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Abstract

Formulated as a least-square problem undefyaconstraint, sparse signal restoration is a discrete
optimization problem, known to be NP complete. Classicgbathms include, by increasing cost and
efficiency, Matching Pursuit (MP), Orthogonal Matching suwit (OMP), Orthogonal Least Squares (OLS)
and the exhaustive search algorithm. In inverse problerahiimg highly correlated dictionaries, OMP
and OLS are not guaranteed to find the optimal solution. If interest to develop slightly slower sub-
optimal search algorithms yielding better approximatiofie revisit the Single Most Likely Replacement
(SMLR) algorithm, developed in the mid-80’s for BernouBiaussian signal restoration. We show that
the formulation of sparse signal restoration as a limit caséernoulli-Gaussian signal restoration
leads to ardy-penalized least-square minimization problem, to whichL®Vcan be straightforwardly
adapted. The resulting algorithm, called Single Best Regsteent (SBR), can be interpreted as a forward-
backward extension of OLS. A fast and stable implementasigmoposed. The approach is illustrated on
a deconvolution problem with a Gaussian impulse respondeoarthe joint detection of discontinuities

at different orders in a signal.

Index Terms

Sparse signal estimation; inverse problems; Bernoulligsan signal restoration; SMLR algorithm;

minimization of mixed¢s-¢y cost functions; Orthogonal Least Squares; forward-bacdttwaeedy algo-

rithms.
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. INTRODUCTION

Sparse signal restoration arises in the field of inverselenad such as Fourier synthesis, mono- and
multidimensional deconvolution, and statistical regi@sslt consists in the decomposition of a given
signaly as a linear combination of a limited number of elements frasiconary A. While formally very
similar, sparse signal restoration has to be distinguistoed sparse signal approximation in two respects.
The main difference is that in sparse signal restoratioa,ctoice of the dictionary is imposed by the
inverse problem at hand whereas in sparse signal appragim#te dictionary has to be chosen according
to its ability to represent the data with a limited number oéfficients. A more subtle difference is that

in sparse signal restoration, the focus is set on the estimaf the weights of the linear combination
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while in sparse signal approximation, the goal is to repoedihe datay as well as possible at a given
level of sparsity.

Sparse signal restoration can be formulated as the miniimizaf a least-square cost function of the
form £(z) = ||y — Az||* under the constraint that thg pseudo-norm ofe, defined as the number
of non-zero entries ine, is lower than a given numbédr. This problem is often referred to asibset
selection because imposing the sparsity constraint consists irttigjea subset of columns cd. This
yields a discrete problem (since there are a finite numberoskiple subsets) which is known to be
NP-complete [1], [2]. In this paper, we focus on “difficulttgblems in which some of the columns of
A are highly correlated, the unknown weight vector is only approximately sparse, and/or the data
are noisy. Hereafter, we distinguish two approaches toemddihe subset selection problem in a fast and
sub-optimal manner and we discuss their relevance for diffigroblems.

The first approach, which has been the most popular in theémstde, approximates the subset selection
problem by a continuous optimization problem, convex or, tiwt is easier to solve [3]—[6]. In particular,
the approach that replaces thenorm by the/;-norm [5], [6] has been increasingly investigated, leading
to the LASSO optimization problem. Its popularity relies efficient algorithms, such as LARS which
finds the set of solutions for all degrees of sparsity [7], [Bgveral authors have provided sufficient
conditions under which thé)- and ¢;-constrained least-square problems lead to solutionsnatvie
same support [6], [9], [10]. These conditions typicallytstéhat the unknown weight signal has to be
highly sparse, that the correlation between any pair ofrooki of A must be sufficiently small, and that
the noise level must be low. They are often not satisfied wheadiry with real data.

