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From Bernoulli-Gaussian deconvolution to

sparse signal restoration
Charles Soussen⋆, Jérôme Idier,Member, IEEE,David Brie, and Junbo Duan

Abstract

Formulated as a least-square problem under anℓ0 constraint, sparse signal restoration is a discrete

optimization problem, known to be NP complete. Classical algorithms include, by increasing cost and

efficiency, Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), Orthogonal Least Squares (OLS)

and the exhaustive search algorithm. In inverse problems involving highly correlated dictionaries, OMP

and OLS are not guaranteed to find the optimal solution. It is of interest to develop slightly slower sub-

optimal search algorithms yielding better approximations. We revisit the Single Most Likely Replacement

(SMLR) algorithm, developed in the mid-80’s for Bernoulli-Gaussian signal restoration. We show that

the formulation of sparse signal restoration as a limit caseof Bernoulli-Gaussian signal restoration

leads to anℓ0-penalized least-square minimization problem, to which SMLR can be straightforwardly

adapted. The resulting algorithm, called Single Best Replacement (SBR), can be interpreted as a forward-

backward extension of OLS. A fast and stable implementationis proposed. The approach is illustrated on

a deconvolution problem with a Gaussian impulse response and on the joint detection of discontinuities

at different orders in a signal.

Index Terms

Sparse signal estimation; inverse problems; Bernoulli-Gaussian signal restoration; SMLR algorithm;

mixed ℓ2-ℓ0 criterion minimization; Orthogonal Least Squares; forward-backward greedy algorithms.

C. Soussen, D. Brie, and J. Duan are with the Centre de Recherche en Automatique de Nancy (CRAN, UMR 7039, Nancy-

University, CNRS). Boulevard des Aiguillettes, B.P. 70239, F-54506 Vandœuvre-lès-Nancy, France. Tel: (+33)-3 83 6844 71,

Fax: (+33)-3 83 68 44 62. E-mail:{FirstName.SecondName}@cran.uhp-nancy.fr.

J. Idier is with the Institut de Recherche en Communicationset Cybernétique de Nantes (IRCCyN, UMR CNRS 6597),
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I. INTRODUCTION

Sparse signal restoration arises in inverse problems such as Fourier synthesis, mono- and multidimen-

sional deconvolution, and statistical regression. It consists in the decomposition of a given signaly as a

linear combination of a limited number of elements from a dictionary A. While formally very similar,

sparse signal restoration has to be distinguished from sparse signal approximation. The main difference

is that in sparse signal restoration, the choice of the dictionary is imposed by the inverse problem at

hand whereas in sparse signal approximation, the dictionary has to be chosen according to its ability to

represent the data with a limited number of coefficients. A more subtle difference is that in sparse signal

restoration, the focus is set on the estimation of the weights of the linear combination while in sparse

signal approximation, the goal is to reproduce the datay as well as possible at a given level of sparsity.

Sparse signal restoration can be formulated as the minimization of a least-square cost function of the

form E(x) = ‖y − Ax‖2 under the constraint that theℓ0 pseudo-norm ofx, defined as the number

of non-zero entries inx, is lower than a given numberk. This problem is often referred to assubset

selection, because imposing the sparsity constraint consists in selecting a subset of columns ofA. This

yields a discrete problem (since there are a finite number of possible subsets) which is known to be

NP-complete [1]. In this paper, we focus on “difficult” problems in which some of the columns ofA

are highly correlated, the unknown weight vectorx⋆ is only approximately sparse, and/or the data are

noisy. Hereafter, we distinguish two approaches to addressthe subset selection problem in a fast and

sub-optimal manner and we discuss their relevance for difficult problems.

The first approach, which has been the most popular in the lastdecade, approximates the subset

selection problem by a continuous optimization problem, convex or not, that is easier to solve [2–5]. In

particular, the approach that replaces theℓ0-norm by theℓ1-norm [4, 5] has been increasingly investigated,

leading to the LASSO optimization problem. Its popularity relies on efficient algorithms, such as LARS

which finds the set of solutions for all degrees of sparsity [6]. Several authors have provided sufficient

conditions under which theℓ0- and ℓ1-constrained least-square problems lead to solutions having the

same support [5, 7]. These conditions typically state that the unknown weight signal has to be highly

sparse, that the correlation between any pair of columns ofA must be sufficiently small, and that the

noise level must be low. They are often not satisfied when dealing with real data.

The second approach addresses theexact subset selection problem using either thresholding algo-

rithms [8, 9] or greedy search algorithms. The latter gradually increase or decrease by one the set of

active columns. The simplest greedy algorithms are Matching Pursuit (MP) [10] and the improved version
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Orthogonal Matching Pursuit (OMP) [11]. Both are referred to as forward greedy algorithms, since they

start from an empty active set and then gradually increase itby one element. In contrast, the backward

algorithm of Couvreur and Bresler [12] starts from a complete active set which is gradually decreased

by one element. It is, however, only valid if the dictionary is not overcomplete. A few authors have

introduced forward-backward algorithms in which insertions and removals of dictionary elements into

the active set are both allowed [13, 14]. This strategy yields better recovery performance since an early

wrong selection can be counteracted by its further removal from the active set. In contrast, the insertion

of a wrong element is irreversible when using forward algorithms.

The choice of the algorithm depends on the amount of time available and on the structure of matrixA.

In favorable cases, the sub-optimal search algorithms described above (belonging to the first or the second

approach) provide solutions having the same support as the exhaustive search solution. For example, if the

unknown signalx⋆ is highly sparse and if the correlation between any pair of columns ofA is low, the

ℓ1-norm approximation provides optimal solutions [5, 7]. In other cases, however, the only guarantee to

recover the optimal solution is to use the exhaustive searchalgorithm. When fast sub-optimal algorithms

lead to unsatisfactory results, it is of great interest to develop slower sub-optimal algorithms providing

more accurate solutions, but remaining very fast compared to the exhaustive search. The Orthogonal Least

Squares algorithm (OLS) [15] which is sometimes confused with OMP [16], falls into this category. Both

OLS and OMP share the same structure, the difference being that at each iteration, OLS solves a large

number of least-square problems (n−k, wherek is the cardinal of the current active set) while OMP only

computes then − k inner products between the current residualy − Ax and the candidate columnsai

and chooses the column yielding the maximal inner product. OMP solves only one least-square problem

per iteration, once the column to be inserted is selected (inorder to update all the active weights). In the

following, we propose a forward-backward extension of OLS allowing an insertion or a removal at each

iteration, each iteration requiring to solven least-square problems. It differs from the FoBa algorithm of

Zhang [14] which is an OMP forward-backward extension. It iscloser to the bidirectional OLS based

algorithm of Haugland [13], the main differences relying onthe search and implementation strategies.

The starting point of our forward-backward algorithm is theSingle Most Likely Replacement (SMLR)

algorithm, which proved to be a very efficient tool for the deconvolution of a sparse signal modeled as a

Bernoulli-Gaussian process [17–20]. This approach relieson a Bayesian formulation of a deconvolution

problem of the formy = Ax + n (whereA denotes the convolution matrix) and on the maximuma

posteriori (MAP) estimation of the sparse signal. The Bernoulli-Gaussian model is a probabilistic model

for sparse signals, in which (binary) Bernoulli random variables are associated to the position of the
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non zero entries inx while the corresponding amplitudes are distributed according to an independent

identically distributed (i.i.d.) centered Gaussian distribution of varianceσ2
x. SMLR is a deterministic

ascent algorithm which maximizes the posterior likelihoodin a sub-optimal manner. It consists in updates

(increase or decrease) of the support ofx by one element and the subsequent estimation of the non-zero

amplitudes. Sparse signal restoration can be seen as a limitcase of Bernoulli-Gaussian MAP restoration

in which the varianceσ2
x of the amplitudes is set to infinity. We will deduce an adaptation of SMLR to

subset selection relying on a single insertion or a single removal of a column into/from the active set.

