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TECHNICAL REPORT 1

From Bernoulli-Gaussian deconvolution to

sparse signal restoration

Charles SoussénJerome IdierMember, IEEE David Brie, and Junbo Duan

Abstract

Formulated as a least-square problem undefyaconstraint, sparse signal restoration is a discrete
optimization problem, known to be NP complete. Classicgbathms include, by increasing cost and
efficiency, Matching Pursuit (MP), Orthogonal Matching suwit (OMP), Orthogonal Least Squares (OLS)
and the exhaustive search algorithm. In inverse problerwhiimg highly correlated dictionaries, OMP
and OLS are not guaranteed to find the optimal solution. If interest to develop slightly slower sub-
optimal search algorithms yielding better approximatidfie revisit the Single Most Likely Replacement
(SMLR) algorithm, developed in the mid-80’s for BernouBiaussian signal restoration. We show that
the formulation of sparse signal restoration as a limit cakéernoulli-Gaussian signal restoration
leads to ardy-penalized least-square minimization problem, to whichLRVtan be straightforwardly
adapted. The resulting algorithm, called Single Best Regsteent (SBR), can be interpreted as a forward-
backward extension of OLS. A fast and stable implementasigmnoposed. The approach is illustrated on
a deconvolution problem with a Gaussian impulse respondeoarthe joint detection of discontinuities

at different orders in a signal.

Index Terms

Sparse signal estimation; inverse problems; Bernoulligs&n signal restoration; SMLR algorithm;

mixed ¢>-£y criterion minimization; Orthogonal Least Squares; fordvbiackward greedy algorithms.
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TECHNICAL REPORT 2

. INTRODUCTION

Sparse signal restoration arises in inverse problems suétoarier synthesis, mono- and multidimen-
sional deconvolution, and statistical regression. It &ziasn the decomposition of a given signalas a
linear combination of a limited number of elements from atiditary A. While formally very similar,
sparse signal restoration has to be distinguished fronsspEgnal approximation. The main difference
is that in sparse signal restoration, the choice of the alietiy is imposed by the inverse problem at
hand whereas in sparse signal approximation, the dictyonas to be chosen according to its ability to
represent the data with a limited number of coefficients. Aargubtle difference is that in sparse signal
restoration, the focus is set on the estimation of the weighfitthe linear combination while in sparse
signal approximation, the goal is to reproduce the dates well as possible at a given level of sparsity.

Sparse signal restoration can be formulated as the miniimizaf a least-square cost function of the
form £(z) = ||y — Az||* under the constraint that thg pseudo-norm ofe, defined as the number
of non-zero entries inx, is lower than a given numbér. This problem is often referred to asibset
selection because imposing the sparsity constraint consists irttsgdea subset of columns oA. This
yields a discrete problem (since there are a finite numberoskiple subsets) which is known to be
NP-complete [1]. In this paper, we focus on “difficult” preohs in which some of the columns of
are highly correlated, the unknown weight vector is only approximately sparse, and/or the data are
noisy. Hereafter, we distinguish two approaches to addiessubset selection problem in a fast and
sub-optimal manner and we discuss their relevance for difffroblems.

The first approach, which has been the most popular in thedesade, approximates the subset
selection problem by a continuous optimization problemrmvea or not, that is easier to solve [2-5]. In
particular, the approach that replaces th@orm by thel;-norm [4, 5] has been increasingly investigated,
leading to the LASSO optimization problem. Its popularigfies on efficient algorithms, such as LARS
which finds the set of solutions for all degrees of sparsily $&veral authors have provided sufficient
conditions under which thé)- and ¢;-constrained least-square problems lead to solutionsnatvie
same support [5,7]. These conditions typically state thatunknown weight signal has to be highly
sparse, that the correlation between any pair of columnd ghust be sufficiently small, and that the
noise level must be low. They are often not satisfied whenirtgalith real data.

The second approach addresses d¢iact subset selection problem using either thresholding algo-
rithms [8, 9] or greedy search algorithms. The latter gréiguacrease or decrease by one the set of

active columns. The simplest greedy algorithms are MatcRinrsuit (MP) [10] and the improved version
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TECHNICAL REPORT 3

Orthogonal Matching Pursuit (OMP) [11]. Both are referredas forward greedy algorithms, since they
start from an empty active set and then gradually increabg @ine element. In contrast, the backward
algorithm of Couvreur and Bresler [12] starts from a conmplattive set which is gradually decreased
by one element. It is, however, only valid if the dictionas/rot overcomplete. A few authors have
introduced forward-backward algorithms in which inseriocand removals of dictionary elements into
the active set are both allowed [13, 14]. This strategy gididtter recovery performance since an early
wrong selection can be counteracted by its further remaeah fthe active set. In contrast, the insertion
of a wrong element is irreversible when using forward alponis.

The choice of the algorithm depends on the amount of timdablaiand on the structure of matrik.
In favorable cases, the sub-optimal search algorithmsithescabove (belonging to the first or the second
approach) provide solutions having the same support astieustive search solution. For example, if the
unknown signale* is highly sparse and if the correlation between any pair dfiroas of A is low, the
£1-norm approximation provides optimal solutions [5, 7]. lthe@r cases, however, the only guarantee to
recover the optimal solution is to use the exhaustive seagdrithm. When fast sub-optimal algorithms
lead to unsatisfactory results, it is of great interest toettgp slower sub-optimal algorithms providing
more accurate solutions, but remaining very fast comparéie exhaustive search. The Orthogonal Least
Squares algorithm (OLS) [15] which is sometimes confusdd ®IMP [16], falls into this category. Both
OLS and OMP share the same structure, the difference beatgatheach iteration, OLS solves a large
number of least-square problemsk, wherek is the cardinal of the current active set) while OMP only
computes ther — k inner products between the current residyal Az and the candidate colummng
and chooses the column yielding the maximal inner produbtPGolves only one least-square problem
per iteration, once the column to be inserted is selectedr@ier to update all the active weights). In the
following, we propose a forward-backward extension of OliSw&ng an insertion or a removal at each
iteration, each iteration requiring to solweleast-square problems. It differs from the FoBa algoritim o
Zhang [14] which is an OMP forward-backward extension. Itlisser to the bidirectional OLS based
algorithm of Haugland [13], the main differences relying thie search and implementation strategies.

The starting point of our forward-backward algorithm is Siagle Most Likely Replacement (SMLR)
algorithm, which proved to be a very efficient tool for the deeolution of a sparse signal modeled as a
Bernoulli-Gaussian process [17-20]. This approach relies Bayesian formulation of a deconvolution
problem of the formy = Ax + n (where A denotes the convolution matrix) and on the maximam
posteriori (MAP) estimation of the sparse signal. The Bernoulli-G#rssnodel is a probabilistic model

for sparse signals, in which (binary) Bernoulli random ahtés are associated to the position of the
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non zero entries inc while the corresponding amplitudes are distributed adongrtb an independent
identically distributed (i.i.d.) centered Gaussian dsttion of variances2. SMLR is a deterministic
ascent algorithm which maximizes the posterior likelihamd sub-optimal manner. It consists in updates
(increase or decrease) of the supportedby one element and the subsequent estimation of the non-zero
amplitudes. Sparse signal restoration can be seen as actiggt of Bernoulli-Gaussian MAP restoration
in which the variancer? of the amplitudes is set to infinity. We will deduce an addptabf SMLR to
subset selection relying on a single insertion or a singheoral of a column into/from the active set.
The paper is organized as follows. In Section I, we intragddice Bernoulli-Gaussian model and
the Bayesian framework from which we formulate the spargaadirestoration problem. In Section lll,
we adapt the SMLR algorithm resulting in the so-called Singest Replacement (SBR) algorithm. In
Section 1V, a fast and stable SBR implementation is propobaded on the efficient update of the
squared error when the active set is modified by one elemémllfs Sections V and VI illustrate the
method on the sparse spike deconvolution with a Gaussianlgmpesponse and on the joint detection

of discontinuities at different orders in a signal.

