure of matrixA. We briefly

describe the main possible implementations.

When the size ofA is relatively small, the computation and storage of the Grammatrix AtA prior to

any SBR iteration (storage ofn2 scalar elements) avoids to recompute the vectorsAt
Qai which are needed

when the insertion ofai into the active set is tested. The storage of the other quantities (mainlyLQ)

that are being updated amounts toO(k2) scalar elements and a replacement test costsO(k2) elementary

operations in average.

WhenA is larger, the storage ofAtA is no longer possible, thusAt
Qai must be recomputed for any

SBR iteration. This computation costskm elementary operations and now represents the most important

part of an insertion test. When the dictionary has some specific structure, this limitation can be alleviated,

enabling a fast implementation even for largen. For instance, if a large number of pairs of columns of

A are orthogonal to each other,AtA can be stored as a sparse array. Also, finite impulse response

deconvolution problems enable a fast implementation sinceAtA is then a Toeplitz matrix (save north-

west and/or south-east submatrices, depending on the boundary conditions). The knowledge of the auto-

correlation of the impulse response is sufficient to describe most of the Gram matrix.

All these variants have been implemented1. In the following, we analyze the behavior of SBR for two

difficult problems involving highly correlated dictionaries: the deconvolution of a sparse signal with a

Gaussian impulse response (Section V) and the joint detection of discontinuities at different orders in a

signal (Section VI).

V. DECONVOLUTION OF A SPARSE SIGNAL WITH AGAUSSIAN IMPULSE RESPONSE

This is a typical problem for which SMLR was introduced [27].It affords us to study the ability of SBR

to perform an exact recovery in a simple noise-free case (separation of two Gaussian signals) and to test

SBR in a noisy case (estimation of a larger number of Gaussians) and compare it with other algorithms.

For simulated problems, we denote byx⋆ the exact sparse signal, the data readingy = Ax⋆ + n. The

dictionary columns are always normalized:‖ai‖
2 = 1. The signal to noise ratio (SNR) is defined by

SNR= 10 log(Py/Pn), wherePy = ‖Ax⋆‖2/m is the average power of the noise-free data andPn is

the variance of the noise processn.

1Matlab codes provided by the authors can be downloaded athttp://ieeexplore.org. In our Matlab implementation,

the insertion and removal tests are done in parallel.
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TABLE II

SEPARATION OF TWOGAUSSIAN FEATURES FROM NOISE-FREE DATA WITH SBR.d STANDS FOR THE DISTANCE BETWEEN

THE GAUSSIAN FEATURES. WE DISPLAY THE SIZE OF THE SUPPORT OBTAINED FOR A SEQUENCE OF DECREASING

λ-VALUES λ0 > λ1 > . . . > λ7 . THE LABEL ⋆ INDICATES AN EXACT RECOVERY FOR A SUPPORT OF CARDINALITY2.

λ λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ 6 λ7

d = 20 0 0 2⋆ 2⋆ 2⋆ 2⋆ 2⋆ 2⋆

d = 13 0 1 3 4 5 2⋆ 2⋆ 2⋆

d = 6 0 1 1 3 5 6 8 2⋆

A. Dictionary and simulated data

The impulse responseh is a Gaussian signal of standard deviationσ, sampled on a regular grid

at integer locations. It is approximated by a finite impulse response of length6σ by thresholding the

smallest values, allowing for fast implementation even forlarge size problems (see subsection IV-C). The

deconvolution problem leads to a Toeplitz matrixA whose columns are obtained by shifting the signal

h. The dimension ofA is chosen to have any Gaussian feature resulting from the convolution h ∗ x⋆

belonging to the observation window{1, . . . ,m}. This implies thatA is slightly undercomplete (m > n).

B. Separation of two close Gaussian features

We first analyze the ability of SBR to separate two Gaussian features (‖x⋆‖0 = 2) from noise-free data.