The paper is organized as follows. In Section II, we introduce the Bernoulli-Gaussian model and

the Bayesian framework from which we formulate the sparse signal restoration problem. In Section III,

we adapt the SMLR algorithm resulting in the so-called Single Best Replacement (SBR) algorithm. In

Section IV, a fast and stable SBR implementation is proposed, based on the efficient update of the

squared error when the active set is modified by one element. Finally, Sections V and VI illustrate the

method on the sparse spike deconvolution with a Gaussian impulse response and on the joint detection

of discontinuities at different orders in a signal.

II. FROM BERNOULLI-GAUSSIAN SIGNAL MODELING TO SPARSE SIGNAL REPRESENTATION

We consider the restoration of a sparse signalx from a linear observationy = Ax + n, wheren

stands for the observation noise. An acknowledged probabilistic model dedicated to sparse signals is the

Bernoulli-Gaussian (BG) model [17, 18, 20]. For such model,deterministic optimization algorithms [20]

and Markov chain Monte Carlo techniques [21] are used to compute the MAP and the posterior mean,

respectively. We first recall the known BG models and the formulation of BG signal restoration in the

Bayesian framework. Then, we extend this formulation to a more general representation of sparse signals.

A. Preliminary definitions and working assumptions

Given an observation vectory ∈ Rm and a dictionaryA = [a1, . . . ,an] ∈ Rm×n, a subset selection

algorithm aims at computing a weight vectorx ∈ Rn yielding an accurate approximationy ≈ Ax of

the observation. The columnsai of A whose indices correspond to the non-zero componentsxi of x

are referred to as the active (or selected) columns.

Throughout this paper, no assumption is made on the size ofA: m can be either smaller or larger than

n. Here,A is assumed to satisfy the unique representation property (URP). This assumption is usual

in the casem 6 n [22]. It is a stronger assumption than the full rank assumption. We now recall this

definition and extend it to the case wherem > n. Notation‖·‖ refers to the Euclidean norm.
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Definition 1 Whenm 6 n, A satisfies the URP if and only if any selection ofm columns ofA forms

a family of linearly independent vectors. Whenm > n, A satisfies the URP if and only if it is full rank.

Before going further, let us mention that this assumption can be relaxed providing that the search strategy

can guarantee that the selected columns ofA result in a full rank matrix (see Section VI-C for details).

Under the URP assumption, whenm 6 n, the systemy = Ax has a number of solutions whose

ℓ0-norm are lower or equal tom since any selection ofm columns yields a solution of the system. When

m > n, there is generally no solution toy = Ax but the least-square estimatorx = (AtA)−1Aty is

unique, although not necessarily sparse.

Definition 2 The support of a vectorx ∈ Rn is the setS(x) ⊆ {1, . . . , n} defined byi ∈ S(x) if and

only if xi 6= 0.

Definition 3 We denote byQ ⊆ {1, . . . , n} the active set and we define the related vectorq ∈ {0, 1}n

by qi = 1 if and only if i ∈ Q. Let AQ be the submatrix of sizem × Card [Q] formed of the active

columns ofA (ai, i ∈ Q). The observation modely = Ax + n also readsy = AQt + n, where the

reduced vectort of sizeCard [Q] gathers the values{xi, i ∈ Q}.

Definition 4 For all Q ⊆ {1, . . . , n} such thatCard [Q] 6 min(m,n), let xQ be the least-square

solution and letEQ be the associated squared error:

xQ , arg min
S(x)⊆Q

{E(x) = ‖y − Ax‖2} (1)

EQ , E(xQ) = ‖y − AxQ‖
2. (2)

B. Bernoulli-Gaussian models

A BG process1 x can be defined by means of a Bernoulli random vectorq ∈ {0, 1}n corresponding to

the active set, and a Gaussian random vectorr ∼ N (0, σ2
xIn), whereIn stands for the identity matrix of

sizen×n. Each samplexi of x is modeled asxi = qiri [17, 18]. Thus,ri code for the amplitudes of the

nonzero entries inx. In the vector form,x readsx = ∆qr where∆q is the diagonal matrix of sizen×n

whose diagonal elements are equal toqi. The Bernoulli random variablesqi code for the presence (qi = 1)

or absence (qi = 0) of signal at locationi, the Bernoulli parameterρ = Pr(qi = 1) being the probability

1For convenience, we use the same notations for random vectors and their realization.
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of presence of signal. It is easy to check that the prior likelihood of q readsl(q) = ρ‖q‖0(1 − ρ)n−‖q‖0 .

Becauseq andr are independent random vectors, the prior likelihood ofx = (q, r) reads:

l(q, r) = l(r) l(q) = g(r;σ2
xIn) ρ‖q‖0(1 − ρ)n−‖q‖0 , (3)

whereg(. ; Γ) denotes the probability density of the centered Gaussian with covariance matrixΓ.

C. Bayesian formulation of sparse signal restoration

The Bayesian formulation of the inverse problemy = Ax+ n consists in inferring the distribution of

x = (q, r) knowingy. The MAP estimator ofx can be obtained by maximizing the marginal distribution

l(q |y) [20] or the joint distributionl(q, r |y) [18, 19]. Following [18], we focus on the joint likelihood

l(q, r |y) which leads to a cost function involving the squared error‖y − Ax‖2 and theℓ0-norm of x.

Assuming a Gaussian white noisen ∼ N (0, σ2
nIm), independent fromx, it is easy to obtain

L(q, r) , −2σ2
n log[l(q, r |y)]

= ‖y − A∆qr‖2 +
σ2

n

σ2
x

‖r‖2 + λ‖q‖0 + C, (4)

whereλ = 2σ2
n log(1/ρ − 1) andC is a constant. Givenq, let us splitr into two subvectorsu and t

indexed by the null and non-null entries ofq, respectively. SinceA∆qr = AQt does not depend onu,

it is easy to check thatminuL(q, t,u) = L(q, t,0). Finally, the joint MAP estimation problem reduces

to the minimization ofL(q, t,0) w.r.t. (q, t).

D. Mixed ℓ2-ℓ0 minimization as a limit case

A signalx is sparse if some entriesxi are equal to 0. Since this definition does not impose constraints

on the range of values of the non zero amplitudes, we choose todescribe a sparse signal by a limit

Bernoulli-Gaussian model in which the amplitude varianceσ2
x is set to infinity. The minimization of

L(q, t,0) thus rereads:

min
q,t

{L(q, t,0) = ‖y − AQt‖2 + λ‖q‖0}. (5)

Theorem 1 The above formulation(5) is equivalent to:

min
x∈Rn

{J (x;λ) = ‖y − Ax‖2 + λ‖x‖0} (6)

which is referred to as theℓ0-penalized least-square problem. The term “equivalent” means that given

a minimizer(q, t) of (5), the related vectorx = {t,0} is a minimizer of (6), and conversely, given
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a minimizerx of (6), the vectorsq and t defined as the support ofx and its non-zero amplitudes,

respectively, are such that(q, t) is a minimizer of(5).

Proof: To prove the equivalence, we first prove thatminx J (x;λ) = minq,tL(q, t,0):

• Let x be a minimizer ofJ (. ;λ). We setq andt to the support and the non zero amplitudes ofx,

respectively. Obviously,J (x;λ) = L(q, t,0). It follows thatminx J (x;λ) > minq,tL(q, t,0).

• Let (q, t) be a minimizer ofL(q, t,0). The vectorx = {t,0} is such thatAx = AQt and‖x‖0 =

‖t‖0 6 ‖q‖0. Therefore,J (x;λ) 6 L(q, t,0). It follows thatminq,tL(q, t,0) > minx J (x;λ).

We have shown thatminx J (x;λ) = minq,tL(q, t,0), but also that the minimizers of both problems

coincide,i.e., are vectors describing identical signals.

In the following, we focus on the minimization problem (6) involving the penalization term‖x‖0. The

hyperparameterλ is fixed. It controls the level of sparsity of the desired solution. The algorithm that

will be developed is based on an efficient search of the support of x. In that respect, theℓ0-penalized

least-square problem does not drastically differ from theℓ0-constrained problemmin ‖y −Ax‖2 subject

to ‖x‖0 6 k.