Il. FROM BERNOULLI-GAUSSIAN SIGNAL MODELING TO SPARSE SIGNAL REPRESENTATION

We consider the restoration of a sparse signdtom a linear observatioy = Ax + n, wheren
stands for the observation noise. An acknowledged prabtabimodel dedicated to sparse signals is the
Bernoulli-Gaussian (BG) model [17,18, 20]. For such modeterministic optimization algorithms [20]
and Markov chain Monte Carlo techniques [21] are used to eaenfhe MAP and the posterior mean,
respectively. We first recall the known BG models and the fdation of BG signal restoration in the

Bayesian framework. Then, we extend this formulation to aengeneral representation of sparse signals.

A. Preliminary definitions and working assumptions

Given an observation vectgr € R™ and a dictionaryA = [a1,...,a,] € R™*", a subset selection
algorithm aims at computing a weight vecterc R” yielding an accurate approximatign~ Ax of
the observation. The columns of A whose indices correspond to the non-zero componentsf x
are referred to as the active (or selected) columns.

Throughout this paper, no assumption is made on the siz& of can be either smaller or larger than
n. Here, A is assumed to satisfy the unique representation propefPJUThis assumption is usual
in the casen < n [22]. It is a stronger assumption than the full rank assuomptiVe now recall this

definition and extend it to the case where> n. Notation||-|| refers to the Euclidean norm.
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Definition 1 Whenm < n, A satisfies the URP if and only if any selectionmefcolumns ofA forms

a family of linearly independent vectors. When> n, A satisfies the URP if and only if it is full rank.

Before going further, let us mention that this assumptiamlzarelaxed providing that the search strategy
can guarantee that the selected columngtafesult in a full rank matrix (see Section VI-C for details).

Under the URP assumption, when < n, the systemy = Ax has a number of solutions whose
£o-norm are lower or equal toy since any selection ofi columns yields a solution of the system. When
m > n, there is generally no solution p = Az but the least-square estimater= (A'A)~ ! Aly is

unique, although not necessarily sparse.

Definition 2 The support of a vectaz € R" is the setS(x) C {1,...,n} defined byi € S(z) if and
only if z; # 0.

Definition 3 We denote by C {1,...,n} the active set and we define the related vegtar {0,1}"
by ¢; = 1 if and only ifi € Q. Let Ag be the submatrix of sizev x Card [Q] formed of the active
columns ofA (a;, i € Q). The observation mode} = Ax + n also readsy = Aot + n, where the

reduced vectot of sizeCard [Q] gathers the value$z;, i € Q}.

Definition 4 For all Q@ C {1,...,n} such thatCard [Q] < min(m,n), let xg be the least-square

solution and let€o be the associated squared error:

xg £ argmin{€(x) = ||y — Az|?} 1)
S(x2)CQ
Eo & E(zg) = |ly — Azol”. 2

B. Bernoulli-Gaussian models

A BG proces$ x can be defined by means of a Bernoulli random vegter {0, 1}" corresponding to
the active set, and a Gaussian random veeter N (0, o—gIn), wherel,, stands for the identity matrix of
sizen x n. Each sample; of « is modeled as; = ¢;r; [17, 18]. Thus,; code for the amplitudes of the
nonzero entries ie. In the vector formx readse = A,r whereA is the diagonal matrix of size x n
whose diagonal elements are equag;toThe Bernoulli random variableg code for the presence;(= 1)

or absenceq; = 0) of signal at locationi, the Bernoulli parametes = Pr(¢; = 1) being the probability

1For convenience, we use the same notations for random seatat their realization.
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of presence of signal. It is easy to check that the prior ilikeld of g readsi(q) = pll4llo(1 — p)»—ldllo,

Becauseg andr are independent random vectors, the prior likelihood:of (g, r) reads:

l(g,r) =1(r)1(q) = g(r;02L,) plale (1 — pyn=lldllo, (3)

whereg(.; T') denotes the probability density of the centered Gaussi#im wavariance matrix.

C. Bayesian formulation of sparse signal restoration

The Bayesian formulation of the inverse problgm= Ax + n consists in inferring the distribution of
x = (q,r) knowingy. The MAP estimator ok can be obtained by maximizing the marginal distribution
l(q]|y) [20] or the joint distributioni(q, r | y) [18, 19]. Following [18], we focus on the joint likelihood
I(g,r|y) which leads to a cost function involving the squared effgr- Ax|?> and the/s-norm of x.

Assuming a Gaussian white noise~ A(0,021,,), independent fronx, it is easy to obtain
L(g,7) £ ~207 log[l(g, 7 | y)]
2
2 Iny.2
= lly — Algr|” + 57" + Allallo + C, (4)

where A = 2021og(1/p — 1) and C is a constant. Givew, let us splitr into two subvectora: andt
indexed by the null and non-null entries @f respectively. SincedA,r = Aot does not depend oa,

it is easy to check thahin,, £(q,t,u) = L(q,t,0). Finally, the joint MAP estimation problem reduces
to the minimization ofL(q,t,0) w.r.t. (g, ¢t).

D. Mixed ¢3-¢3 minimization as a limit case

A signalx is sparse if some entries are equal to 0. Since this definition does not impose comssrai
on the range of values of the non zero amplitudes, we choosiedoribe a sparse signal by a limit
Bernoulli-Gaussian model in which the amplitude variandeis set to infinity. The minimization of
L(g,t,0) thus rereads:

min{£(g,¢,0) = |y — Aot|” + Mlallo}- (5)
Theorem 1 The above formulatiof5) is equivalent to:
min {J(z;A) = |ly — Az|?* + Az} (6)
xzeR"
which is referred to as thé,-penalized least-square probleifhe term “equivalent” means that given

a minimizer(q,t) of (5), the related vectorr = {t,0} is a minimizer of (6), and conversely, given
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a minimizerx of (6), the vectorsqg and t defined as the support af and its non-zero amplitudes,

respectively, are such thdy, t) is a minimizer of(5).

Proof: To prove the equivalence, we first prove thain, 7 (x; \) = ming ¢+ £(q, t,0):
o Let x be a minimizer of7(.; \). We setq andt to the support and the non zero amplitudescof
respectively. Obviously7 (z; A\) = L(q, t,0). It follows thatming J(z; A) > ming ¢ £(g,t,0).
« Let (g,t) be a minimizer ofL(q,t,0). The vectorr = {¢,0} is such thatAxz = Aot and||z|o =
IItllo < |lqllo- Therefore, 7 (x; ) < L(q,t,0). It follows thatming ¢ £(q,t,0) > ming J(x; \).
We have shown thaining J (x; \) = ming ¢+ £(q,t,0), but also that the minimizers of both problems
coincide,i.e., are vectors describing identical signals. [ |
In the following, we focus on the minimization problem (6yaiving the penalization termix||o. The
hyperparameten is fixed. It controls the level of sparsity of the desired ol The algorithm that
will be developed is based on an efficient search of the supggar. In that respect, thé,-penalized
least-square problem does not drastically differ from dfxeonstrained problemnin ||y — Az||* subject

to ||z]o < k.