The second approach addressesek@ctsubset selection problem using a fast and sub-optimallsearc
algorithm. A first possibility is to use a thresholding algom, e.g., CoSaMP [11] and lIterative Hard
Thresholding (IHT) [12]. For instance, IHT relies on gratidased iterations of the form’ = x +
Al(y — Azx) followed by the thresholding of a number of non-zero compsieAnother possibility is to
resort to greedy search algorithms which gradually in@easdecrease by one the set of active columns.
The simplest greedy algorithms are Matching Pursuit (MB] @nd the improved version Orthogonal
Matching Pursuit (OMP) [14]. Both are referred to as forwgrdedy algorithms, since they start from
an empty active set and then gradually increase it by oneeglerm contrast, the backward algorithm of
Couvreur and Bresler [15] starts from a complete active $ethvis gradually decreased by one element.
It is, however, only valid if the dictionary is not overcorefg. A few authors have introduced forward-
backward algorithms in which insertions and removals ofidli@ry elements into the active set are both

allowed [16], [17]. This strategy yields better recoveryfpemance since an early wrong selection can
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be counteracted by its further removal from the support.dnt@ast, the insertion of a wrong element is
irreversible when using forward algorithms.

The choice of the algorithm depends on the amount of timdablaiand on the structure of matri.

In favorable cases, the sub-optimal search algorithmsithescabove (belonging to the first or the second
approach) provide solutions having the same support asxinieustive search solution. For example, if
the unknown signalke* is highly sparse and if the correlation between any pair dfirmos of A is
low, the ¢/1-norm approximation provides optimal solutions [6], [9],0]. In other cases, however, the
only guarantee to recover the optimal solution is to use #estive search algorithm. When fast sub-
optimal algorithms lead to unsatisfactory results, it isgoat interest to develop slower sub-optimal
algorithms providing more accurate solutions, but renmgjniery fast compared to the exhaustive search.
The Orthogonal Least Squares algorithm (OLS) [18] whichosistimes confused with OMP [19], falls
into this category. Both OLS and OMP share the same strydhgalifference being that at each iteration,
OLS solves a large number of least-square problems ¥, wherek is the cardinal of the current active
set) while OMP only computes the — &£ inner products between the current residyat Az and the
candidate columng; and chooses the column yielding the maximal inner produtiPGsolves only
one least-square problem per iteration, once the columretinerted is selected (in order to update
all the active weights). In the following, we propose a fordrdackward extension of OLS allowing
an insertion or a removal at each iteration, each iteratamuiring to solven least-square problems. It
differs from the FoBa algorithm of Zhang [17] which is an OM#Vfard-backward extension. It is closer
to the bidirectional OLS based algorithm of Haugland [18f tmain differences relying on the search
and implementation strategies.

The starting point of our forward-backward algorithm is Siagle Most Likely Replacement (SMLR)
algorithm, which proved to be a very efficient tool for the deeolution of a sparse signal modeled as a
Bernoulli-Gaussian process [20]-[23]. This approactesetin a Bayesian formulation of a deconvolution
problem of the formy = Ax + n (where A denotes the convolution matrix) and on the maximam
posteriori (MAP) estimation of the sparse signal. The Bernoulli-G#arssnodel is a probabilistic model
for sparse signals, in which (binary) Bernoulli random ahtés are associated to the position of the
non zero entries inc while the corresponding amplitudes are distributed adongrtb an independent
identically distributed (i.i.d.) centered Gaussian disttion of variances2. SMLR is a deterministic
ascent algorithm which maximizes the posterior likelihamd sub-optimal manner. It consists in updates
(increase or decrease) of the supportedby one element and the subsequent estimation of the non-zero

amplitudes. Sparse signal restoration can be seen as actgt of Bernoulli-Gaussian MAP restoration
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in which the variancer2 of the amplitudes is set to infinity. We will deduce an addptabf SMLR to
subset selection relying on a single insertion or a singheoral of a column into/from the active set.
The paper is organized as follows. In Section I, we intraddice Bernoulli-Gaussian model and
the Bayesian framework from which we formulate the spargaadirestoration problem. In Section lll,
we adapt the SMLR algorithm resulting in the so-called Singest Replacement (SBR) algorithm. In
Section 1V, a fast and stable SBR implementation is propobaded on the efficient update of the
squared error when the active set is modified by one elemémllfs Sections V and VI illustrate the
method on the sparse spike deconvolution with a Gaussianlgmpesponse and on the joint detection

of discontinuities at different orders in a signal.