III. A DAPTATION OF SMLR TO ℓ0-PENALIZED LEAST-SQUARE OPTIMIZATION

We propose to adapt the SMLR algorithm to the minimization ofthe mixedℓ2-ℓ0 cost functionJ (x;λ)

defined in (6). To clearly distinguish SMLR which specifically aims at minimizing (4), the adapted

algorithm will be termed as Single Best Replacement (SBR).

A. Principle of SMLR and main notations

The Single Most Likely Replacement algorithm [17] is a deterministic coordinatewise ascent algorithm

to maximize log-likelihood functions of the forml(q |y) (marginal MAP estimation) orl(q, t,0 |y) (joint

MAP estimation). In the latter case, it is easy to check from (4) that givenq, the maximizer ofl(q, t,0 |y)

w.r.t. t has a closed form expressiont = t(q). Consequently, the joint MAP estimation reduces to the

maximization ofl(q, t(q),0 |y) w.r.t. q. At each SMLR iteration, all the possible single replacements

of the supportq (set qi = 1 − qi while keeping the otherqj, j 6= i unchanged) are tested, then the

replacement yielding the maximal increase ofl(q, t(q),0 |y) is chosen. This task is repeated until no

single replacement can increasel(q, t(q),0 |y) anymore. The number of possible supportsq being finite

(2n) and SMLR being an ascent algorithm, it terminates after a finite number of iterations.

Before adapting SMLR, let us introduce some useful notations.

February 3, 2010 DRAFT



TECHNICAL REPORT 8

• We denote byQ • i a single replacement,i.e., the insertion or removal of an indexi into/from the

active setQ:

Q • i ,







Q∪ {i} if i /∈ Q,

Q\{i} otherwise.
(7)

• If Card [Q] 6 min(m,n), we define the cost functions:

JQ(λ) , J (xQ;λ) = EQ + λ‖xQ‖0 (8)

KQ(λ) , EQ + λCard [Q] (9)

where the least-square solutionxQ and the corresponding errorEQ have been defined in (1) and (2).

Obviously,JQ(λ) = KQ(λ) if and only if xQ has a support equal toQ. In subsection III-B, we introduce

a first version of SBR involvingJQ(λ) only, and in subsection III-C, we present an alternative (simpler)

version relying on the computation ofKQ(λ) instead ofJQ(λ) and we discuss in which extent both

versions differ. Then, subsection III-D describes the behavior of SBR and states its main properties.

B. The Single Best Replacement algorithm (first version)

SMLR can be seen as an exploration strategy for discrete optimization rather than an algorithm specific

to a posterior likelihood function. Here, we use the same strategy to minimize the cost functionJ (x;λ).

We rename the algorithm Single Best Replacement to remove any statistical connotation. The SBR

algorithm works as follows. At each iteration, then possible single replacementsQ • i (i = 1, . . . , n)

are tested, then the best is selected,i.e., the replacement yielding the maximal decrease ofJ (x;λ). This

task is repeated untilJ (x;λ) cannot decrease anymore. Let us detail an SBR iteration.

Consider the current active setQ. For each indexi, we compute the minimizerxQ•i of E whose support

is included inQ • i and we keep in memory the value ofJQ•i(λ). If the minimum of{JQ•i(λ), i =

1, . . . , n} is lower thanJQ(λ), then we select the index yielding this minimal value:

ℓ ∈ arg min
i∈{1,...,n}

JQ•i(λ). (10)

The next SBR iterate is thus defined asQ′ = Q • ℓ, yielding the vectorxQ′ .

Except when an initial support estimate (of cardinality lower thanmin(m,n)) is available, we suggest

to use an initial empty active set.

Remark 1 (Relationship between SBR and SMLR)We introduced SBR as the application of the SMLR

search strategy to theℓ0-penalized least square cost function(6) which is obtained by taking the limit of
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the cost function(4) whenσx tends towards infinity. Conversely, applying SMLR to(4) and then, taking

the limit of the SMLR formula whenσx tends to infinity also yields the SBR algorithm.

Actually, the main difference between SMLR and SBR is that SMLR (which can take several forms

depending on the use of the joint distributionl(q, r |y) or the marginal distributionl(q |y)) involves

the inversion of a matrix of the formAt
QAQ + αICard[Q] whereas SBR involves the inverse of the Gram

matrix At
QAQ. For this reason, instabilities may occur while using SBR whenAQ is ill conditioned. The

use of the termαICard[Q], which acts as a regularization on the amplitude values, avoids such instability

while using SMLR at the price of handling the additional hyperparameterα.

C. Modified version of SBR (final version)

We introduce a slight modification of SBR by replacing (10) with:

ℓ ∈ arg min
i∈{1,...,n}

KQ•i(λ). (11)

We propose this modification becauseKQ(λ) = EQ + λCard [Q] can be computed more efficiently than

JQ(λ), the computation ofxQ being no longer necessary. The use ofKQ(λ) makes the penalization

term very easy to update whenQ is modified by one element (add or removeλ), and the only necessary

update is that ofEQ. We now show that there is almost surely no difference between both versions of

SBR provided that the datay are corrupted with “non degenerate” noise.

Theorem 2 Let y = y0 + n, wherey0 is a given vector ofRm and n is a random vector. We assume

that n is an absolute continuous random vector, i.e., admitting a probability density w.r.t. the Lebesgue

measure. Then, whenCard [Q] 6 min(m,n), the probability that‖xQ‖0 < Card [Q] is equal to 0, i.e.,

‖xQ‖0 = Card [Q] almost surely.

Proof: Let k = Card [Q] and lettQ be the minimizer of‖y−AQt‖2 overRk. Obviously,‖xQ‖0 =

‖tQ‖0 6 k. Let VQ = (At
QAQ)−1At

Q be the matrix of sizek × m such thattQ = VQy. Denoting by

v1, . . . ,vk ∈ Rm the row vectors ofVQ, ‖tQ‖0 < k if and only if there existsi such that〈y,vi〉 = 0

(where〈. , .〉 denotes the inner product). BecauseAQ is full rank, VQ is full rank and then∀i, vi 6= 0.

Denoting byH⊥(vi) the hyperplane ofRm which is orthogonal tovi, we have

‖xQ‖0 < k ⇐⇒ y ∈
k

⋃

i=1

H⊥(vi). (12)

Because the set
⋃

i H
⊥(vi) has a Lebesgue measure equal to zero and the random vectory admits a

probability density, the probability of event (12) is zero,thus Pr(‖xQ‖0 < k) = 0.
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TABLE I

SBR ALGORITHM (FINAL VERSION). BY DEFAULT, THE INITIAL ACTIVE SET IS EMPTY: Q1 = ∅.

Input: A, y, λ and active setQ1 (Card [Q1] 6 min(m, n))

Step 1: Setj = 1.

Step 2: Fori ∈ {1, . . . , n}, computeKQj•i(λ).

Computeℓ using (11).

If KQj•ℓ(λ) < KQj
(λ),

SetQj+1 = Qj • ℓ.

else,

Terminate SBR.

End if.

Set j = j + 1 and go to Step 2.

Output: active setQj = SBR(Q1; λ)

Theorem 2 implies that when dealing with real noisy data, it is almost sure that no active component

xi is exactly equal to 0. Thus, the original and modified versions of SBR almost surely lead to exactly

the same iterates. Even in the noiseless case, an active component is rarely numerically evaluated to 0

due to the round-off errors. In all cases, the modified version of SBR can be applied without restriction

and the properties stated below (e.g.,termination after a finite number of iterations) remain valid even if

an SBR iterate satisfies‖xQ‖0 < Card [Q].

We adopt the modified version of SBR in the rest of the paper. Itis summarized in Table I.