[1l. ADAPTATION OF SMLR TO ¢y-PENALIZED LEAST-SQUARE OPTIMIZATION

We propose to adapt the SMLR algorithm to the minimizatiothefmixed/s-¢, cost function7 (x; \)
defined in (6). To clearly distinguish SMLR which specifigaliims at minimizing (4), the adapted

algorithm will be termed as Single Best Replacement (SBR).

A. Principle of SMLR and main notations

The Single Most Likely Replacement algorithm [17] is a detigistic coordinatewise ascent algorithm
to maximize log-likelihood functions of the foritq | y) (marginal MAP estimation) oi(q, ¢,0| y) (joint
MAP estimation). In the latter case, it is easy to check frdjrtijat giveng, the maximizer oi(q,¢,0 | y)
w.r.t. ¢ has a closed form expressien= t(q). Consequently, the joint MAP estimation reduces to the
maximization ofi(q,t(q),0|y) w.r.t. g. At each SMLR iteration, all the possible single replacetsen
of the supportg (setq; = 1 — ¢; while keeping the othey;, j # ¢ unchanged) are tested, then the
replacement yielding the maximal increaself, t(q),0|y) is chosen. This task is repeated until no
single replacement can incredseg, t(q), 0 | y) anymore. The number of possible suppartseing finite
(2™) and SMLR being an ascent algorithm, it terminates after isefimumber of iterations.

Before adapting SMLR, let us introduce some useful notation
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« We denote byQ e i a single replacementg., the insertion or removal of an indexinto/from the

active setQ:

Qeit Qu{i} ifi¢9, @)
Q\{i}  otherwise

o If Card[Q] < min(m,n), we define the cost functions:

JoN) £ T(xo; N) = Eg + M|zallo (8)
Ko(\) £ Eg + ACard [Q)] 9)

where the least-square soluti@, and the corresponding errép have been defined in (1) and (2).

Obviously, 7o (M) = Kgo(A) if and only if zg has a support equal @. In subsection I1I-B, we introduce
a first version of SBR involving7o(A) only, and in subsection 1lI-C, we present an alternativenger)
version relying on the computation @fo()\) instead of 7o(\) and we discuss in which extent both

versions differ. Then, subsection IlI-D describes the bahvaof SBR and states its main properties.

B. The Single Best Replacement algorithm (first version)

SMLR can be seen as an exploration strategy for discretentgatiion rather than an algorithm specific
to a posterior likelihood function. Here, we use the sameteyy to minimize the cost functiaff (x; \).
We rename the algorithm Single Best Replacement to remoyestatistical connotation. The SBR
algorithm works as follows. At each iteration, thepossible single replacemeng@ei(i = 1,...,n)
are tested, then the best is selecied, the replacement yielding the maximal decreasegZ¢f; \). This
task is repeated untif/ (x; A) cannot decrease anymore. Let us detail an SBR iteration.

Consider the current active s@t For each index, we compute the minimizeto,; of £ whose support
is included inQ e i and we keep in memory the value gh.;()). If the minimum of { Jge;(A), i =
1,...,n} is lower than7o()), then we select the index yielding this minimal value:

¢ € argmin Jgei(A). (10)
ie{l,...,n}
The next SBR iterate is thus defined @5= Q e ¢, yielding the vectorr .
Except when an initial support estimate (of cardinality éovthanmin(m, n)) is available, we suggest

to use an initial empty active set.

Remark 1 (Relationship between SBR and SMLR)We introduced SBR as the application of the SMLR

search strategy to thé&,-penalized least square cost functi@@) which is obtained by taking the limit of

February 3, 2010 DRAFT



TECHNICAL REPORT 9

the cost functior{4) wheno, tends towards infinity. Conversely, applying SMLR4pand then, taking
the limit of the SMLR formula whes, tends to infinity also yields the SBR algorithm.

Actually, the main difference between SMLR and SBR is thdatRS{Which can take several forms
depending on the use of the joint distributidfy, » | y) or the marginal distribution/(q|y)) involves
the inversion of a matrix of the forthAQ + alcarqo) Whereas SBR involves the inverse of the Gram
matrix A, Ao. For this reason, instabilities may occur while using SBRemH ¢ is ill conditioned. The
use of the ternac,.qg}, Which acts as a regularization on the amplitude valuesjds/such instability

while using SMLR at the price of handling the additional hyaeametera.

C. Modified version of SBR (final version)

We introduce a slight modification of SBR by replacing (10jhwi
¢ € argmin Kgei(A). (11)
ie{l,....,n}
We propose this modification because (\) = £o + ACard [Q] can be computed more efficiently than
Jo(N), the computation ofcg being no longer necessary. The usekaf(\) makes the penalization
term very easy to update whe&d is modified by one element (add or remoVg and the only necessary
update is that o€o. We now show that there is almost surely no difference batwe#h versions of

SBR provided that the datg are corrupted with “non degenerate” noise.

Theorem 2 Lety = yo + n, whereyy is a given vector ofR™ and n is a random vector. We assume
that n is an absolute continuous random vector, i.e., admitting@bability density w.r.t. the Lebesgue
measure. Then, whellard [Q] < min(m,n), the probability that||zg]lo < Card [Q] is equal to O, i.e.,

|lzollo = Card [Q] almost surely.

Proof: Let k = Card [Q] and lettg be the minimizer of|y — Aot||> overR*. Obviously,||zg|lo =
[tollo < k. Let Vo = (AL Ag) T AL be the matrix of size: x m such thattg = Voy. Denoting by
v!',...,vF € R™ the row vectors oy, ||ltollo < k if and only if there existsi such that(y, v?) = 0
(where(., .) denotes the inner product). Becaude is full rank, Vg is full rank and thervi, v* # 0.
Denoting byH*(v’) the hyperplane oR™ which is orthogonal ta’, we have

k
lzollo <k < y e | H (v'). (12)
i=1
Because the sdt), H-(v') has a Lebesgue measure equal to zero and the random yeetimits a

probability density, the probability of event (12) is zetbus P(||zo|lo < k) = 0. [
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TABLE |

SBRALGORITHM (FINAL VERSION). BY DEFAULT, THE INITIAL ACTIVE SET IS EMPTY: Q; = ().

Input: A, y, A and active seR; (Card [Q:1] < min(m,n))
Step 1: Sey = 1.

Step 2: Fori € {1,...,n}, computelCg;ei(N).
Computel using (11).
If Kojee(N) < Kg; (M),
SetQ; 1 =Q; el
else,
Terminate SBR.
End if.
Setj = j+ 1 and go to Step 2.
Output: active se; = SBR(Q1; \)

Theorem 2 implies that when dealing with real noisy datas #limost sure that no active component
x; is exactly equal to 0. Thus, the original and modified versiohSBR almost surely lead to exactly
the same iterates. Even in the noiseless case, an activeoocemipis rarely numerically evaluated to O
due to the round-off errors. In all cases, the modified vareibSBR can be applied without restriction
and the properties stated beloaid.,termination after a finite number of iterations) remain daven if
an SBR iterate satisfigirg||o < Card [Q].

We adopt the modified version of SBR in the rest of the papés. summarized in Table I.