The centers of both Gaussian features lay at a relative distance d (expressed as a number of samples)

and their weightsx⋆
i are set to 1. We analyze the SBR outputs for decreasingλ-values by computing

their cardinality and testing whether they coincide with the true supportS(x⋆). Table II shows the results

obtained for a problem of size300 × 270 (σ = 5) with distances equal tod = 20, 13, and 6 samples.

It is noticeable that the exact recovery always occurs provided thatλ is sufficiently small. This result

remains true even for smaller distances (fromd = 2). When the Gaussian features strongly overlap,i.e.,

for d 6 13, the size of the output support first increases whileλ decreases, and then removals start to

occur, enabling the exact recovery for lowerλ’s.

C. Behavior of SBR for noisy data

We consider a more realistic simulation in which the data areof larger size (m = 3000 samples)

and noisy. The impulse responseh is of size 301 (σ = 50) yielding a matrixA of size 3000 × 2700,

and the SNR is set to 20 dB. Fig. 1(a) displays the generated data. The unknown sparse signalx⋆ is
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(c) λ = 10 (d) λ = 0.5

Fig. 1. Gaussian deconvolution results. Problem of size3000×2700 (σ = 50). (a) Generated data, with 17 Gaussian features

and with SNR = 20 dB. The exact locationsx⋆ are labeledo. (b,c,d) SBR outputs and data approximations with empirical

settings ofλ. The estimated amplitudesx are shown with vertical spikes. The SBR outputs (supports) are of size 5, 12, and 18,

respectively. The computation time always remains below 3 seconds (Matlab implementation).

composed of 17 spikes that are uniformly located in{1, . . . , n}. The non-zero amplitudesx⋆
i are drawn

according to an i.i.d. Laplacian distribution. Let us remark that the limit Bernoulli-Gaussian model is not

a proper probabilistic model so that one cannot use it to design simulated data. We choose a Laplacian

distribution since the non-zero amplitudes are more heterogeneous than with a Gaussian distribution with

finite variance.

On Fig. 1(b-d), we display the SBR results for threeλ-values. For largeλ’s, only the main Gaussian

features are found. Whenλ decreases, the smaller features are being recovered together with spurious

features. Removals occur forλ 6 0.8 yielding approximations that are more accurate than those obtained

with OLS and for the same cardinality (the residual‖y − Ax‖2 is lower) while whenλ > 0.8, the

SBR output coincides with the OLS solution of same cardinality. Note that the theoretical value ofλ

obtained from (3) is equal to0.3 yielding a support of cardinality 18. The residual is slightly lower

than that obtained withλ = 0.5. The exact support ofx⋆ is never found because the data are noisy
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Fig. 2. Comparison of sparse algorithms in terms of trade-off between accuracy (J (x; λ)) and CPU time for the deconvolution

problem of Fig. 1. SBR(λ = 0.5) is run first yielding a support of cardinalityksbr=18. Then, we run OLS(ksbr), OMP(ksbr),

homotopy forℓ1 regression [39], and IRℓ1(λ) [40]. The ℓ1 result is the homotopy iterate of cardinalityksbr yielding the least

value ofJ (x; λ).

and the neighboring columns ofA are highly correlated. In such difficult case, one needs to perform a

wider exploration of the discrete set{0, 1}n by introducing moves that are more complex than single

replacements. Such extensions were already proposed in thecase of SMLR. One can for instance shift an

existing spikexi forwards of backwards [37] or update a block of neighboring amplitudes jointly (e.g.,

xi andxi+1) [38]. Various search strategies are also reported in [18, Chapter 3].

D. Comparison of SBR with other sparse algorithms

We compared SBR with classical and recent sparse algorithms: OMP, OLS, CoSaMP [8], Subspace

Pursuit [9], Iterative Hard Thresholding (IHT) [10, 11],ℓ1 regression [3] and Iterative Reweightedℓ1

(IRℓ1) [5, 40]. A general trend is that thresholding algorithms perform poorly when the dictionary columns

are strongly correlated. CoSaMP and Subspace Pursuit yieldthe worst results: they stop after a very few

iterations as the squared error increases from one iteration to the next. On the contrary, IHT guarantees that

the squared error decreases but the convergence is very slowand the results remain poor in comparison

with SBR. In the simulation of Fig. 1(c), SBR performs 12 iterations (only insertions) leading to a support

of cardinality 12. Meanwhile, the number of iterations of IHT before convergence is huge: both versions

of IHT presented in [10] require at least 10,000 iterations to converge, leading to an overall computation

time (22 and 384 seconds) that is much larger than the SBR computation time (3 seconds).