. FROM BERNOULLI-GAUSSIAN SIGNAL MODELING TO SPARSE SIGNAL REPRESENTATION

We consider the restoration of a sparse signdtom a linear observationy = Ax + n, wheren
stands for the observation noise. An acknowledged prabtabimodel dedicated to sparse signals is the
Bernoulli-Gaussian (BG) model [20], [21], [23]. For such ded, deterministic optimization algorithms
are used to perform MAP estimation [23] while Markov chain il Carlo techniques are used to
compute posterior mean estimates [24]. We first recall thesknBG models and the formulation of
BG signal restoration in the Bayesian framework. Then, wergk this formulation to a more general

representation of sparse signals.

A. Preliminary definitions and working assumptions

Given an observation vectay € R™ and a dictionaryA = [a,...,a,] € R™*", a subset selection
algorithm aims at computing a weight vecterc R" yielding an accurate approximatian~ Ax of
the observation. The columns of A whose indices correspond to the non-zero componentsf x
are referred to as the active (or selected) columns.

Throughout this paper, we do not make any assumption on #e diA: m can be either lower
or greater tham. Here, we assume thad satisfies the unique representation property (URP). This
assumption is classical in the sparse signal approximéitenature, in the case where < n [25]. It is
a stronger assumption than the full rank assumption. We mmallrthis definition and extend it to the

case wheren > n.

Definition 1 Whenm < n, A satisfies the URP if and only if any selectionmefcolumns ofA forms

a family of linearly independent vectors. When> n, A satisfies the URP if and only if it is full rank.
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Before going further, let us mention that this assumptiamlearelaxed providing that the search strategy
can guarantee that the selected columngtafesult in a full rank matrix (see Section VI-C for details).

Under the URP assumption, when < n, the systemy = Ax has a number of solutions whose
£o-norm are lower or equal toy since any selection ofi columns yields a solution of the system. When
m > n, there is generally no solution & = Az but the least-square estimater= (A'A)~!Aly is

unique, although not necessarily sparse.

Definition 2 The support of a vectar € R" is the setS(x) C {1,...,n} defined byi € S(x) if and
only if z; # 0.

Definition 3 We denote by C {1,...,n} the active set and we define the related vegtar {0,1}"
by ¢; = 1 if and only ifi € Q. Let Ag be the submatrix of sizev x Card [Q] formed of the active
columns ofA (a;, i € Q). The observation mode} = Ax + n also readsy = Aot + n, where the

reduced vectot of sizeCard [Q] gathers the value$z;, i € Q}.

Definition 4 For all Q@ C {1,...,n} such thatCard [Q] < min(m,n), let xg be the least-square

solution and letfg be the associated squared error:

g £ argmin{&(z) = |y - Az|’} 1)
S(x)CQ
g £ E(zo) =|ly — Azo|?, 2)

where|| . || denotes the Euclidean norm.

B. Bernoulli-Gaussian models

A BG proces$ x can be defined by means of a Bernoulli random vegter {0, 1}" corresponding to
the active set, and a Gaussian random veeter A'(0,021,,) such as each sampig of = is modeled
asx; = q;r; [20], [21] (Z,, stands for the identity matrix of size x n). In the vector form,z reads
x = Agr Where A, is the diagonal matrix of size x n whose diagonal elements are equal{oThe
Bernoulli random variableg; ~ B(p) are i.i.d. They code for the presenag € 1) or absenceg; = 0)
of signal at location, the Bernoulli parameter = Pr(¢; = 1) being the probability of presence of signal.

The nonzero signal amplitudes are controlled by their variancg?. Becauseay andr are independent

1For convenience, we use the same notations for random seatat their realization.
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random vectors, the prior likelihoods gfandx = (g, r) read:

I(q) = pIIQHo(l_p)n—llqllo (3)
lgr) = Unia) = glrio2L) plth( — p) I, @

whereg(.; ') denotes the probability density function of the centered<san distribution with covari-

ance matrixT.