D. Behavior and adaptations of SBR

Termination: SBR is a descent algorithm because the valuéCgf)\) is always decreasing. Conse-
guently, a set cannot be explored twice and similarly to SMLR, SBR termasadfter a finite number of
iterations. Notice that the size ¢f remains lower or equal tmin(m, n). Indeed, if a se@ of cardinality
min(m,n) is reached, the&y is equal to 0 due to the URP assumption. Hence, any repladesfien
the form Q' = Q U {i} yields an increase of the cost functioki4 (A\) = Ko()\) + A). We emphasize
that no stopping condition is needed unlike many algoritkvh&h require to set a maximum number of
iterations (MP and variations, OLS) and/or a threshold endtyuared error variation (CoSaMP, lterative

Hard Thresholding).
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Proposition 1 Under the assumptions of Theorem 2, each SBR iterafeis almost surely a local
minimizer of 7 (x;\) and of the{y-constrained problemmin £(x) subject to||z|o < k, with k£ =

Card [Q]. This property holds in particular for the SBR output.

Proof: Let x = xo be an SBR iterate. According to Theorem 2, the suppdnt) = Q almost
surely. Settinge = min;eg |x;| > 0, it is easy to check that i’ € R™ satisfies||’ — z| < ¢, then
Vi e Q, x; # 0. Thus, ||z’ — z| < ¢ implies thatS(z’) 2 S(z) and then||z'||o > k.

Now, let 2’ satisfy ||z’ — z|| < e.

o If |||l = k, then necessariys(z') = S(z) = Q. By definition of x = zg, £(z’) > E(x). It
follows thatx is a local minimizer of the/y-constrained problem. AlsqQ7 (x’; \) > J (x; A) holds.

o If ||@']|0 >k, thenT (x'; \) = E(x') + A||x'||o = E(2') + A(k + 1). By continuity of £, there exists
a neighborhood/(x) of « such that ifx’ € V(x), |E(x') — E(x)| < A. Thus, if2’ € V(x) and
|2’ — x| <e, T(@; ) >E(x) + e = T(x; N).

Finally, if ' € V(x) and ||z’ — z|| < ¢, thenJ (z'; \) > T (x; N). [
OLS as a special caséiVhen A = 0, SBR coincides with the well known Orthogonal Least Squares

(OLS) algorithm [15,23]. The removal operation never oscurecause it automatically leads to an

increase of the squared erriip(0) = £o. Consequently, only insertions are worth being tested.

Empty solutions:We now characterize th&-values for which SBR yields an empty solution.

A

Proposition 2 The output of SBR()) is the empty set if and only X > A.x, With A\ =
max;((a;, y)*/|la:l?).
Proof: SBR stops during its first iteration if all the insertion tsidail: Vi, £y + A > & = llyll2.

Giveni, |ly — z;a;||? is minimal whenz; = (a;,y)/|a;||*, leading tofyy = [lylI*> — (as, y)?/||asl.

2 0.e, A > Aax. [

Thus, SBR stops during its first iteratishand only if Vi, A > (a;,y)?/||a;
This result allows us to design an automatic procedure whetl a number ok-values adaptively to
the data in order to compute SBR solutions at different $fyaiesvels (see Section VI-D).

Reduced searchinstead of testing all the replacemen® = Q e i at each SBR iteration, it is
advantageous, if possible, to explore only a subset of thegplacements. We give two ideas to reduce
the number of tests: the first is an acceleration of SBR, yiglthe same iterates with a reduced search.
The second idea is a modification of SBR.

Given an active se®, a removalQ’ = Q\{i} yields an increase of the squared error and a decrease

of the penalty equal ta. Hence, the maximum decrease of #aepenalized cost function which can be

February 3, 2010 DRAFT



TECHNICAL REPORT 12

expected with a removal i3: Ko(\) — Ko/ (A) < A. Consequently, if a given insertio@ = Q U {i}

is such asCo(\) — Ko/ (A) > A, then no removal is worth being tested. The accelerationBRR $1us
consists in testing all the insertions first, and if the besertion yields a decrease larger tharselecting
the best insertion. Otherwise, all the removals have to beedeas stated in Table I. This acceleration
does not modify the SBR iterates. However, the gain is lichishen the level of sparsity is highe.,
when the number of removals to be tested is reduced.

Haugland and Zhang pointed out that in a forward-backwardtesy, it can be helpful to favor
removals [13, 14]. Adapted to SBR, this idea leads to a matldigorithm in which removals are tested
first, and the insertions are tested only if no removal yiedddecrease oKg()). If some removals
decreaseCg()\), then the removal yielding the maximal decrease is sele¢tedur experiments, the
average qualitative performance of SBR and this modifiedioarare quite comparable (there is no
obvious gain or loss of quality nor a significant saving in gamation time). Thus, in the following, we

keep the version of SBR presented in Table I.

IV. | MPLEMENTATION ISSUES

Given the current active s&?, an SBR iteration consists in computing the squared efgorfor any
replacement)’ = Q e, leading to the computation d&fo (\) = Eo/ + ACard [Q']. We first describe a
basic implementation in whickg. is computed independently of the knowledgefef. Then, we present
an efficient implementation allowing a fast update wigis modified. We will denote by = Card [Q]

the cardinality of the active sek (< min(m,n)).

A. Basic implementation

The minimization problem (1) reduces to the unconstraingdmization of |y — Aot||? w.r.t. t € RF.

BecauseA is full rank, this problem has a unique minimizer that reads:
to £ arg min ly — Agt|® = (AQAg) ' ALy (13)
and the minimal squared error reads:
£o = |ly — Agtol® = |ly|* - y' Acto. (14)

Finally, given the active se@, an SBR iteration involves the computationtef and€y. for all possible

replacement®)’ = Q e 4, using (13) and (14).
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B. Recursive implementation

At each SBR iterationp least-square problems of the form (13) must be solved, eaghiring the
inversion of the Gram matrixGo = A, Ag of sizek x k. The computation cost can be high since in
the general case, a matrix inversion codtg:3) scalar operations. Following an idea widely spread in
the subset selection literature, we propose to solve (13)riecursive manner.

A first possibility is to use the Gram-Schmidt procedure P, which yields an orthogonal decom-
position of Ag = WU, whereW is anm x k matrix with orthogonal columns antl’ is a k x k
upper triangular matrix. Although it yields an efficient @ithg strategy when including an index into
the active set (leading to the update Af = [Ao, a;]), the Gram-Schmidt procedure does not extend
with the same level of efficiency when an index removal is @ered [12].

An alternative is to use the block matrix inversion lemma] [2lbwing an efficient update oﬂél for
both index insertion and removal. An efficient SMLR implertagion is proposed in [20], based on the
recursive update of matrices of the forf6'o + o;)~'. This approach can easily be adapted to SBR
where the matrix to update Eél (see also [25] for the downdate step). However, we have wbder
numerical instabilities when the selected columnsdoare highly correlated.

A more stable solution is based on the Cholesky factorinafity = LoLY,, where Lo is a lower
triangular matrix. Updatind. ¢ is advantageous since it is better conditioned tﬁ@‘. This update can
be easily done in the insertion case [26]. It is less easy danravals, since they break the triangular
structure ofLo. A recursive update of the Cholesky factor@E1 was recently proposed [27]. Here,

we introduce a simpler strategy relying on the factorizatihd Go.

C. Efficient strategy based on the Cholesky factorization

First, we notice that a new columm; can be inserted at the last position Ay ,(; to compute the
value ofEg ;- On the contrary, when removing a column, we do not kreopriori the position of the
column to be removed, thus it cannot be assumed to be thedaste of Ao. We will hence describe
the cases where:

« a non active element¢ Q is included after the other columngy = [Ag, a;l;

« an active element € Q is to be removed, the columm; being in an arbitrary position.