Fig. 2 is a synthetic view of the performance of SBR, OLS, OMP,ℓ1 regression, and IRℓ1 for a

given sparsity levelλ. The computation time and the value ofJ (x;λ) are shown on the horizontal and
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vertical axes, respectively. This enables us to define several categories of algorithms depending on their

locations on the 2D plane: the outputs of fast algorithms (OMP andℓ1) lay in the upper left region

whereas slower but more efficient algorithms (OLS, SBR, and IRℓ1) yield points laying in the lower

right region. We chose not to represent the outputs of thresholding algorithms since they yield poorer

performance,i.e., points located either in the upper right (IHT) or upper left (CoSaMP, Subspace Pursuit)

regions. In details, we observed thatℓ1 regression tends to overestimate the support cardinality and to

place several spikes at very close locations. We used Donoho’s homotopy implementation [3, 39] and

found that it requires many iterations: homotopy runs during 200 iterations before reaching a support of

cardinality 18 when processing the data of Fig. 1 (we recall that homotopy starts from the empty set

and performs a single support replacement per iteration). The performance ofℓ1 regression fluctuates

around that of OMP depending on the trials and the sparsity level. Regarding IRℓ1, we used the Adaptive

LASSO implementation from Zou [40] since it is dedicated to the minimization ofJ (x;λ). We stopped

the algorithm when two successiveℓ1 iterates share the same support. For the simulation of Fig. 1, IRℓ1

and SBR yield comparable results in that one algorithm does not outperform the other for allλ values,

but IRℓ1 generally performs slightly better (Fig. 2). We designed other simulations in which the nonzero

weightsx⋆
i are spread over a wider interval. In this case, SBR most oftenyields the best approximations.

Fig. 2 is representative of the empirical results obtained while performing many trials. Obviously, the

figure may significantly change depending on several factorsamong which theλ-value and the tuning

parameters of IRℓ1. The goal is definitely not to conclude that an algorithmalwaysoutperforms the others

but rather to sketch a classification of groups of algorithmsaccording to the trade-off between accuracy

and computation time.

VI. JOINT DETECTION OF DISCONTINUITIES AT DIFFERENT ORDERS IN A SIGNAL

We now consider another challenging problem: the joint detection of discontinuities at different orders

in a signal [41, 42]. We process both simulated and real data and compare the performance of SBR with

respect to OMP, Bayesian OMP (BOMP) which is an OMP based forward-backward algorithm [23],

OLS, ℓ1 regression [3], and IRℓ1 [5, 7, 40]. Firstly, we formulate the detection of discontinuities at a

single order as a spline approximation problem. Then, we take advantage of this formulation to introduce

the joint detection problem.
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Fig. 3. Signalsap
i related to thepth order discontinuities at locationi. a0

i is the Heaviside step function,a1
i is the ramp

function, anda2
i is the one-sided quadratic function. Each signal is equal to1 at locationi and its support is equal to{i, . . . , m}.

A. Approximation of a spline of degreep

Following [41], we introduce the dictionaryAp of size m × (m − p) formed of shifted versions of

the one-sided power functionk 7→ [max(k, 0)]p for all possible shifts (see Fig. 3) and we address the

sparse approximation ofy by the piecewise polynomialApxp (actually, we impose as initial condition

that the spline function is equal to 0 fork 6 0). It consists in the detection of the discontinuity locations

(also referred to as knots in the spline approximation literature) and the estimation of their amplitudes:

xp
i codes for the amplitude of a jump at locationi (p = 0), the change of slope at locationi (p = 1),

etc. Here, the notion of sparsity is related to the number of discontinuity locations.