D. Behavior and adaptations of SBR

Termination: SBR is a descent algorithm because the value ofKQ(λ) is always decreasing. Conse-

quently, a setQ cannot be explored twice and similarly to SMLR, SBR terminates after a finite number of

iterations. Notice that the size ofQ remains lower or equal tomin(m,n). Indeed, if a setQ of cardinality

min(m,n) is reached, thenEQ is equal to 0 due to the URP assumption. Hence, any replacement of

the formQ′ = Q ∪ {i} yields an increase of the cost function (KQ′(λ) = KQ(λ) + λ). We emphasize

that no stopping condition is needed unlike many algorithmswhich require to set a maximum number of

iterations (MP and variations, OLS) and/or a threshold on the squared error variation (CoSaMP, Iterative

Hard Thresholding).

February 3, 2010 DRAFT



TECHNICAL REPORT 11

Proposition 1 Under the assumptions of Theorem 2, each SBR iteratexQ is almost surely a local

minimizer ofJ (x;λ) and of theℓ0-constrained problemmin E(x) subject to‖x‖0 6 k, with k =

Card [Q]. This property holds in particular for the SBR output.

Proof: Let x = xQ be an SBR iterate. According to Theorem 2, the supportS(x) = Q almost

surely. Settingε = mini∈Q |xi| > 0, it is easy to check that ifx′ ∈ Rn satisfies‖x′ − x‖ < ε, then

∀i ∈ Q, x′
i 6= 0. Thus,‖x′ − x‖ < ε implies thatS(x′) ⊇ S(x) and then‖x′‖0 > k.

Now, let x′ satisfy‖x′ − x‖ < ε.

• If ‖x′‖0 = k, then necessarily,S(x′) = S(x) = Q. By definition of x = xQ, E(x′) > E(x). It

follows thatx is a local minimizer of theℓ0-constrained problem. Also,J (x′;λ) > J (x;λ) holds.

• If ‖x′‖0 > k, thenJ (x′;λ) = E(x′) + λ‖x′‖0 > E(x′) + λ(k + 1). By continuity ofE , there exists

a neighborhoodV(x) of x such that ifx′ ∈ V(x), |E(x′) − E(x)| < λ. Thus, if x′ ∈ V(x) and

‖x′ − x‖ < ε, J (x′;λ) > E(x) + λk = J (x;λ).

Finally, if x′ ∈ V(x) and‖x′ − x‖ < ε, thenJ (x′;λ) > J (x;λ).

OLS as a special case:Whenλ = 0, SBR coincides with the well known Orthogonal Least Squares

(OLS) algorithm [15, 23]. The removal operation never occurs, because it automatically leads to an

increase of the squared errorKQ(0) = EQ. Consequently, only insertions are worth being tested.

Empty solutions:We now characterize theλ-values for which SBR yields an empty solution.

Proposition 2 The output of SBR(∅;λ) is the empty set if and only ifλ > λmax, with λmax ,

maxi(〈ai,y〉
2/‖ai‖

2).

Proof: SBR stops during its first iteration if all the insertion trials fail: ∀i, E{i} + λ > E∅ = ‖y‖2.

Given i, ‖y − xiai‖
2 is minimal whenxi = 〈ai,y〉/‖ai‖

2, leading toE{i} = ‖y‖2 − 〈ai,y〉
2/‖ai‖

2.

Thus, SBR stops during its first iterationif and only if ∀i, λ > 〈ai,y〉
2/‖ai‖

2, i.e., λ > λmax.

This result allows us to design an automatic procedure whichsets a number ofλ-values adaptively to

the data in order to compute SBR solutions at different sparsity levels (see Section VI-D).

Reduced search:Instead of testing all the replacementsQ′ = Q • i at each SBR iteration, it is

advantageous, if possible, to explore only a subset of thesen replacements. We give two ideas to reduce

the number of tests: the first is an acceleration of SBR, yielding the same iterates with a reduced search.

The second idea is a modification of SBR.

Given an active setQ, a removalQ′ = Q\{i} yields an increase of the squared error and a decrease

of the penalty equal toλ. Hence, the maximum decrease of theℓ0-penalized cost function which can be
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expected with a removal isλ: KQ(λ) − KQ′(λ) 6 λ. Consequently, if a given insertionQ′ = Q ∪ {i}

is such asKQ(λ) − KQ′(λ) > λ, then no removal is worth being tested. The acceleration of SBR thus

consists in testing all the insertions first, and if the best insertion yields a decrease larger thanλ, selecting

the best insertion. Otherwise, all the removals have to be tested as stated in Table I. This acceleration

does not modify the SBR iterates. However, the gain is limited when the level of sparsity is high,i.e.,

when the number of removals to be tested is reduced.

Haugland and Zhang pointed out that in a forward-backward strategy, it can be helpful to favor

removals [13, 14]. Adapted to SBR, this idea leads to a modified algorithm in which removals are tested

first, and the insertions are tested only if no removal yieldsa decrease ofKQ(λ). If some removals

decreaseKQ(λ), then the removal yielding the maximal decrease is selected. In our experiments, the

average qualitative performance of SBR and this modified version are quite comparable (there is no

obvious gain or loss of quality nor a significant saving in computation time). Thus, in the following, we

keep the version of SBR presented in Table I.

IV. I MPLEMENTATION ISSUES

Given the current active setQ, an SBR iteration consists in computing the squared errorEQ′ for any

replacementQ′ = Q • i, leading to the computation ofKQ′(λ) = EQ′ + λCard [Q′]. We first describe a

basic implementation in whichEQ′ is computed independently of the knowledge ofEQ. Then, we present

an efficient implementation allowing a fast update whenQ is modified. We will denote byk , Card [Q]

the cardinality of the active set (k 6 min(m,n)).

A. Basic implementation

The minimization problem (1) reduces to the unconstrained minimization of‖y−AQt‖2 w.r.t. t ∈ Rk.

BecauseAQ is full rank, this problem has a unique minimizer that reads:

tQ , arg min
t

‖y − AQt‖2 = (At
QAQ)−1At

Qy (13)

and the minimal squared error reads:

EQ = ‖y − AQtQ‖
2 = ‖y‖2 − ytAQtQ. (14)

Finally, given the active setQ, an SBR iteration involves the computation oftQ′ andEQ′ for all possible

replacementsQ′ = Q • i, using (13) and (14).
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B. Recursive implementation

At each SBR iteration,n least-square problems of the form (13) must be solved, each requiring the

inversion of the Gram matrixGQ , At
QAQ of sizek × k. The computation cost can be high since in

the general case, a matrix inversion costsO(k3) scalar operations. Following an idea widely spread in

the subset selection literature, we propose to solve (13) ina recursive manner.

A first possibility is to use the Gram-Schmidt procedure [15,23] which yields an orthogonal decom-

position of AQ = WU , whereW is an m × k matrix with orthogonal columns andU is a k × k

upper triangular matrix. Although it yields an efficient updating strategy when including an index into

the active set (leading to the update ofAQ′ = [AQ,ai]), the Gram-Schmidt procedure does not extend

with the same level of efficiency when an index removal is considered [12].

An alternative is to use the block matrix inversion lemma [24] allowing an efficient update ofG−1
Q for

both index insertion and removal. An efficient SMLR implementation is proposed in [20], based on the

recursive update of matrices of the form(GQ + αIk)−1. This approach can easily be adapted to SBR

where the matrix to update isG−1
Q (see also [25] for the downdate step). However, we have observed

numerical instabilities when the selected columns ofA are highly correlated.

A more stable solution is based on the Cholesky factorization GQ = LQLt
Q, whereLQ is a lower

triangular matrix. UpdatingLQ is advantageous since it is better conditioned thanG−1
Q . This update can

be easily done in the insertion case [26]. It is less easy for removals, since they break the triangular

structure ofLQ. A recursive update of the Cholesky factor ofG−1
Q was recently proposed [27]. Here,

we introduce a simpler strategy relying on the factorization of GQ.

C. Efficient strategy based on the Cholesky factorization

First, we notice that a new columnai can be inserted at the last position inAQ∪{i} to compute the

value ofEQ∪{i}. On the contrary, when removing a column, we do not knowa priori the position of the

column to be removed, thus it cannot be assumed to be the last column of AQ. We will hence describe

the cases where:

• a non active elementi 6∈ Q is included after the other columns:AQ′ = [AQ,ai];

• an active elementi ∈ Q is to be removed, the columnai being in an arbitrary position.