G being a symmetric positive-definite matrix, it rea@s = LoL{, where the Cholesky factak.g
is a lower triangular matrix of sizé& x k. Applying (13), the least-square minimizer reredds =

LétLélAto where the superscriptt refers to the inverse transposition operator, and (14Qgiel

Ko(\) = £o(A) + Ak = [ly|* — L3  AQy|® + Ak. (15)
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Given Lo, O(k?) scalar operations are required to solve the triangulaleey.{tél(Ato).
Insertion of a new column after the existing columheluding a new column leads tdo = [Ag, a;].

Thus, the new Gram matrix can be expressed as<& block matrix:

G At a;
Go = Q Q (16)
(AGai)" las]?
and the Cholesky factor difo, can be straightforwardly updated:
L 0
Lo=| ° , (7)
th,i g

with lQJ' = LélAtQai andag,- = (”CI,ZH2 — HlQ,i”2)1/2-
The computation ofCo (M) using (15) requires two triangular system inversions (cotaon oflg ;

and computation oo (\)). However, by computing
Ko(N) = Ko(\) = A= (10,L5' Aby)’ /ad. (18)

the cost can be reduced up to the pre—computatioﬂ@lf(Ato) at the beginning of the SBR iteration.
The computation ofCo () only requires one triangular system inversion (computatibl g ;).
Removal of an arbitrary columnwWhen removing a columa;, updatingL o remains possible although
slightly more expensive. This idea was first developed by eBal. [27] who update the Cholesky
factorization of matrixGél. We adapt it to the direct (simpler) factorization Gfy. Let I be the index

such thata; is the I-th column of Ag (with 1 < I < k). Lo can be written in a block matrix form:

A 0 O
Lo=|b d 0 |, (19)
C e F
where the lowercase characters refer to the scalaarfd vector quantitiesb( e) which appear in the
I-th row and in thel-th column. The computation d#g = Lo LY, and the removal of thé-th row and

the /-th column inG o leads to

A 0 Al Ct 0
GQ/ = + [ 0 et ] (20)
C F 0 Ft e

By identification of this expression with the Cholesky facation Go = LQ,LtQ, and because the
Cholesky factorization is uniqud, o necessarily reads:

A 0
Cc X

Lo — , (21)
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TABLE Il

EFFICIENT IMPLEMENTATION OF AN SBRITERATION.

Input: Q, A

Pre-computed quantitiesd®y and||a;
Stored quantitiesiCo(\), Lo, and L' (ALy)
Setl{ =0, | east _cost = Kg(A).

||? for all 4

Fori=1ton,
Ifi¢ Q, /+ Insertion test =*/
Computelg ; = L' Aba; and Ko/ (N) using (18).
else, /* Renoval test =*/
Update the Cholesky decompositioX: = chol updat e(F, e, +).
ComputeL o and Kg/ (M) using (21) and (15).
End if.
If £o/(A) < | east_cost,
Setl =i, | east _cost = Kg/(A).
End if.
End for.

If ¢£0, [+ Performthe single replacenent =/
SetQ' = Qe/, Ko/()\) =1 east_cost.
ComputeL o using (17) or (21), and theli 5} (AL y).
else,
Terminate SBR.
End if.
Output: next iterated’ = Qe ¢, Ko/ ()), Lo/, and L5y (A% y)

where X is a lower triangular matrix satisfying X! = FF'+ ee'. The problem of computingk from
F ande is classical; it is known as a positive rank 1 Cholesky updaie there exists a stable algorithm
in O(f?) operations, wherg = k — I is the size ofF [28].

Finally, the computation ofCo ()\) involves a positive Cholesky update and a triangular system
inversion in (15). Thus, its overall cost is #A(k?). Notice that matrixF is of sizek — I. Therefore, the
cost of a Cholesky update completely depends on the positiohthe columna; to be removed. The

larger I, the more expensive is the Cholesky update.

D. Memory requirements and computation burden

The efficient (fast and stable) procedure is summarized bteTh. Given the current active s, the

index ¢ defining the next SBR iterat@ e ¢ is chosen according to (11) addy,, is finally updated. No
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update of the amplitudes is necessary. The actual implatientmay vary depending on the size and
the structure of matrixA. We briefly detail the main possible implementations andr tlegjuirements in
terms of storage and computation. Regarding the compuathticden, we count the number of elementary
operations expressed in terms of scalar multiplicationsesithe cost of a scalar addition is negligible
with respect to that of a multiplication.

When A is relatively small, the computation and storage of the @ilam matrix A* A prior to any
SBR iteration (storage af? scalar elements) avoids to recompute the veckbgai which are needed
when the insertion ofi; into the active set is tested. Similarly, we sto#éy and the valuega;||? in
two 1D arrays of sizen, prior to any SBR loop. The storage of the other quantitieaiily L) that
are being updated amounts (k%) scalar elements and each test ca8t#?) elementary operations,
as it involves the inversion of a triangular system of size k, plus a positive rank 1 Cholesky update
in the removal case. This cost has to be compared wittttfie¢') scalar operations which are necessary
when inverting the Gram matrix in the basic implementati6isBR.

When A is larger, the storage oA’ A is no longer possible and vecto%ai must be recomputed at
any SBR iteration, for each insertion ted8t = Q U {i}. The computation oMtQa,- costskm elementary
operations and represents the most important cost of antiosaest. Indeed, the remaining part is in
O(k?) and for sparse representatiorksjs expected to be much lower than. The cost of a single
replacement finally amounts ©(k?) + O(km) elementary operations.

When the dictionary has some specific structure, the abovagst limitation can be alleviated, enabling
a fast implementation even whenis large. For instance, if a large number of pairs of columindare
orthogonal to each otheA’ A can be stored as a sparse array. Also, finite impulse respiecs@volution
problems enable a fast implementation sint’ed is then a Toeplitz matrix (save north-west and/or south-
east submatrices, depending on the boundary conditiomg).kiowledge of the auto-correlation of the
impulse response is sufficient to describe most of the Gramnixna

All these variants have been implemented (Matlab codes aaiable to academic users from the
authors upon request). In the following, we analyze the ehaf SBR on two difficult problems, in
which the dictionaries are highly correlated: the decomtioh of a sparse signal with a Gaussian impulse

response (Section V) and the joint detection of discortiiesiiat different orders in a signal (Section VI).
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V. DECONVOLUTION OF A SPARSE SIGNAL WITH AGAUSSIAN IMPULSE RESPONSE

This is a typical problem for which SMLR was introduced [2@].affords us to study the ability
of SBR to perform an exact recovery in a simple noise-free ¢asparation of two Gaussian features
from noise-free data) and to test the behavior of SBR in ayncése (estimation of a larger number of
Gaussian features). For simulated problems, we denote*biyhe exact sparse signal and we generate
noisy data according tgy = y* + n = Ax* + n, wherey* = Ax* denotes the noise-free data and
n stands for the observation noise. The dictionary coluapare always normalized}a;||?> = 1. The
signal to noise ratio (SNR) is defined by SNR10 log(Py /Py), Where Py = ||y*||?/m is the average

power of the noise-free data arek is the variance of the noise process

A. Dictionary and simulated data

The impulse responsk is a Gaussian signal of standard deviatiosnsampled on a regular grid
at integer locations. It is approximated by a finite impulesponse of lengtibo by thresholding the
smallest values, allowing a fast implementation even faydasize problems (see subsection IV-D). The
deconvolution problem leads to a Toeplitz matAxwhose columng; are obtained by shifting the signal
h. The dimension ofA is chosen to have any Gaussian feature resulting from theotdion h * x*
belonging to the observation windo{, . .. ,m}. This implies thatA is slightly undercompleten > n).
Denoting byn;, = 1 + 2round30) the size of the support di, the data size reads = n + n; — 1.