C. Bayesian formulation of sparse signal restoration

The Bayesian formulation of the inverse problgm= Ax + n consists in inferring the distribution of
x = (g,r) knowing y using Bayes'’ rule. The MAP estimator af can be obtained by maximizing the
marginal distribution(q | y) [23] or the joint distribution/(q, r | y) [21], [22]. Following [21], we focus
on the joint likelihoodi(q,r | y) which leads to a cost function involving the squared eff@r— Ax||?
and thely-norm of x.

Assuming an i.i.d. Gaussian noise distributien~ A(0,021,,) and that the noise is independent
from the sparse signal, the posterior likelihood(g, | y) can be expressed using Bayes’ rule. Denoting

L(g,7) = —20%1og[l(q,r|y)], we have:

Ug.r|y) o gly— AAgrionLy) g(r;onl,) plal (1 — p)rldle,

2
g
Llgm) = |y~ AAgr|*+ =5 |Ir|* + 207, 10g(1/p — 1)lg]lo + constantm, n, 0, 02),  (5)

T

wherecx indicates proportionality. Giveg, let us splitr into two subvectors: andt indexed by the null
and non-null entries o, respectively. SinceAA,r = Aot does not depend oa, it is easy to check
thatmin,, £(q,t,u) = L(q,t,0). Finally, the joint MAP estimation problem reduces to theximization

of L(q,t,0) w.rt. (g,t).

D. Mixed ¢3-¢3 minimization as a limit case

A sparse signal is a signal for which a number of entries are equal 0.4, ||z|o < k for some
value of k. Since this definition does not impose constraints on thgeasf values of the non zero
amplitudes, we choose to describe a sparse signal by a lierindBilli-Gaussian model in which the

amplitude variance? is set to infinity. The minimization of(q,t,0) thus rereads:

min{£(g,t,0) = |y — Aot|” + Alalo}, (6)
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with A = 202 1og(1/p — 1). This compound criterion is composed of a quadratic ddiaditerm and a
penalization term favoring the sparsity of the sigmalThe hyperparametex is related to the level of

sparsity of the desired solution.

Theorem 1 The above formulatioi6) is equivalent to:
min {7 (z; ) = [ly — Az|* + Az}, (7)
xzcR"

which is referred to as théy-penalized least-square probleithe term “equivalent” means that given
a minimizer(q,t) of (6), the related vectoer = {¢,0} is a minimizer of (7), and conversely, given
a minimizerx of (7), the vectorsq and t defined as the support of and its non-zero amplitudes,

respectively, are such thag, t) is a minimizer of(6).

Proof: To prove the equivalence, we first prove thain, 7 (x; \) = ming + £(q,t,0):
o Let z be a minimizer of7(.; \). We setq to the support ofc andt to the non zero amplitudes of
x. Obviously, it follows that7 (z; \) = £(q,t,0). Finally, ming J(x; \) > ming ¢ £(q,t,0).
» Let (g,t) be a minimizer of£(q,t,0). The vectorr = {t,0} is such thatAz = Aot and||z||o =
lItllo < |lgllo. Therefore,J (x; X) < L(g,t,0). It follows thatming s £(g,t,0) > ming J (x; \).
We have shown thating J(z; A\) = ming ¢ £(g,t,0), but also that the minimizers of both problems
coincide,i.e., are vectors describing identical signals. [ |
In the following, we focus on the minimization problem (7yaiving the penalization termiz||o. The
algorithm that will be developed hereafter is based on amieffi search of the support af. In that
respect, théy-penalized least-square problem does not drasticallgrdifbm the/y-constrained problem

min ||y — Az||? subject to||z||o < k.

[1l. ADAPTATION OF SMLR TO ¢y-PENALIZED LEAST-SQUARE OPTIMIZATION

We propose to adapt the SMLR algorithm to the minimizatiothef mixed/s-¢, cost function7 (x; \)
defined in (7). To clearly distinguish SMLR which specifigaliims at minimizing (5), the adapted

algorithm will be termed as Single Best Replacement (SBR).