B. Piecewise polynomial approximation

We formulate the joint detection of discontinuities of orders p = 0, . . . , P by appending the elementary

dictionariesAp in a global dictionaryA = [A0, . . . ,AP ]. The productAx yields a sum of piecewise

polynomials of degree lower thanP with a limited number of pieces. The dictionaryA is overcomplete

since it is of sizem × s, with s = (P + 1)(m − P/2) > m for P > 1. Moreover, any column

a
p
i of Ap overlapsall other columnsaq

j because their respective supports are the intervals{i, . . . ,m}

and {j, . . . ,m}. The discontinuity detection problem is difficult as most algorithms are very likely to

position wrong discontinuities in their first iterations. For example, when approximating a signal with two
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discontinuities at distinct locationsi andj, greedy algorithms start to position a first (wrong) discontinuity

in betweeni andj, and forward greedy algorithms cannot remove it.

C. Adaptation of SBR

The above defined dictionary does not satisfy the unique representation property. Indeed, it is easy to

check that the difference between two discrete ramps at locations i andi+1 yields the discrete Heaviside

function at locationi: a1
i − a1

i+1 = a0
i . We thus need to slightly modify SBR in order to ensure that

only full rank matricesAQ are explored. The modification is based on the following proposition which

gives a sufficient condition for full rankness ofAQ.

Proposition 2 Let ni denote the number of columnsa
p
i , p ∈ {0, . . . , P} which are active for samplei.

Let us define the binary conditionC(i):

• if ni = 0, C(i) , 1;

• if ni > 1, C(i) ,
{
ni+j = 0, j = 1, . . . , ni − 1

}

If Q satisfies∀i, C(i) = 1, thenAQ is full rank.

Proposition 2 is proved in Appendix D. Basically, it states that we can allow several discontinuities to be

active at the same locationi, but then, the next samplesi+1, . . . , i+ni−1 must not host any discontinuity.

This condition ensures that there are at mostni discontinuities in the interval{i, . . . , i+ni−1} of length

ni. The SBR adaptation consists in testing an insertion only when the new supportQ′ = Q ∪ {(i, p)}

satisfies the above condition.

D. Numerical simulations

We first setP = 1 leading to the piecewise affine approximation problem. The noise-free datay = Ax⋆

of Fig. 4(a) are of sizem = 1000 with ‖x⋆‖0 = 18 discontinuities. According to Remark 2, we compute

the valueλmax above which the SBR output is the empty set, and we run SBR withλj = λmax 10−j/2

for j = 0, . . . , 20. For the leastλ-value, SBR yields an exact recovery (see Fig. 4(a)). For comparison

purpose, we also run 27 iterations of OMP and OLS. The “ℓ2-ℓ0” curves represented on Fig. 4(b) express

the squared residual‖y − Ax‖2 versus the cardinality‖x‖0 for each algorithm (we plot the first 27

iterates of OMP and OLS and for allj, we plot the output of SBR(λj) after full convergence of SBR).

Whatever the cardinality, SBR yields the least residual. For noisy data, the “ℓ2-ℓ0” curve corresponding

to SBR still lays below the OMP and OLS curves for most cardinalities. In the next paragraph, we also

consider the Bayesian OMP,ℓ1 regression, and IRℓ1 algorithms for further comparisons.
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(c) Noisy data (SNR = 20 dB) and SBR approximation (d) “ℓ2-ℓ0” curves (noisy data)

Fig. 4. Joint detection of discontinuities of orders 0 and 1.The dictionary is of size1000× 1999 and the data signal includes

18 discontinuities. The true and estimated discontinuity locations are represented with unfilled black and filled gray labels. The

shape of the labels (circular or triangular) indicates the discontinuity order. The dashed gray and solid black curves represent the

data signaly and its approximationAx for the leastλ-value. (a) Approximation from noise-free data. The recovery is exact.