B. Separation of two close Gaussian features

We first analyze the ability of SBR to separate two Gaussiatufes [(x*||o = 2) from noise-free data.
The centers of both Gaussian features lay at a relativendista(expressed as a number of samples) and
their weightsz} are set to 1. We generate the corresponding noise-freeydagmd we run SBR); \)
with a number of predefined-values. We analyze the SBR outpu®\;d) by computing their size
Card [Q()\; d)] and by testing ifQ()\; d) is equal to the true suppo&(x*). Table Il shows the results
obtained for a problem of siz800 x 270 (m = 300,0 = 5, andn; = 31) with distances equal to
d = 20, 13, and 6 samples. The grid afvalues for which SBR is run is common to the three tests.
The maximal value\, is chosen in such a way that the outgdt\y; d) is empty (see Proposition 2)
and the other values are set according\fo= \o/107. It is noticeable that the exact recovery is always
reached provided that is sufficiently small. This result remains true even for deratlistances (from
d = 2). When the Gaussian features strongly overiap, for d < 13, the size of the support obtained as

output first increases whila decreases, and then for lowgfvalues, removals start to occur, enabling
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TABLE 11l
SEPARATION OF TWOGAUSSIAN FEATURES FROM NOISEFREE DATA WITH SBR.d STANDS FOR THE DISTANCE BETWEEN
THE GAUSSIAN FEATURES WE DISPLAY THE SIZE OF THE SUPPOR'Q()\; d) OBTAINED WITH A SEQUENCE OF DECREASING
A-VALUES Ao > A1 > ... > A7. THE LABEL * INDICATES AN EXACT RECOVERY FOR A SUPPORT OF CARDINALITY.

A A | A A2 | A3 | A | A5 | de | A Ay
d=20 | O o| 2|2 | 2|2 | 2 2*
d=13 | O 1 3 4 5|20 | 2 2*
d=26 0 1 1 3 5 6 8 2"

the exact recovery. Similarly to SBR, forward algorithmelsas OMP and OLS start by positioning a
(wrong) Gaussian feature in between the two Gaussians inftfs iteration but in the latter case, the

early wrong detection disables an exact recovery.

C. Behavior of SBR for noisy data

We run SBR on more realistic noisy data and on a larger prolglera- 3000 samples). The unknown
sparse signak* is composed of 17 Gaussian features. The impulse respenseof sizen; = 301
(o = 50) yielding an observation matriX of size 3000 x 2700, and the SNR is set to 20 dB.

Fig. 1 displays the simulated data and the SBR results addaiiith a fewA-values. Wher\ decreases,
the SBR approximations are of better quality but less sp#&ielargeX-values, only the main Gaussian
features are found, and then, wh&rdecreases, the smaller features are being recovered éngeiti
unwanted features. Removals rarely occur for coarse appadons. They occur more frequently when
two estimated features are overlapping and for Jowalues. On the simulation of Fig. 1, removals occur
for A < 0.15, yielding approximations that are more accurate than tlodé@ined with OLS and for the
same cardinality (the residuidy — Ax||? is lower), while when\ > 0.15, the SBR output coincides with
the OLS iterate of same cardinality. Although the perforoeaonf SBR is at least equal to that of OLS,
the exact support o&* is never found. However, it must be stressed that the proldewery difficult
because the data are noisy and the neighboring columdsast highly correlated. In such difficult case,
one needs to perform a wider exploration of the discretd &eit}™ by introducing moves that are more
complex than single replacements. Such extensions wezadyirproposed in the case of SMLR. One
can for instance shift a detected spikeforwards of backwards [29] or update a block of neighboring

components jointly €.9.,z; andx;,1) [30].
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Fig. 1. Gaussian deconvolution results. Problem of 8# x 2700 (o = 50). (a) Generated data, with 17 Gaussian features

and with SNR = 20 dB. The exact locations are labeledb. (b,c,d) SBR outputs and data approximations with empirica

settings of\. The estimated amplitudes are shown with vertical spikes. The SBR outputs (suppores)oésize 5, 9, and 19,

respectively. The computation time always remains belove@sds (Matlab implementation).

VI. JOINT DETECTION OF DISCONTINUITIES AT DIFFERENT ORDERS IN AISNAL

We now consider another challenging problem, the jointa&te of discontinuities at different orders
in a signal. We process both simulated and real data and gentha performance of SBR with
respect to other sparse approximation algorithms (OMP alo®)@n terms of discontinuity estimation,
approximation accuracy, and computation time. Firstly, farenulate the detection of discontinuities at
a single orderp as a spline approximation problem. Then, we take advantédhi formulation to

introduce the joint detection problem more easily.

A. Approximation of a spline of degree

In the continuous case, a signal is a spline of degreeith k& knotsif and only if its (p + 1)-th

derivative is a stream of weighted Diracs [31]. In the discrete case, we introducedic&onary A?
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Fig. 2. Signalsa? related to thep-th order discontinuities at locatioh a? is the Heaviside step functiom; is the ramp

function, anda? is the one-sided quadratic function. Each signal is equaldblocationi and its support is equal t@, . .., m}.

formed of shifted versions of the one-sided power functior k¥ £ [max(k,0)]? for all possible shifts

(see Fig. 2).AP represents the integration operator of degreel. Denoting by{1,...,m} the support
of the data signay, the shifted signala! (for i € {1,...,m}) read

Vke{l,...,m}, a’(k) = (k—i+ 1) (22)

and their support is equal tfi,...,m}. Finally, we form the dictionaryd? = [af,...,a;, ] of size

m X (m — p). It does not make sense to allow the occurrence pftla order discontinuity for the last
samplesi(e., to includea! for i > m — p) since the spline approximation would require to recomstru
a polynomial of degree in the range{i, ..., m} from less tharp + 1 data samples.

We address the spline approximation problem as the spapp®xamation of y by the piecewise
polynomialg? = APzxP (actually, we impose as initial condition that the splinaedtion is equal to O for
k < 0). The sparse approximation consists in the detection ofdibeontinuity locations (also referred
to as knots in the spline approximation literature) and thgntion of their amplitudest? codes for
the amplitude of a jump at location(p = 0), the change of slope at locatian(p = 1), etc. Here, the

notion of sparsity is related to the number of discontinlityations.

B. Approximation of a piecewise polynomial of maximum dedte

Following [31], we formulate this problem as the joint detex of discontinuities at orderp =

0,...,P. Let us append the elementary dictionari4® in a global dictionaryA = [A°,..., AF]. The
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approximationg = Ax of a given signal rereadg = Zp APxP where vectoer = {z, ..., 2"} gathers
the p-th order amplitudeg? for all p. Whenx is sparse, all vectors? are sparse and the approximation
signalg is the sum of piecewise polynomials of degree lower tirawith a limited number of pieces.
The dictionaryA is overcomplete since it is of size x s, with s = (P + 1)(m — P/2) > m for all

P > 1. Moreover, it is highly correlated: any columuf is strongly correlated witkall other columns
a? because their respective supports are the inteffials ., m} and {j,...,m}, and hence overlap.
The discontinuity detection problem is difficult, as mosgalthms are very likely to position wrong
discontinuities in their first iterations. For example, whapproximating a signal with two discontinuities
at distinct locationg and j, they start to position a first (wrong) discontinuity in been: and j, and

forward algorithms cannot remove it (see Section VI-E argl Bifor details).