A. Principle of SMLR and main notations

The Single Most Likely Replacement algorithm [20] is a detigistic coordinatewise ascent algorithm
to maximize log-likelihood functions of the foriq | y) (marginal MAP estimation) oi(q, ¢,0| y) (joint

MAP estimation). In the latter case, it is easy to check frétijat giveng, the maximizer oi(q,¢,0 | y)
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w.r.t. t has a closed form expressien= t(q). Consequently, the joint MAP estimation reduces to the
maximization ofi(q,t(q),0|y) w.r.t. g. At each SMLR iteration, all the possible single replacetsen
of the supportg (setq; = 1 — ¢; while keeping the othey;, j # ¢ unchanged) are tested, then the
replacement yielding the maximal increasel(f, t(q),0|vy) is chosen. This task is repeated until no
single replacement can incredse, t(q), 0| y) anymore. The number of possible suppartseing finite
(2™) and SMLR being an ascent algorithm, it terminates after isefimumber of iterations.

Before adapting SMLR, let us introduce some useful notation

« We denote byQ e i a single replacemenig., the insertion or removal of an indexinto/from the

active setQ:

Qeil QU {i} ifigé% ®)
O\{i}  otherwise

o If Card[Q] < min(m,n), we define the cost functions:

Jo(\) = J(xgi)) =Eg + Alzalo, (9)

'
©
=

Il

Eo + A\Card [Q], (10)

where the least-square solutie, and the corresponding errép have been defined in (1) and (2).

Obviously,7o (M) = Ko(A) if and only if xg has a support equal @. In subsection I1I-B, we introduce
a first version of SBR involving7o () only, and in subsection 1lI-C, we present an alternativenfsér)
version relying on the computation d@fo()) instead of 7o(\) and we discuss in which extent both

versions differ. Then, subsection 1lI-D describes the bahaof SBR and states its main properties.

B. The Single Best Replacement algorithm (preliminaryigajs

SMLR can be seen as an exploration strategy for discretenggatiion rather than an algorithm specific
to a posterior likelihood function. Here, we use the sameategyy to minimize the cost functiaff (x; A).
We rename the algorithm Single Best Replacement to remoyestatistical connotation. The SBR
algorithm works as follows. At each iteration, thepossible single replacemeng@e i (i = 1,...,n)
are tested, then the best is selecied, the replacement yielding the maximal decrease/¢&; \). This
task is repeated untif/ (x; A\) cannot decrease anymore. We now detail one SBR iteration.

Consider an active saD. For each index € {1,...,n}, we compute the minimizexg,; of £(x)
whose support is included i@ e i and we keep in memory the value Gbei(\) = J(x0ei; A). If the

minimum of { Joe;(A), t = 1,...,n} is strictly lower than7o(\), then we select the index yielding this
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minimal value:
¢ € argmin Jgei(A). (11)
i€{1,...,n}
The next SBR iterate is thus defined @s= Q e ¢, yielding the vector .
Except when an initial support estimate (of cardinality éovthanmin(m, n)) is available, we suggest

to use an initial empty active set.

Remark 1 (Relationship between SBR and SMLR)We introduced SBR as the application of the SMLR
search strategy to théy-penalized least square cost function, which is obtainedalkyng the limit of
the cost functior(5) wheneo, tends towards infinity. In other words, we first considereallthit form of

the cost function(5), and then applied the search strategy. Conversely, appI8RLR to(5) and then,
taking the limit of the SMLR formula when. tends to infinity also yields the SBR algorithm.

Actually, the main difference between SMLR and SBR is thdatRS{Which can take several forms
depending on the use of the joint distributidfy, » | y) or the marginal distribution/(q|y)) involves
the inversion of a matrix of the forthAQ + alcarajg) Whereas SBR involves the inverse of the Gram
matrix A, Ao. For this reason, instabilities may occur while using SBRewH ¢ is ill conditioned. The
use of the ternaIc,.qgj, Which acts as a regularization on the amplitude valuesjds/such instability

while using SMLR at the price of handling the additional hyaeametera.