GQ being a symmetric positive-definite matrix, it readsGQ = LQLt
Q where the Cholesky factorLQ

is a lower triangular matrix of sizek × k. Applying (13), the least-square minimizer rereadstQ =

L−t
Q L−1

Q At
Qy where the superscript−t refers to the inverse transposition operator, and (14) yields:

KQ(λ) = EQ(λ) + λk = ‖y‖2 − ‖L−1
Q At

Qy‖2 + λk. (15)

February 3, 2010 DRAFT



TECHNICAL REPORT 14

Given LQ, O(k2) scalar operations are required to solve the triangular system L−1
Q (At

Qy).

Insertion of a new column after the existing columns:Including a new column leads toAQ′ = [AQ,ai].

Thus, the new Gram matrix can be expressed as a2 × 2 block matrix:

GQ′ =





GQ At
Qai

(At
Qai)

t ‖ai‖
2



 (16)

and the Cholesky factor ofGQ′ can be straightforwardly updated:

LQ′ =





LQ 0

ltQ,i αQ,i



 , (17)

with lQ,i = L−1
Q At

Qai andαQ,i = (‖ai‖
2 − ‖lQ,i‖

2)1/2.

The computation ofKQ′(λ) using (15) requires two triangular system inversions (computation of lQ,i

and computation ofKQ′(λ)). However, by computing

KQ′(λ) −KQ(λ) = λ −
(

ltQ,iL
−1
Q At

Qy
)2

/α2
Q,i, (18)

the cost can be reduced up to the pre-computation ofL−1
Q (At

Qy) at the beginning of the SBR iteration.

The computation ofKQ′(λ) only requires one triangular system inversion (computation of lQ,i).

Removal of an arbitrary column:When removing a columnai, updatingLQ remains possible although

slightly more expensive. This idea was first developed by Geet al. [27] who update the Cholesky

factorization of matrixG−1
Q . We adapt it to the direct (simpler) factorization ofGQ. Let I be the index

such thatai is theI-th column ofAQ (with 1 6 I 6 k). LQ can be written in a block matrix form:

LQ =











A 0 0

bt d 0

C e F











, (19)

where the lowercase characters refer to the scalar (d) and vector quantities (b, e) which appear in the

I-th row and in theI-th column. The computation ofGQ = LQLt
Q and the removal of theI-th row and

the I-th column inGQ leads to

GQ′ =





A 0

C F









At Ct

0 F t



 +





0

e





[

0 et
]

. (20)

By identification of this expression with the Cholesky factorization GQ′ = LQ′Lt
Q′ and because the

Cholesky factorization is unique,LQ′ necessarily reads:

LQ′ =





A 0

C X



 , (21)
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TABLE II

EFFICIENT IMPLEMENTATION OF AN SBR ITERATION.

Input: Q, λ

Pre-computed quantities:Aty and‖ai‖
2 for all i

Stored quantities:KQ(λ), LQ, andL−1

Q
(At

Qy)

Setℓ = 0, least_cost = KQ(λ).

For i = 1 to n,

If i /∈ Q, /* Insertion test */

ComputelQ,i = L−1

Q
At

Qai andKQ′(λ) using (18).

else, /* Removal test */

Update the Cholesky decomposition:X = cholupdate(F ,e,+).

ComputeLQ′ andKQ′(λ) using (21) and (15).

End if.

If KQ′(λ) < least_cost,

Set ℓ = i, least_cost = KQ′(λ).

End if.

End for.

If ℓ 6= 0, /* Perform the single replacement */

SetQ′ = Q • ℓ, KQ′(λ) = least_cost.

ComputeLQ′ using (17) or (21), and thenL−1

Q′ (A
t
Q′y).

else,

Terminate SBR.

End if.

Output: next iterateQ′ = Q • ℓ, KQ′(λ), LQ′ , andL−1

Q′ (A
t
Q′y)

whereX is a lower triangular matrix satisfyingXXt = F F t +eet. The problem of computingX from

F ande is classical; it is known as a positive rank 1 Cholesky updateand there exists a stable algorithm

in O(f2) operations, wheref = k − I is the size ofF [28].

Finally, the computation ofKQ′(λ) involves a positive Cholesky update and a triangular system

inversion in (15). Thus, its overall cost is inO(k2). Notice that matrixF is of sizek− I. Therefore, the

cost of a Cholesky update completely depends on the positionI of the columnai to be removed. The

largerI, the more expensive is the Cholesky update.

D. Memory requirements and computation burden

The efficient (fast and stable) procedure is summarized in Table II. Given the current active setQ, the

index ℓ defining the next SBR iterateQ• ℓ is chosen according to (11) andLQ•ℓ is finally updated. No
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update of the amplitudes is necessary. The actual implementation may vary depending on the size and

the structure of matrixA. We briefly detail the main possible implementations and their requirements in

terms of storage and computation. Regarding the computation burden, we count the number of elementary

operations expressed in terms of scalar multiplications since the cost of a scalar addition is negligible

with respect to that of a multiplication.

When A is relatively small, the computation and storage of the fullGram matrixAtA prior to any

SBR iteration (storage ofn2 scalar elements) avoids to recompute the vectorsAt
Qai which are needed

when the insertion ofai into the active set is tested. Similarly, we storeAty and the values‖ai‖
2 in

two 1D arrays of sizen, prior to any SBR loop. The storage of the other quantities (mainly LQ) that

are being updated amounts toO(k2) scalar elements and each test costsO(k2) elementary operations,

as it involves the inversion of a triangular system of sizek × k, plus a positive rank 1 Cholesky update

in the removal case. This cost has to be compared with theO(k3) scalar operations which are necessary

when inverting the Gram matrix in the basic implementation of SBR.

WhenA is larger, the storage ofAtA is no longer possible and vectorsAt
Qai must be recomputed at

any SBR iteration, for each insertion testQ′ = Q∪{i}. The computation ofAt
Qai costskm elementary

operations and represents the most important cost of an insertion test. Indeed, the remaining part is in

O(k2) and for sparse representations,k is expected to be much lower thanm. The cost of a single

replacement finally amounts toO(k2) + O(km) elementary operations.

When the dictionary has some specific structure, the above storage limitation can be alleviated, enabling

a fast implementation even whenn is large. For instance, if a large number of pairs of columns of A are

orthogonal to each other,AtA can be stored as a sparse array. Also, finite impulse responsedeconvolution

problems enable a fast implementation sinceAtA is then a Toeplitz matrix (save north-west and/or south-

east submatrices, depending on the boundary conditions). The knowledge of the auto-correlation of the

impulse response is sufficient to describe most of the Gram matrix.

All these variants have been implemented (Matlab codes are available to academic users from the

authors upon request). In the following, we analyze the behavior of SBR on two difficult problems, in

which the dictionaries are highly correlated: the deconvolution of a sparse signal with a Gaussian impulse

response (Section V) and the joint detection of discontinuities at different orders in a signal (Section VI).
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V. DECONVOLUTION OF A SPARSE SIGNAL WITH AGAUSSIAN IMPULSE RESPONSE

This is a typical problem for which SMLR was introduced [20].It affords us to study the ability

of SBR to perform an exact recovery in a simple noise-free case (separation of two Gaussian features

from noise-free data) and to test the behavior of SBR in a noisy case (estimation of a larger number of

Gaussian features). For simulated problems, we denote byx⋆ the exact sparse signal and we generate

noisy data according toy = y⋆ + n = Ax⋆ + n, wherey⋆ = Ax⋆ denotes the noise-free data and

n stands for the observation noise. The dictionary columnsai are always normalized:‖ai‖
2 = 1. The

signal to noise ratio (SNR) is defined by SNR= 10 log(PY /PN ), wherePY = ‖y⋆‖2/m is the average

power of the noise-free data andPN is the variance of the noise processn.