(b) “ℓ2-ℓ0” curves showing the squared residual versus the cardinality for the SBR, OLS, and OMP solutions. (c,d) Similar

results for noisy data (SNR = 20 dB).

E. AFM data processing

In Atomic Force Microscopy (AFM), a force curve measures theinteratomic forces exerting between a

probe associated to a cantilever and a nano-object. Specifically, the recorded signalz 7→ y(z) shows the

force evolution versus the probe-sample distancez, expressed in nanometers. Researching discontinuities

(location, order, and amplitude) in a force curve is a challenging task because they are used to provide

a precise characterization of the physico-chemical properties of the nano-object (topography, energy of

adhesion,etc.) [43].

The data displayed on Fig. 5(a) are related to a bacterial cell Shewanella putrefacienslaying in aqueous

solution, interacting with the tip of the AFM probe [44]. A retraction force curve is recorded by positioning

the tip in contact with the bacterial cell, and then gradually retracting the tip from the sample until it
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Fig. 5. Joint detection of discontinuities of orders 0, 1, and 2 (problem of size2167 × 6498). (a) Experimental AFM data

showing the force evolution versus the probe-sample distance z. (b) Squared residual versus cardinality for the SBR, OLS,

and OMP solutions. (c) Time of reconstruction versus cardinality.

loses contact. In the retraction curve shown on Fig. 5(a), three regions of interest can be distinguished

from right to left. The linear region on the right characterizes the rigid contact between the probe and

the sample. It describes the mechanical interactions of thecantilever and the sample. The rigid contact is

maintained untilz ≈ −2840 nm. The interactions occurring in the intervalz ∈ [−3050,−2840] nm are

adhesion forces during the tip retraction. In the flat part onthe left, no interaction occurs as the cantilever

has lost contact with the sample.

We search for the discontinuities of orders 0, 1, and 2. Similar to the processing of simulated data, we

run SBR with 14λ-values and we run OLS and OMP until iteration 41. For each algorithm, we plot the

“ℓ2-ℓ0” curve and the curve displaying the time of reconstruction versus the cardinality (Figs. 5(b,c)).

These figures show that the performance of SBR is at least equal and sometimes better than that of OLS.

Both algorithms yield results that are far more accurate than OMP at the price of a larger computation

time.

Fig. 6 displays the approximations yielded by the three algorithms together with the BOMP,ℓ1, and

IRℓ1 approximations. For the largest valueλ1, SBR runs during 6 iterations (4 insertions and 2 removals)

yielding a support of cardinality 2. SBR performs better than other algorithms (Figs. 6(a-f)). Although
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Fig. 6. AFM data processing: joint detection of discontinuities at orders 0, 1, and 2. The estimated discontinuitiesx are

represented with vertical spikes and with a label indicating the discontinuity order. (a) SBR output of cardinality 2: 4insertions

and 2 removals have been done (λ1 = 120). (b-f) OLS and OMP outputs after 2 iterations, BOMP and IRℓ1 [40] outputs for

λ = λ1, homotopy iterate (LASSO) leading to the minimal value ofJ (x; λ1). (g-l) Same simulation with a lowerλ-value

(λ2 = 8.5). The SBR output is of cardinality 5 (7 insertions and 2 removals).

IRℓ1 yields the most accurate approximation, it relies on 4 dictionary columns leading to a larger value of

J (x;λ1). We observed the same behavior for the lowest valueλ2 (subfigures (g-l)). Again, SBR yields

the least value ofJ (x;λ2) among all algorithms. Moreover, SBR provides a very preciselocalization of

both first order discontinuities (subfigure (a)) which are crucial information for the physical interpretation

of the data. On the contrary, all other algorithms fail for the highest sparsity level, and some do not

even succeed for the lowest. Specifically, OLS accurately locates both first order discontinuities when

5 iterations have been performed (the desired discontinuities are the first and the last ones among the

5) while OMP fails even after 5 iterations. LASSO and BOMP yield very poor approximations for the
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highest sparsity level and approximations with many dictionary columns for the lowest sparsity level. In

terms of value of the cost functionJ (x;λ), BOMP and LASSO fluctuate around OMP but they are far

outperformed by OLS, SBR, and IRℓ1.