C. Modified version of SBR (final version)

We introduce a slight modification of SBR by replacing (11}hwi
¢ € argmin Kgei(A). (12)
ie{l,...,n}
We propose this modification becauseg (\) = £g + ACard [Q] can be computed more efficiently than
Jo(N), the computation oftg being no longer necessary. The usekaf(A\) makes the penalization
term very easy to update whé&d is modified by one element (add or remoVg and the only necessary
update is that o€y. We now show that there is almost surely no difference betwesh versions of

SBR provided that the datg are corrupted with “non degenerate” noise.

Theorem 2 Lety = yo + n, whereyy is a given vector olR”™ and n is a random vector. We assume
that n is an absolute continuous random vector, i.e., admittingr@ability density function w.r.t. the
Lebesgue measure. Then, wheamrd [Q] < min(m,n), the probability that|z oo < Card [Q] is equal

to 0, i.e.,||xgllo = Card [Q] almost surely.
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TABLE |

SBRALGORITHM (FINAL VERSION). BY DEFAULT, THE INITIAL ACTIVE SET IS EMPTY: Q; = ().

Input: A, y, A and active se; (Card [Q1] < min(m,n))
Step 1: Sefj to 1.

Step 2: Fori =1 to n,
ComputefCo;ei(N).
End for.
Computel using (12).
If Ko ee(A) < Ko, (M),

SetQ;,1=Q; el
else,
Terminate SBR.
End if.
Step 3: Doj = j + 1 and go to step 2.
Output: active seR; = SBR(Q1; )

Proof: Let k = Card[Q] and letty be the minimizer of|ly — Aot||? over R*. Obviously,
lzollo = l[tallo < k. Let Vg = (AL Ag) ' AL be the matrix of sizet x m such thattg = Voy.
Denoting byv!, ..., v* € R™ the row vectors ofVg, |[to|lo < k if and only if there exists such that
(y,v') = 0 (where(., .) denotes the inner product). Becaude is full rank, Vg is full rank and then

Vi, v* # 0. Denoting byH*(v?) the hyperplane oR™ which is orthogonal ta’, we have

k
lzollo <k <= yel]H (). (13)
=1

Because the sdt), H-(v') has a Lebesgue measure equal to zero and the random yeetimits a
probability density function, the probability of event (18 zero, thus Rijzg|lo < k) = 0. [
The above theorem implies that when dealing with real noiatadit is almost sure thdtxg|lo =
Card [Q)], i.e., that no active component; is exactly equal to 0. Thus, the original and modified version
of SBR almost surely lead to exactly the same iterates. Evéimei noiseless case, an active component is
rarely numerically evaluated to 0 due to the round-off erimecurring during the numerical computations.
In all cases, the modified version of SBR can be applied witliestriction and the properties stated

below (.g.,the termination after a finite number of iterations) remafidseven if an SBR iterate satisfies

lzollo < Card [Q)].
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For all these reasons, we will adopt the modified version oRSB the rest of the paper. It is

summarized in Table I.

D. Behavior and adaptations of SBR

Termination of SBR:SBR is a descent algorithm because the valué€gf)\) is always decreasing.
Consequently, a sa cannot be explored twice and similarly to SMLR, SBR termasaafter a finite
number of iterations. The SBR outp@ is a “local minimizer” of @ — Kg(\) in the sense that no
replacement oD with Q e i yields a decrease of the cost, Ko(\) < Kgei(A).

Notice that the size oD remains lower or equal tenin(m,n). Indeed, if a setQ of cardinality
min(m,n) is reached, thedg is equal to 0 due to the URP assumption. Hence, anyseif the form
QU {i} yields a larger valuéCo (\) = Ko (M) + A of the cost function. We emphasize that no stopping
condition is needed unlike many algorithms which requireséd a maximum number of iterations (MP

and variations, OLS) and/or a threshold on the squared gamation (CoSaMP, IHT).

Proposition 1 Under the assumptions of Theorem 2, each SBR iterafeis almost surely a local

minimizer of 7 (x; A) and of thely-constrained problem

min &(x) (14)

lllo<k

with k& = Card [Q]. This property holds in particular for the SBR output.