A. Dictionary and simulated data

The impulse responseh is a Gaussian signal of standard deviationσ, sampled on a regular grid

at integer locations. It is approximated by a finite impulse response of length6σ by thresholding the

smallest values, allowing a fast implementation even for large size problems (see subsection IV-D). The

deconvolution problem leads to a Toeplitz matrixA whose columnsai are obtained by shifting the signal

h. The dimension ofA is chosen to have any Gaussian feature resulting from the convolution h ∗ x⋆

belonging to the observation window{1, . . . ,m}. This implies thatA is slightly undercomplete (m > n).

Denoting bynh = 1 + 2round(3σ) the size of the support ofh, the data size readsm = n + nh − 1.

B. Separation of two close Gaussian features

We first analyze the ability of SBR to separate two Gaussian features (‖x⋆‖0 = 2) from noise-free data.

The centers of both Gaussian features lay at a relative distanced (expressed as a number of samples) and

their weightsx⋆
i are set to 1. We generate the corresponding noise-free datay⋆ and we run SBR(∅;λ)

with a number of predefinedλ-values. We analyze the SBR outputsQ(λ; d) by computing their size

Card [Q(λ; d)] and by testing ifQ(λ; d) is equal to the true supportS(x⋆). Table III shows the results

obtained for a problem of size300 × 270 (m = 300, σ = 5, and nh = 31) with distances equal to

d = 20, 13, and 6 samples. The grid ofλ-values for which SBR is run is common to the three tests.

The maximal valueλ0 is chosen in such a way that the outputQ(λ0; d) is empty (see Proposition 2)

and the other values are set according toλj = λ0/10
j . It is noticeable that the exact recovery is always

reached provided thatλ is sufficiently small. This result remains true even for smaller distances (from

d = 2). When the Gaussian features strongly overlap,i.e., for d 6 13, the size of the support obtained as

output first increases whileλ decreases, and then for lowerλ-values, removals start to occur, enabling
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TABLE III

SEPARATION OF TWOGAUSSIAN FEATURES FROM NOISE-FREE DATA WITH SBR.d STANDS FOR THE DISTANCE BETWEEN

THE GAUSSIAN FEATURES. WE DISPLAY THE SIZE OF THE SUPPORTQ(λ; d) OBTAINED WITH A SEQUENCE OF DECREASING

λ-VALUES λ0 > λ1 > . . . > λ7 . THE LABEL ⋆ INDICATES AN EXACT RECOVERY FOR A SUPPORT OF CARDINALITY2.

λ λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ 6 λ7

d = 20 0 0 2⋆ 2⋆ 2⋆ 2⋆ 2⋆ 2⋆

d = 13 0 1 3 4 5 2⋆ 2⋆ 2⋆

d = 6 0 1 1 3 5 6 8 2⋆

the exact recovery. Similarly to SBR, forward algorithms such as OMP and OLS start by positioning a

(wrong) Gaussian feature in between the two Gaussians in their first iteration but in the latter case, the

early wrong detection disables an exact recovery.

C. Behavior of SBR for noisy data

We run SBR on more realistic noisy data and on a larger problem(m = 3000 samples). The unknown

sparse signalx⋆ is composed of 17 Gaussian features. The impulse responseh is of size nh = 301

(σ = 50) yielding an observation matrixA of size3000 × 2700, and the SNR is set to 20 dB.

Fig. 1 displays the simulated data and the SBR results obtained with a fewλ-values. Whenλ decreases,

the SBR approximations are of better quality but less sparse. For largeλ-values, only the main Gaussian

features are found, and then, whenλ decreases, the smaller features are being recovered together with

unwanted features. Removals rarely occur for coarse approximations. They occur more frequently when

two estimated features are overlapping and for lowλ-values. On the simulation of Fig. 1, removals occur

for λ 6 0.15, yielding approximations that are more accurate than thoseobtained with OLS and for the

same cardinality (the residual‖y−Ax‖2 is lower), while whenλ > 0.15, the SBR output coincides with

the OLS iterate of same cardinality. Although the performance of SBR is at least equal to that of OLS,

the exact support ofx⋆ is never found. However, it must be stressed that the problemis very difficult

because the data are noisy and the neighboring columns ofA are highly correlated. In such difficult case,

one needs to perform a wider exploration of the discrete set{0, 1}n by introducing moves that are more

complex than single replacements. Such extensions were already proposed in the case of SMLR. One

can for instance shift a detected spikexi forwards of backwards [29] or update a block of neighboring

components jointly (e.g.,xi andxi+1) [30].
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(c) λ = 0.15 (d) λ = 0.01

Fig. 1. Gaussian deconvolution results. Problem of size3000×2700 (σ = 50). (a) Generated data, with 17 Gaussian features

and with SNR = 20 dB. The exact locationsx⋆ are labeledo. (b,c,d) SBR outputs and data approximations with empirical

settings ofλ. The estimated amplitudesx are shown with vertical spikes. The SBR outputs (supports) are of size 5, 9, and 19,

respectively. The computation time always remains below 8 seconds (Matlab implementation).

VI. JOINT DETECTION OF DISCONTINUITIES AT DIFFERENT ORDERS IN A SIGNAL

We now consider another challenging problem, the joint detection of discontinuities at different orders

in a signal. We process both simulated and real data and compare the performance of SBR with

respect to other sparse approximation algorithms (OMP and OLS) in terms of discontinuity estimation,

approximation accuracy, and computation time. Firstly, weformulate the detection of discontinuities at

a single orderp as a spline approximation problem. Then, we take advantage of this formulation to

introduce the joint detection problem more easily.

A. Approximation of a spline of degreep

In the continuous case, a signal is a spline of degreep with k knots if and only if its (p + 1)-th

derivative is a stream ofk weighted Diracs [31]. In the discrete case, we introduce thedictionary Ap
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Fig. 2. Signalsap
i related to thep-th order discontinuities at locationi. a0

i is the Heaviside step function,a1
i is the ramp

function, anda2
i is the one-sided quadratic function. Each signal is equal to1 at locationi and its support is equal to{i, . . . , m}.

formed of shifted versions of the one-sided power functionk 7→ kp
+ , [max(k, 0)]p for all possible shifts

(see Fig. 2).Ap represents the integration operator of degreep + 1. Denoting by{1, . . . ,m} the support

of the data signaly, the shifted signalsap
i (for i ∈ {1, . . . ,m}) read

∀k ∈ {1, . . . ,m}, a
p
i (k) = (k − i + 1)p+ (22)

and their support is equal to{i, . . . ,m}. Finally, we form the dictionaryAp = [ap
1, . . . ,a

p
m−p] of size

m × (m − p). It does not make sense to allow the occurrence of ap-th order discontinuity for the last

samples (i.e., to includea
p
i for i > m − p) since the spline approximation would require to reconstruct

a polynomial of degreep in the range{i, . . . ,m} from less thanp + 1 data samples.

We address the spline approximation problem as the sparse approximation of y by the piecewise

polynomialgp = Apxp (actually, we impose as initial condition that the spline function is equal to 0 for

k 6 0). The sparse approximation consists in the detection of thediscontinuity locations (also referred

to as knots in the spline approximation literature) and the estimation of their amplitudes:xp
i codes for

the amplitude of a jump at locationi (p = 0), the change of slope at locationi (p = 1), etc. Here, the

notion of sparsity is related to the number of discontinuitylocations.

B. Approximation of a piecewise polynomial of maximum degree P

Following [31], we formulate this problem as the joint detection of discontinuities at ordersp =

0, . . . , P . Let us append the elementary dictionariesAp in a global dictionaryA = [A0, . . . ,AP ]. The
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approximationg = Ax of a given signal rereadsg =
∑

p Apxp where vectorx = {x0, . . . ,xP } gathers

thep-th order amplitudesxp for all p. Whenx is sparse, all vectorsxp are sparse and the approximation

signalg is the sum of piecewise polynomials of degree lower thanP with a limited number of pieces.