VII. C ONCLUSION

A. Discussion

We performed comparisons for two problems involving highlycorrelated dictionary columns. SBR is

at least as accurate as OLS and sometimes more accurate, witha slightly larger cost of computation.

We also considered sparse algorithms that are slower than OLS. SBR was found to be very competitive

in terms of trade-off between accuracy and computation time. Although OLS based forward-backward

algorithms yield a relatively large computational cost periteration, we have noticed that for correlated

dictionaries, the number of SBR iterations (i.e., of elementary modifications of the support) is much

lower than the number of support modifications performed by several other algorithms. Typically, IHT

and IRℓ1 can often be more expensive than SBR. Additionally, SBR terminates within a finite number

of iterations, thus it does not require to tune any empiricalstopping parameter. The limitation of SBR in

terms of speed arises when the dictionaryA is unstructured and the size ofA is too large to storeAtA.

The inner productsat
iaj must then be recomputed for each iteration, which is relatively burdensome.

In the recent literature, it is often acknowledged that the cost functionJ (x;λ) has a large number

of local minimizers therefore discouraging its direct optimization [5, 7]. Many authors thus choose to

minimize an approximate cost function in which theℓ0 norm|xi|0 is replaced with a nonconvex continuous

functionϕ(xi). However, when the range of values of the (expected) nonzeroamplitudesxi 6= 0 is wide,

it is difficult to find a good approximationϕ(xi) of |xi|0 for all xi. Selecting an appropriateϕ function

generally relies on the introduction of a degree of freedom whose tuning is not obvious [5, 6]. For instance,

the IRℓ1 algorithm can be interpreted as an approximateℓ2-ℓ0 minimization method where theℓ0 norm

is replaced withϕ(xi; ε) = log(|xi| + ε) [5, 7]. The parameterε controls the “degree of nonconvexity”

of the surrogate functionϕ (2).

AlthoughJ (x;λ) has a large number of local minima, we have found that SBR is often as accurate

as algorithms based on the nonconvex approximation ofJ . Moreover, SBR is simple to use. The good

behavior of SBR is somehow related to the result of Proposition 1 which states that any SBR iterate is

2In the comparisons with SBR, we setε = 0 following [40].
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almost surely a local minimizer ofJ . We conclude that SBR is actually capable to “skip” local minima

with a large costJ (x;λ).

B. Perspectives

In the proposed approach, the main difficulty relies in the choice of theλ-value. If a specific cardinality

or approximation residual is desired, one can resort to a trial and error procedure in which a number

of λ-values are tried until the desired approximation level is found. In [45], we sketched a continuation

version in which a series of SBR solutions are computed for decreasing levels of sparsityλ, and the

λ-values are recursively computed. This continuation version is showing promising results and will be

the subject of a future extended contribution. A similar perspective was actually proposed by Zhang to

generalize his FoBa algorithm in a path-following algorithm (see the discussion section in [22]).

Another important perspective is to investigate whether SBR can guarantee exact recovery in the

noise-free case under some conditions on matrixA and on the unknown sparse signalx⋆. According

to Remark 1, we will study the behavior of SBR whenλ → 0. In the simulations done in Sections V

and VI, we observed that SBR is able to perform exact recoveries provided thatλ is sufficiently small.

This promising result is a first step towards a more general theoretical study.

APPENDIX A

DETAILED DEVELOPMENT OF LIMIT BG SIGNAL RESTORATION

Consider the Bernoulli-Gaussian modelx = (q, r) introduced in Section II-B and the joint MAP

formulation (3) involving the cost functionL(q, r). Givenq, let us splitr into two subvectorsu andt

indexed by the null and non-null entries ofq, respectively. Since‖r‖2 = ‖t‖2 andA∆qr = AQt do not

depend onu, we haveminuL(q, t,u) = L(q, t,0). Thus, the joint MAP estimation problem reduces to

the minimization ofL(q, t,0) w.r.t. (q, t). In the limit caseσ2
x → ∞, this problem rereads:

min
q,t

{L(q, t,0) = ‖y − AQt‖2 + λ‖q‖0}. (9)

The equivalence between (9) and (4) directly follows from the change of variablex = {q, t} whereq

andt are the support and non-zero amplitudes ofx.