Proof: Let x = xo be an SBR iterate. According to Theorem 2, the suppdat) = Q almost
surely. Settinge = min;eg |x;| > 0, it is easy to check that i’ € R™ satisfies||x’ — z| < ¢, then
Vi e Q, x; # 0. Thus,||z’ — z| < ¢ implies thatS(z’) 2 S(z) and then||z'||o > k.
Now, let z’ satisfy ||z’ — x| < e.
o If ||[&']|o = k, then necessarily§(x') = S(x) = Q. By definition ofz = xg, £(z’) > £(x). Thus,
we have shown that is a local minimizer of (14). Also.7 (x’; \) > J(x; \) holds.
o If ||&|lo > K, thenT(x/;\) = E(x') + M|2']|o = E(x') + A(k + 1). Since& is a continuous
function, there exists a neighborhoddx) of  such that ifx’ € V(x), |£(z’) — E(x)| < A. Thus,
if ' € V(x) and||z’ — x| <e, T(2';\) > E(x) + Ak = J(x; ). This completes the proof.
[
OLS as a special caséiVhen A = 0, SBR coincides with the well known Orthogonal Least Squares
(OLS) algorithm [18], [26]. The removal operation never ox; because it automatically leads to an

increase of the squared erriip (0) = £o. Consequently, only insertions are worth being tested.
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Empty solutions:We now characterize th&-values for which SBR yields an empty solution.

Proposition 2 Denoting by, = max;((a;, y)?/||a;||?), the output of SBR( ) is equal to the empty

set if and only ifA > Apax.
Proof: SBR stops during its first iteration if all the insertion tsidail, i.e.,
Vi, Eg A > & =Ilyll” (15)

For a given value of, the minimum of||y — x;a;||? is reached when; = (a;,y)/||a;||?, leading to
Eriy = lyl* — (as,)?/llai||*. Thus, (15) is equivalent to the conditiafi, A > (a;,y)?/|la|?, i.e., to
A 2 Anax- [
This result allows us to design an automatic procedure whatk a number ok-values adaptively to
the datay to compute SBR solutions at different sparsity levels (seeti€n VI-D).

Reduced searchinstead of testing all the replacemen® = Q e i at each SBR iteration, it is
advantageous, if possible, to explore only a subset of thegplacements. We give two ideas to reduce
the number of tests: the first is an acceleration of the SBRrititgn, yielding the same iterates with a
reduced search. The second idea is a modification of SBR.

Given an active se®, a removalQ’ = Q\{i} yields an increase of the squared error and a decrease
of the penalty equal to. Hence, the maximum decrease of thepenalized cost function which can be
expected with a removal i5: Ko (A) — Kgo(N\) = —\. Consequently, if a given insertio@’ = Q U {i}
is such aso/(\) — Ko(A\) < —\, then no removal can yield a larger decrease. The accelerafi
SBR thus consists in testing all the insertions first, anthéf best insertion yields a decrease larger than
A, selecting the best insertion. Otherwise, all the remokalge to be tested as stated in Table I. This
acceleration does not modify the SBR iterates. Howevergtie is limited when the level of sparsity is
high, i.e., when the number of removals to be tested is reduced.

Haugland and Zhang pointed out that in a forward-backwardtesy, it can be helpful to favor
removals [16], [17]. Adapted to SBR, this idea leads to a ffiedialgorithm in which removals are
tested in a first pace, and the insertions are tested only ifenmoval yields a decrease of the cost
function Ko(\). If a removal decreasesg()), then the selected replacement is the removal yielding
the maximal decrease.

In our experiments, the average qualitative performanc8BR and this modified version are quite
comparable (there is no obvious gain or loss of quality noigaificant saving in computation time).

Thus, in the following, we keep the version of SBR presenteddable | for the sake of clarity.
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IV. | MPLEMENTATION ISSUES

Given the current active s&?, an SBR iteration consists in computing the squared efgorfor any
replacement)’ = Q e i, leading to the computation dfg (\) = Eo + A\Card [Q']. We first describe a
basic implementation in whickg: is computed independently of the knowledgefef. Then, we present
an efficient implementation allowing a fast update wigis modified. We will denote by = Card [Q]

the cardinality of the active sek (< min(m,n)).