The dictionaryA is overcomplete since it is of sizem × s, with s = (P + 1)(m − P/2) > m for all

P > 1. Moreover, it is highly correlated: any columnap
i is strongly correlated withall other columns

a
q
j because their respective supports are the intervals{i, . . . ,m} and {j, . . . ,m}, and hence overlap.

The discontinuity detection problem is difficult, as most algorithms are very likely to position wrong

discontinuities in their first iterations. For example, when approximating a signal with two discontinuities

at distinct locationsi and j, they start to position a first (wrong) discontinuity in betweeni and j, and

forward algorithms cannot remove it (see Section VI-E and Fig. 5 for details).

C. Adaptation of SBR

It is important to notice that the dictionary defined above does not satisfy the unique representation

property. For instance, the difference between two discrete ramps at locationsi and i + 1 yields the

discrete Heaviside function at locationi: a1
i − a1

i+1 = a0
i . More generally, forp > 1, a

p
i − a

p
i+1 reads

as a linear combination ofa0
i anda

q
i+1 (q = 1, . . . , p − 1).

As mentioned in Section II, the SBR algorithm basically requires that the dictionary satisfies the URP

to ensure that the Gram matrixGQ = At
QAQ is invertible, but this assumption can be relaxed provided

that only full rank matricesAQ are explored. Here, SBR is slightly modified, based on the following

proposition which gives a sufficient condition of invertibility of GQ.

Proposition 3 Let ni denote the number of discontinuitiesa
p
i , p = 0, . . . , P which are being activated

at samplei, i.e., for whichxp
i 6= 0. Let us define the binary conditionC(i):

• if ni = 0, C(i) , 1;

• if ni > 1, C(i) ,
(

∀j ∈ {1, . . . , ni − 1}, ni+j = 0
)

.

If Q is such that for alli, C(i) = 1, thenGQ is invertible.

Proposition 3 is proved in Appendix A.

Basically, it states that we can allow several discontinuities to be active at the same locationi, but

then, the next samplesi + 1, . . . , i + ni − 1 must not host any discontinuity. This condition ensures that

there are at mostni discontinuities in the interval{i, . . . , i + ni − 1} of length ni. The adaptation of

SBR consists in testing insertions into the current active set only if the above condition remains true.
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(a) Noise-free data and SBR approximation (b) “ℓ2-ℓ0” curves (noise-free data)
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(c) Noisy data (SNR = 35 dB) and SBR approximation (d) “ℓ2-ℓ0” curves (noisy data)

Fig. 3. Joint detection of discontinuities at orders 0 and 1.The dictionary is of size1000×1999 and the data signaly includes

18 discontinuities. The true and estimated discontinuity locations are represented with unfilled black and filled gray labels. The

shape of the labels (circular or triangular) indicates the discontinuity order. The dashed gray and solid black curves represent

the data signaly and its approximationAx for the leastλ-value. (a) Signal approximation from noise-free data. Therecovery

is exact and both curves are superimposed. (b) “ℓ2-ℓ0” curves showing the squared residual versus the cardinality for SBR,

OLS, and OMP. The SBR performance is expressed only for theλ-values that are larger thanλ20, because below this value,

the recovery is exact and the log-residual is equal to−∞. (c,d) Similar results for noisy data (SNR = 35 dB).

D. Numerical simulations

Let us first consider the caseP = 1, leading to the joint detection of discontinuities of orderzero

and one,i.e., the piecewise affine approximation problem. We simulate noise-free datay⋆ = Ax⋆ of

sizem = 1000 and with ‖x⋆‖0 = 18 discontinuities (see Fig. 3(a)). We use the result of Proposition 2

to compute the valueλmax below which the SBR output is not the empty set, and we run SBR with

λj = λmax 10−j/2 for j = 0, . . . , Jmax, with Jmax = 20. Theseλ-values provide a sequence of solutions

at different sparsity levels. For comparison purpose, we also run 27 iterations of OMP and OLS.
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The SBR approximation shown in Fig. 3(a) corresponds to the leastλ-value λJmax
. The recovery is

exact. The “ℓ2-ℓ0” curves represented on Fig. 3(b) express the squared residual ‖y − Ax‖2 versus the

cardinality ‖x‖0 for the output of each algorithm. Whatever the level of sparsity, SBR yields the least

residual. We did the same experiment with noisy datay = Ax⋆ + n, setting the SNR to 35 dB (see

Figs. 3(c,d)). Again, the “ℓ2-ℓ0” curve corresponding to SBR lays below the OMP and OLS curves. For

most sparsity levels, SBR outperforms the other algorithms. Note that for more noisy data (e.g.,SNR =

15 dB), the SBR and OLS curves coincide and still lay below theOMP curve.

E. AFM data processing

In Atomic Force Microscopy (AFM), a force curve measures theinteratomic forces exerting between a

probe associated to a cantilever and a nano-object. More precisely, the recorded signalz 7→ y(z) shows the

force evolution versus the probe-sample distancez, expressed in nanometers. Researching discontinuities

(location, order, and amplitude) in a force curve is a challenging task because they are used to provide

a precise characterization of the physico-chemical properties of the nano-object (topography, energy of

adhesion,etc.) [32].

The data displayed on Fig. 4(a) are related to a bacterial cell Shewanella putrefacienslaying in aqueous

solution, interacting with the tip of the AFM probe [33]. A force curve is recorded in two steps. Firstly,

the tip is positioned far away from the sample. It is moved towards the sample until the contact is reached

and the surface of the bacterial cell is deformed (approach curve). Secondly, the tip is retracted from the

sample until it loses contact. The experimental curve shownon Fig. 4(a) is a retraction curve composed

of m = 2167 force measurements. From right to left, three regions of interest can be distinguished. The

linear region on the right characterizes the rigid contact between the probe and the sample. It describes the

mechanical interactions of the cantilever and the sample. The rigid contact is maintained untilz ≈ −2840

nm. The interactions occurring in the intervalz ∈ [−3050,−2840] nm are adhesion forces during the

retraction of the tip. In the flat part on the left, no interaction occurs as the cantilever has lost contact

with the sample.

We search for the discontinuities of orders 0, 1, and 2. Similarly to the processing of simulated data,

we run SBR withJmax = 14 λ-values and we run OLS and OMP until iteration 41. For each algorithm,

we plot the “ℓ2-ℓ0” curve representing the squared residual‖y −Ax‖2 versus the cardinality‖x‖0, and

a curve displaying the time of reconstruction versus the cardinality (see Figs. 4(b,c)). These figures show

that the performance of SBR is at least equal and sometimes better than that of OLS. Both algorithms yield

results that are far more accurate than OMP at the price of a larger computation time. However, notice
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Fig. 4. AFM data processing: joint detection of discontinuities at orders 0, 1, and 2 (problem of size2167 × 6498).

(a) Experimental data showing the force evolution versus the probe-sample distancez. (b) Squared residual versus cardinality

for the SBR, OLS, and OMP outputs. (c) Time of reconstructionversus cardinality for the three algorithms.

that the recorded computation time always remains below 350seconds in the case of SBR (in a Matlab

implementation taking advantage of the block Toeplitz structure of the dictionary: see Section IV-D).

Fig. 5 displays the approximations yielded by the three algorithms for supports of cardinality 2 and 5.

SBR actually runs during 6 iterations (4 insertions and 2 removals are performed) to reach a support of

cardinality 2. This approximation is very accurate compared to the OMP and OLS results obtained after

2 iterations (Figs. 5(a,b,c)). SBR provides a very precise localization of both first order discontinuities,

which are crucial information for the physical interpretation of the data. On the contrary, OLS does not

succeed after two iterations; it is able to locate accurately both discontinuities once 5 iterations have

been performed (the desired discontinuities are the first and the last ones among the 5) while OMP fails

even after 5 iterations (Figs. 5(d,e,f)). The residual yielded by the SBR approximation of cardinality 5

remains lower than the corresponding OLS and OMP residuals.