C. Adaptation of SBR

It is important to notice that the dictionary defined abovesioot satisfy the unique representation
property. For instance, the difference between two discramps at locations andi + 1 yields the
discrete Heaviside function at locatiana; — a;,, = a. More generally, forp > 1, a? — a”, | reads
as a linear combination af! anda?H (g=1,...,p—1).

As mentioned in Section I, the SBR algorithm basically rieggithat the dictionary satisfies the URP
to ensure that the Gram matriXo = A}, Ao is invertible, but this assumption can be relaxed provided
that only full rank matricesAo are explored. Here, SBR is slightly modified, based on thiahg

proposition which gives a sufficient condition of invertityi of Go.

Proposition 3 Let n; denote the number of discontinuitie$, p = 0,..., P which are being activated
at sample;, i.e., for whichz! # 0. Let us define the binary conditiaf(7):

o if n; =0, C(i) = 1;

o ifn; =1, Ci) £ (Vje{l,....,ny — 1}, njy; = 0).

If Q is such that for all;, C(i) = 1, thenGg is invertible.

Proposition 3 is proved in Appendix A.

Basically, it states that we can allow several discontiagito be active at the same locatignbut
then, the next samples+ 1,...,i+ n; — 1 must not host any discontinuity. This condition ensure$ tha
there are at most; discontinuities in the interva{i,...,i + n; — 1} of lengthn;. The adaptation of

SBR consists in testing insertions into the current acteteosly if the above condition remains true.
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Fig. 3. Joint detection of discontinuities at orders 0 andite dictionary is of sizd 000 x 1999 and the data signa} includes
18 discontinuities. The true and estimated discontinuitations are represented with unfilled black and filled gebels. The
shape of the labels (circular or triangular) indicates ttseahtinuity order. The dashed gray and solid black curegsesent
the data signay and its approximatiomx for the least\-value. (@) Signal approximation from noise-free data. fdwvery
is exact and both curves are superimposed. (b)¢5” curves showing the squared residual versus the cardinfalit SBR,
OLS, and OMP. The SBR performance is expressed only for\thelues that are larger thakxo, because below this value,
the recovery is exact and the log-residual is equal-te. (c,d) Similar results for noisy data (SNR = 35 dB).

D. Numerical simulations

Let us first consider the case = 1, leading to the joint detection of discontinuities of ordearo
and one,.e., the piecewise affine approximation problem. We simulateserfiee datay* = Ax* of
sizem = 1000 and with |z*||o = 18 discontinuities (see Fig. 3(a)). We use the result of Pribpos2
to compute the value,,x below which the SBR output is not the empty set, and we run SBR w
Aj = Amax 10792 for j =0, ..., Jmax, With Jypax = 20. These\-values provide a sequence of solutions

at different sparsity levels. For comparison purpose, e aln 27 iterations of OMP and OLS.
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The SBR approximation shown in Fig. 3(a) corresponds to ¢last\-value ;. The recovery is
exact. The £5-/y” curves represented on Fig. 3(b) express the squared edgjgu- Ax||? versus the
cardinality ||| for the output of each algorithm. Whatever the level of siparSBR yields the least
residual. We did the same experiment with noisy data Ax* + n, setting the SNR to 35 dB (see
Figs. 3(c,d)). Again, thets-¢y” curve corresponding to SBR lays below the OMP and OLS curives
most sparsity levels, SBR outperforms the other algoritiiwe that for more noisy dat&.g.,SNR =
15 dB), the SBR and OLS curves coincide and still lay below@P curve.

E. AFM data processing

In Atomic Force Microscopy (AFM), a force curve measuresittieratomic forces exerting between a
probe associated to a cantilever and a nano-object. Mooisptg the recorded signal— y(z) shows the
force evolution versus the probe-sample distanoexpressed in nanometers. Researching discontinuities
(location, order, and amplitude) in a force curve is a cimgjieg task because they are used to provide
a precise characterization of the physico-chemical pt@senf the nano-object (topography, energy of
adhesiongtc) [32].

The data displayed on Fig. 4(a) are related to a bacteribbtewanella putrefacienaying in aqueous
solution, interacting with the tip of the AFM probe [33]. Arfe curve is recorded in two steps. Firstly,
the tip is positioned far away from the sample. It is movedams the sample until the contact is reached
and the surface of the bacterial cell is deformed (approacteg. Secondly, the tip is retracted from the
sample until it loses contact. The experimental curve showirig. 4(a) is a retraction curve composed
of m = 2167 force measurements. From right to left, three regions @frest can be distinguished. The
linear region on the right characterizes the rigid contatiieen the probe and the sample. It describes the
mechanical interactions of the cantilever and the samgle.rigid contact is maintained until~ —2840
nm. The interactions occurring in the intervale [—3050, —2840] nm are adhesion forces during the
retraction of the tip. In the flat part on the left, no interastoccurs as the cantilever has lost contact
with the sample.

We search for the discontinuities of orders 0, 1, and 2. @ifyilto the processing of simulated data,
we run SBR withJ,,x = 14 A-values and we run OLS and OMP until iteration 41. For eacbrélgn,
we plot the »-¢y” curve representing the squared residigl— Ax||? versus the cardinalityz||o, and
a curve displaying the time of reconstruction versus thédipatity (see Figs. 4(b,c)). These figures show
that the performance of SBR is at least equal and sometintts bean that of OLS. Both algorithms yield

results that are far more accurate than OMP at the price ofgaria@omputation time. However, notice
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Fig. 4. AFM data processing: joint detection of discontiias at orders 0, 1, and 2 (problem of si2é67 x 6498).
(a) Experimental data showing the force evolution versaspitobe-sample distanee (b) Squared residual versus cardinality
for the SBR, OLS, and OMP outputs. (c) Time of reconstructiersus cardinality for the three algorithms.

that the recorded computation time always remains belowsgs@nds in the case of SBR (in a Matlab
implementation taking advantage of the block Toeplitzcttite of the dictionary: see Section I1V-D).

Fig. 5 displays the approximations yielded by the three ritlgms for supports of cardinality 2 and 5.
SBR actually runs during 6 iterations (4 insertions and 2awats are performed) to reach a support of
cardinality 2. This approximation is very accurate comgaethe OMP and OLS results obtained after
2 iterations (Figs. 5(a,b,c)). SBR provides a very preamalization of both first order discontinuities,
which are crucial information for the physical interpretatof the data. On the contrary, OLS does not
succeed after two iterations; it is able to locate accwabelth discontinuities once 5 iterations have
been performed (the desired discontinuities are the firdttha last ones among the 5) while OMP fails
even after 5 iterations (Figs. 5(d,e,f)). The residualdeel by the SBR approximation of cardinality 5
remains lower than the corresponding OLS and OMP residuals.