APPENDIX B

PROOF OFREMARK 1

The proof of the result stated in Remark 1 is based on the two following lemmas.
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Lemma 1 For λ > 0, any minimizer ofJ (x;λ) takes the formxQ with Card[Q] 6 min(m,n).

Proof of lemma: According to the URP assumption, anymin(m,n) columns of A yield an

unconstrained minimizer of‖y −Ax‖2. Let xLS be such minimizer, with‖xLS‖0 6 min(m,n), and let

u be a minimizer ofJ (x;λ). J (u;λ) 6 J (xLS;λ) implies that‖u‖0 6 ‖xLS‖0 +(E(xLS)−E(u))/λ 6

‖xLS‖0 6 min(m,n).

We denote byQ the support ofu. The related least-square solutionxQ obviously satisfiesE(xQ) 6

E(u) and ‖xQ‖0 6 Card[Q] = ‖u‖0, thusJ (xQ;λ) 6 J (u;λ). Sinceu is a minimizer ofJ (x;λ),

we haveJ (xQ;λ) = J (u;λ) henceE(xQ) = E(u). Because of the URP assumption, the least-squares

minimizer overQ is unique, thusu = xQ.

Lemma 2 There existsλmin > 0 such that for0 < λ 6 λmin, the minimizers ofJ (x;λ) are unconstrained

minimizers of‖y − Ax‖2.

Proof of lemma: Whenλ tends towards 0, we have for allQ, J (xQ;λ) = EQ + λ‖xQ‖0 → EQ.

In particular,J (xQLS;λ) → EQLS with xQLS an unconstrained minimizer of‖y − Ax‖2 yielded by a

subsetQLS of cardinalitymin(m,n). Because the number of possible subsetsQ is finite and for allQ,

EQ > EQLS, there existsλmin > 0 such that for0 < λ 6 λmin, the subsetsQ⋆ minimizing J (xQ;λ)

satisfyEQ⋆ = EQLS. Consequently, the minimizers ofJ (x;λ) are unconstrained least-squares solutions

according to Lemma 1.

Proof of Remark 1: The proof directly follows from the application of Lemma 2. We denote by

Xλ the set of minimizers ofJ (x;λ).

In the undercomplete case, there is a unique unconstrained least-square minimizerxLS. Thus,Xλ =

{xLS} for 0 6 λ 6 λmin.

In the overcomplete case, we denote byX ⋆ the set of sparsest solutions toy = Ax. To show that

Xλ = X ⋆ for 0 < λ 6 λmin, we considerx ∈ X ⋆ andx′ ∈ Xλ. According to Lemma 2,x′ satisfiesy =

Ax′, thenJ (x′;λ) = λ‖x′‖0. By definition ofX ⋆, we havey = Ax andJ (x;λ) = λ‖x‖0 6 J (x′;λ).

Becausex′ ∈ Xλ is a minimizer ofJ , we deduce that‖x′‖0 = ‖x‖0, thenx′ ∈ X ⋆ andx ∈ Xλ. We

have proved thatXλ = X ⋆ for 0 < λ 6 λmin.

APPENDIX C

UPDATE OF THECHOLESKY FACTORIZATION

At each SBR iteration,n linear systems of the formtQ , G−1
Q At

Qy must be solved, the corresponding

squared errors readingEQ = ‖y − AQtQ‖
2 = ‖y‖2 − ytAQtQ. Using the Cholesky factorization
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GQ = LQLt
Q, tQ rereadstQ = L−t

Q L−1
Q At

Qy, thus

EQ = ‖y‖2 − ‖L−1
Q At

Qy‖2. (10)

Insertion of a new column after the existing columns:Including a new column leads toAQ′ = [AQ,ai].