In order to better understand the forward and backward moves(respectively, insertions and removals)

occurring during the SBR iterations, we display in Table IV the residual‖y −Ax‖2 and the cardinality

of each iterate for both SBR executions. Because SBR is a descent algorithm, the penalized costJ (x;λ)

keeps decreasing but when a removal occurs,‖y − Ax‖2 increases. For the coarse approximation of
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Fig. 5. AFM data processing: joint detection of discontinuities at orders 0, 1, and 2. The estimated discontinuitiesx are

represented with vertical spikes and with a label indicating the discontinuity order. The dashed gray and solid black curves

represent the data signaly and its approximationAx, respectively. (a) SBR output of cardinality 2: 4 insertions and 2

removals have been done (λ = 2085). (b,c) OLS and OMP outputs after 2 iterations. (d,e,f) Samesimulation with a lower

λ-value (λ = 66). The SBR output is of cardinality 5 (7 insertions and 2 removals) and we stop OLS and OMP after 5 iterations.

TABLE IV

BEHAVIOR OF THE SBR ITERATES FOR BOTH APPROXIMATIONS OFFIG. 5(A ,D). THE TABLES DISPLAY THE SQUARED

ERROR‖y − Ax‖2 VERSUS THE CARDINALITY‖x‖0 FOR EACH ITERATE. i STANDS FOR THE ITERATION INDEX.

SBR

(λ = 2085, 4+/ 2-)

i ‖x‖0 Error

0 0 2101.408

1 1 16.870

2 2 12.266

3 3 3.074

4 4 642

5 3 663

6 2 938

SBR

(λ = 66, 7+/2-)

i ‖x‖0 Error

0 0 2101.408

1 1 16.870

2 2 12.266

3 3 3.074

4 4 642

5 3 663

6 4 555

7 5 480

8 4 532

9 5 464
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Fig. 5(a), the residual is much smaller than the residual yielded by OLS since two configurations of

cardinality 2 have been explored (see the left table and the rows in bold). We observed the same behavior

for the finer approximation of cardinality 5 (right table).

F. Discussion

In the two previous subsections, we chose to compare SBR withOMP and OLS. We did not consider

simpler algorithms like MP which are well suited to rapidly solve easier problems in which the dictionary

columns are almost orthogonal. Because SBR involves more complex operations (matrix inversions), we

chose to compare it with OMP and OLS which also require to solve at least one least-square problem

per iteration. Their target is to provide results which are more accurate than the MP approximations in

the case of difficult problems.

Up to our knowledge, the only minimization algorithm dedicated to theℓ0-penalized cost function

J (x;λ) = ‖y − Ax‖2 + λ‖x‖0 is Blumensath and Davies’ Iterative Hard Thresholding (IHT) [9]. It

relies on gradient based iterations of the formx′ = x+At(y−Ax), followed by the thresholding to 0 of

all the non-zero componentsxi such that|xi| 6 λ0.5. We tested this version of IHT on both deconvolution

and discontinuity detection problems and we observed that it is less efficient than the standard version of

IHT, dedicated to theℓ0-constrained problem. In the constrained version, thek components|xi| having

the largest amplitudes are kept and the others are being thresholded. Generally speaking, we observed that

IHT is competitive when the correlation between any pair of dictionary columns is limited, but for highly

correlated dictionaries, IHT needs a very large number of iterations (O(m2)) to reach convergence. SBR

seems to be better suited to such difficult problems. It is less sensitive to the initial solution and “skips”

some local minimizers having a large costJ (x;λ). We here recall that according to Proposition 1, each

SBR iterate is almost surely a local minimizer ofJ (x;λ).

In order to link up our approach to the forward-backward algorithm of [14], we also tested an OMP-

like adaptation of SBR in which only one least-square problem is solved per iteration, instead ofn.

This adaptation consists in replacing the selection rule (11) in the following way. When an insertion

Q ∪ {i} is tested, all the active componentsxj are kept constant andxi is set to the minimizer of

‖y−AxQ−xiai‖
2. This leads to an approximation ofKQ•i(λ) without solving any least-square problem.

Similarly, the removal test consists in settingxi to 0 and leaving the other componentsxj unchanged.

In brief, this adapted version is an algorithm aimed at the minimization ofJ (x;λ) at a cost which is

comparable to that of OMP. In all our trials, SBR performs better than the OMP-like version except

in very simple cases (limited correlation between the columns ai) where both versions yield the same
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result. The performance of the OMP-like version fluctuates below or above that of OMP but is almost

always far less accurate than the OLS and SBR approximations.

VII. C ONCLUSION

We have evaluated the SBR algorithm on two problems in which the dictionary columns are highly

correlated. SBR provides solutions which are at least as accurate as the OLS solutions and sometimes more

accurate, with a cost of the same order of magnitude. For these difficult problems, MP and OMP provide

poor approximations within a lower computation time. Compared to OLS, we believe that performing

removals is the price to pay if one expects an enhanced quality approximation. Although removals

rarely occur in comparison with the insertions, they play animportant role in the enhancement of the

approximation.

In the proposed approach, the main difficulty relies in the choice of theλ-value. If a specific sparsity

level or approximation residual is desired, one can resort to a trial and error procedure in which a number

of λ-values are tried until the desired approximation level is found. In [34], we sketched a continuation

version in which a series of SBR solutions are successively estimated with a decreasing level of sparsity

λ, and theλ-values are recursively computed. The firstλ-value is set toλ0 = +∞, and at a given value

λi, the initial solution (input of SBR) is set to the SBR output at λ = λi−1. This continuation version

provides promising results and will be the subject of a future extended contribution. A similar perspective

is actually proposed by Zhang to generalize his FoBa algorithm in a path-following algorithm (see the

discussion section in [14]).

Another important perspective is to investigate whether SBR can guarantee exact recovery in the noise-

free case under some conditions on matrixA and on the unknown sparse signalx⋆. In the simulations

done in Section V, we observed that SBR is able to exactly recover two close Gaussian features whatever

their distance, provided that the hyperparameterλ is sufficiently small. This promising result is a first

step towards a more general theoretical study. The FoBa algorithm [14] yields exact recovery results for

problems satisfying the Restricted Isometry Property (RIP). Since the structure of SBR is somewhat close

to that of FoBa, we expect that SBR shares similar theoretical properties. We will investigate whether

the proofs provided in [14] are extendable to SBR.

APPENDIX A

PROOF OFPROPOSITION3

The following lemma is a key element to prove Proposition 3.
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Lemma 1 Consider an active setQ satisfying the condition of Proposition 3, and leti− = min{i |ni >

0} denote the lowest location of an active entry. Up to a reordering of the columns,AQ rereadsAQ =

[Ai− , AQ\{i−}] with obvious notations. IfAQ\{i−} is full rank, thenAQ is also full rank.

Proof: Let I = ni− denote the number of discontinuities at locationi− and let0 6 p1 < p2 <

. . . < pI denote their order, sorted in the ascending order. Suppose that there exist two families of scalars

{µp1

i− , . . . , µpI

i−} and{µp
i | i 6= i− andi is active at orderp} such that

I
∑

j=1

µ
pj

i− a
pj

i− +
∑

i6=i−

∑

p

µp
i a

p
i = 0. (23)

Let us show that allµ-values are then equal to 0.

Rewriting the firstI nonzero equations in this system and becauseQ satisfies the condition of

Proposition 3, we have, for allk ∈ {i−, . . . , i− + I − 1},
∑I

j=1 µ
pj

i− (k + i− − 1)pj = 0. In other

words, the polynomialF (X) =
∑I

j=1 µ
pj

i− Xpj hasI positive roots. It is shown in [35, p. 76] that a non-

zero polynomial formed ofI monomials of different degree has at mostI − 1 positive roots. Therefore,

F is the zero polynomial and all scalarsµ
pj

i− are 0. We deduce from (23) and from the full rankness of

AQ\{i−} that µp
i = 0 for all (i, p).

We have shown that the column vectors ofAQ are linearly independent,i.e., that AQ is full rank.

The proof of Proposition 3 directly results from a recursiveapplication of Lemma 1. Starting from the

empty set, all the indices, sorted by decreasing order, are included successively.
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