In order to better understand the forward and backward m{respectively, insertions and removals)
occurring during the SBR iterations, we display in Table hé tresidually — Ax||> and the cardinality
of each iterate for both SBR executions. Because SBR is &deatgorithm, the penalized casi(x; \)

keeps decreasing but when a removal occilsi~ Ax||? increases. For the coarse approximation of
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(d) SBR (7+/ 2-) (e) OLS (5 iterations) (f) OMP (5 iterations)

Fig. 5. AFM data processing: joint detection of discontiies at orders 0, 1, and 2. The estimated discontinuitiesre
represented with vertical spikes and with a label indigatine discontinuity order. The dashed gray and solid blaakesu
represent the data signgl and its approximationAx, respectively. (a) SBR output of cardinality 2: 4 insertoand 2
removals have been dona & 2085). (b,c) OLS and OMP outputs after 2 iterations. (d,e,f) Saineulation with a lower

A-value = 66). The SBR output is of cardinality 5 (7 insertions and 2 reaig)jyand we stop OLS and OMP after 5 iterations.

TABLE IV
BEHAVIOR OF THE SBRITERATES FOR BOTH APPROXIMATIONS OFFIG. 5(A,D). THE TABLES DISPLAY THE SQUARED

ERROR||y — Ax||®> VERSUS THE CARDINALITY ||&||lo FOR EACH ITERATE i STANDS FOR THE ITERATION INDEX

i lz]lo Error
- 0 0 2101.408
i llz]lo Error
1 1 16.870
0 0 2101.408
2 2 12.266
1 1 16.870 3 3 3074
SBR 2 2 12.266 SBR :
3 3 3.074 4 4 042
(A = 2085, 4+/ 2-) : (A =66, 7+/2-) 5 3 663
4 4 642
6 4 555
5 3 663
7 5 480
6 2 938
8 4 532
9 5 464
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Fig. 5(a), the residual is much smaller than the residudbgi: by OLS since two configurations of
cardinality 2 have been explored (see the left table andawe m bold). We observed the same behavior

for the finer approximation of cardinality 5 (right table).

F. Discussion

In the two previous subsections, we chose to compare SBROMP and OLS. We did not consider
simpler algorithms like MP which are well suited to rapidiyhee easier problems in which the dictionary
columns are almost orthogonal. Because SBR involves momplex operations (matrix inversions), we
chose to compare it with OMP and OLS which also require toesalivleast one least-square problem
per iteration. Their target is to provide results which arerenaccurate than the MP approximations in
the case of difficult problems.

Up to our knowledge, the only minimization algorithm dedézhto the/y-penalized cost function
J(xz;\) = ||y — Az||? + \||z||o is Blumensath and Davies’ Iterative Hard Thresholding (JHd]. It
relies on gradient based iterations of the farm= x + A’(y — Ax), followed by the thresholding to 0 of
all the non-zero components such thatx;| < A%, We tested this version of IHT on both deconvolution
and discontinuity detection problems and we observed thatéss efficient than the standard version of
IHT, dedicated to the,-constrained problem. In the constrained version,Aftomponentsgz;| having
the largest amplitudes are kept and the others are beinghtiided. Generally speaking, we observed that
IHT is competitive when the correlation between any pairiofidnary columns is limited, but for highly
correlated dictionaries, IHT needs a very large numbereséitions (O(m?)) to reach convergence. SBR
seems to be better suited to such difficult problems. It is fEmsitive to the initial solution and “skips”
some local minimizers having a large cgstx; \). We here recall that according to Proposition 1, each
SBR iterate is almost surely a local minimizer Gi{x; \).

In order to link up our approach to the forward-backward tgm of [14], we also tested an OMP-
like adaptation of SBR in which only one least-square pnwblie solved per iteration, instead of
This adaptation consists in replacing the selection rulg (& the following way. When an insertion
Q U {i} is tested, all the active components are kept constant ang; is set to the minimizer of
|y — Axg—=;a;|*. This leads to an approximation &fg.;(\) without solving any least-square problem.
Similarly, the removal test consists in settingto O and leaving the other components unchanged.
In brief, this adapted version is an algorithm aimed at theimization of 7 (x; \) at a cost which is
comparable to that of OMP. In all our trials, SBR performstérethan the OMP-like version except

in very simple cases (limited correlation between the caisia,;) where both versions yield the same
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result. The performance of the OMP-like version fluctuatelw or above that of OMP but is almost

always far less accurate than the OLS and SBR approximations

VIlI. CONCLUSION

We have evaluated the SBR algorithm on two problems in whighdictionary columns are highly
correlated. SBR provides solutions which are at least agratzas the OLS solutions and sometimes more
accurate, with a cost of the same order of magnitude. Foetdifcult problems, MP and OMP provide
poor approximations within a lower computation time. Congplato OLS, we believe that performing
removals is the price to pay if one expects an enhanced guatiproximation. Although removals
rarely occur in comparison with the insertions, they playimportant role in the enhancement of the
approximation.

In the proposed approach, the main difficulty relies in theiod of the-value. If a specific sparsity
level or approximation residual is desired, one can resagttrial and error procedure in which a number
of A-values are tried until the desired approximation leveloisrfd. In [34], we sketched a continuation
version in which a series of SBR solutions are successistlynated with a decreasing level of sparsity
A, and the\-values are recursively computed. The fikstalue is set to\y = +o0, and at a given value
i, the initial solution (input of SBR) is set to the SBR outptit\a= \;_;. This continuation version
provides promising results and will be the subject of a fatextended contribution. A similar perspective
is actually proposed by Zhang to generalize his FoBa algoriin a path-following algorithm (see the
discussion section in [14]).

Another important perspective is to investigate whetheR$Bn guarantee exact recovery in the noise-
free case under some conditions on matixand on the unknown sparse signgl. In the simulations
done in Section V, we observed that SBR is able to exactlyvedwvo close Gaussian features whatever
their distance, provided that the hyperparametas sufficiently small. This promising result is a first
step towards a more general theoretical study. The FoBaithigo[14] yields exact recovery results for
problems satisfying the Restricted Isometry Property JRBhce the structure of SBR is somewhat close
to that of FoBa, we expect that SBR shares similar theotgpicgperties. We will investigate whether

the proofs provided in [14] are extendable to SBR.

APPENDIX A

PROOF OFPROPOSITION3

The following lemma is a key element to prove Proposition 3.
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Lemma 1 Consider an active sap satisfying the condition of Proposition 3, and et = min{i | n; >
0} denote the lowest location of an active entry. Up to a redragof the columnsAg rereadsAg =

[A;-, Ag\(i-}] With obvious notations. IfAg\ (;-y is full rank, thenAg is also full rank.

Proof: Let I = n;- denote the number of discontinuities at locationand let0 < p; < ps <
... < pr denote their order, sorted in the ascending order. Suppaséhiere exist two families of scalars

{p?2, ... pl’} and{u! |i # i~ andi is active at ordep} such that

I
domral+ Y Y pal=0. 23)
j=1

i#i= P
Let us show that all:-values are then equal to 0.

Rewriting the first/ nonzero equations in this system and beca@ssatisfies the condition of
Proposition 3, we have, for alt € {i—,...,i~ + 1 — 1}, Z;mef (k 4+ —1)» = 0. In other
words, the polynomiaF' (X) = Ezzl pt? XPi hasl positive roots. It is shown in [35, p. 76] that a non-
zero polynomial formed of monomials of different degree has at mdst 1 positive roots. Therefore,
F is the zero polynomial and all scalam§i’ are 0. We deduce from (23) and from the full rankness of
Ag\ -y thatp? = 0 for all (i, p).

We have shown that the column vectors4§ are linearly independenite., that Ao is full rank. ®
The proof of Proposition 3 directly results from a recursagplication of Lemma 1. Starting from the

empty set, all the indices, sorted by decreasing order,rataded successively.
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