Thus, the new Gram matrix reads as a2 × 2 block matrix:

GQ′ =


 GQ At

Qai

(At
Qai)

t ‖ai‖
2




and the Cholesky factor ofGQ′ can be straightforwardly updated:

LQ′ =


 LQ 0

ltQ,i

√
‖ai‖2 − ‖lQ,i‖2


 (11)

with lQ,i = L−1
Q At

Qai. The update (8) ofJQ(λ) = EQ + λCard[Q] directly follows from (10) and (11).

Removal of an arbitrary column:When removing a columnai, updatingLQ remains possible although

more complex. This idea was developed by Geet al. [46] who update the Cholesky factorization of matrix

G−1
Q . We adapt it to the direct (simpler) factorization ofGQ. Let I be the position ofai in AQ (with

1 6 I 6 Card[Q]). LQ can be written in a block matrix form:

LQ =




Λ 0 0

bt d 0

C e F


 (12)

where the lowercase characters refer to the scalar (d) and vector quantities (b, e) appearing in theIth

row and in theIth column. The computation ofGQ = LQLt
Q and the removal of theIth row and the

Ith column inGQ lead to

GQ′ =


 Λ 0

C F





 Λ

t Ct

0 F t


 +


 0

e


 [

0 et
]
.

By identification withGQ′ = LQ′Lt
Q′ and because the Cholesky factorization is unique,LQ′ necessarily

reads:

LQ′ =


 Λ 0

C X


 , (13)

whereX is a lower triangular matrix satisfyingXXt = F F t +eet. The problem of computingX from

F ande is classical; it is known as a positive rank 1 Cholesky updateand there exists a stable algorithm

in O(f2) operations, wheref = Card[Q] − I is the size ofF [36].
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APPENDIX D

PROOF OFPROPOSITION2

Let us first introduce some notations specific to the piecewise polynomial dictionary problem. Consider

a subsetQ of columnsap
i and leti− = min{i |ni > 0} denote the lowest location of an active entry (we

recall thatni denotes the number of active columns for samplei). Up to a reordering of the columns

of AQ, AQ rereadsAQ = [Ai− , Ãi− ] whereAi− gathers theni− active columnsap
i such thati = i−

andÃi− gathers the remaining active columns (withi > i−). The following lemma is a key element to

prove Proposition 2.

Lemma 3 Assume thatQ satisfies the condition of Proposition 2. If̃Ai− is full rank, thenAQ is full

rank.

Proof: Let I = ni− denote the number of discontinuities at locationi− and let0 6 p1 < p2 < . . . <

pI denote their orders, sorted in the ascending order. Supposethat there exist two families of scalars

{µp1

i− , . . . , µpI

i−} and{µp
i | i 6= i− andi is active at orderp} such that

I∑

j=1

µ
pj

i− a
pj

i− +
∑

i6=i−

∑

p

µp
i a

p
i = 0. (14)

Let us show that allµ-values are then equal to 0.

Rewriting the firstI nonzero equations in this system and becauseQ satisfies the condition of

Proposition 2, we have, for allk ∈ {i−, . . . , i− + I − 1},
∑I

j=1 µ
pj

i− (k + i− − 1)pj = 0. Hence, the

polynomialF (X) =
∑I

j=1 µ
pj

i− Xpj hasI positive roots. Because any non-zero polynomial formed ofI

monomials of different degree has at mostI −1 positive roots [47, p. 76],F is the zero polynomial, thus

all scalarsµpj

i− are 0. We deduce from (14) and from the full rankness ofÃi− that µp
i = 0 for all (i, p).

We have shown that the column vectors ofAQ are linearly independent,i.e., that AQ is full rank.

The proof of Proposition 2 directly results from the recursive application of Lemma 3. Starting from the

empty set, all the indices, sorted by decreasing order, are successively included.
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