A. Basic implementation

The minimization problem (1) reduces to the unconstrainadmization of ||y — Agt||?> w.r.t. t € R*.

BecauseA is full rank, this problem has a unique minimizer that reads:
A : 2 t —1 4t
to = argminfly — Agt|" = (AgAo) Aoy (16)
and the minimal squared error reads:

o = |y—Aotol® = |lyl* —y'Agto. (17)

Finally, given the active se@, an SBR iteration involves the computationtef and€y for all possible

replacement®)’ = Q e 4, using (16) and (17).

B. Recursive implementation

At each SBR iterationyn least-square problems of the form (16) must be solved, eaghining the

inversion of the Gram matrix (of size x k)
Gg £ AL Ao. (18)

The computation cost can be high when the number of activeesiitis large since in the general case,
a matrix inversion cost®(k3) scalar operations. Following an idea widely spread in thesstiselection
literature, we propose to use a recursive computation ofrtberse of the Gram matrix.

A first possibility is to use the Gram-Schmidt procedure [12B] which yields an orthogonal de-
composition ofAg = WU, whereW is anm x k matrix with orthogonal columns antl is ak x k
upper triangular matrix. Although it yields an efficient @ithg strategy when including an index into
the active set (leading to the update Af = [Ao, a;]), the Gram-Schmidt procedure does not extend
with the same level of efficiency when an index removal is @ered [15].

An alternative possibility is to use the block matrix inverslemma [27] allowing an efficient update

of Gél for both index insertion and removal. The reader is refetee[23] which proposed an efficient
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SMLR implementation based on the recursive update of nestii¢ the form(G o +al},)~*. This approach
can easily be adapted to SBR where the matrix to upda(éals (see also [28] for the downdate step).
However, we have observed that numerical instabilitiesipedien the selected columns df are highly
correlated.

A more stable solution is based on the Cholesky factorinafit, = LoLY,, where Lo is a lower
triangular matrix. UpdatingLo rather thanGé1 is advantageous sinckg is better conditioned. This
update can be easily done in the insertion case [29] but tim@val case necessitates more care, as a
removal breaks the structure of the lower triangular mafrix. Ge et al. recently proposed a recursive
update of the Cholesky factor cﬁ;él [30]. Here, we propose a simpler strategy that relies on the

factorization of the Gram matri=o itself.

C. Efficient strategy based on the Cholesky factorization

First, we notice that any new coluna} can be inserted at the last locationAy ¢y since the value
of Equysy does not depend on the position @f in matrix Ag ;. On the contrary, when removing a
column, we do not knova priori the position of the column to be removed, thus it cannot barasd
to be the last column ofAo. We will hence describe the cases where:

« a non active element¢ Q is included after the other columngyo = [Ag, a;l;

« an active element € Q is to be removed, the columm; being in an arbitrary position.

G being a symmetric positive-definite matrix, it rea@% = LoL{, where the Cholesky factaE o
is a lower triangular matrix of sizé& x k. Applying (16), the least-square minimizer reredds =
LétLélAto where the superscriptt refers to the inverse transposition operator, and using, ¢h@

cost function rereads:
Ko(A) = Eo(N) + Mk = |ly|* — |IL5' AQyl® + Mk (19)

Given Lo, O(k?) scalar operations are required to solve the triangulaleeysﬁél(Ato).
Insertion of a new column after the existing columheluding a new column leads tdo = [A g, a;].

Thus, the new Gram matrix can be expressed as<& block matrix:

G Al a;
Go = Q o® (20)
(Apai)"  |ai?
and the Cholesky factor dio, can be straightforwardly updated:
L 0
Lo=| ° , (21)
th,i Qg
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with lQJ = LélAtQaZ- andagi = 4/ ”CLZH2 — HlQJ'Hz.
The computation ofCo (M) using (19) requires two triangular system inversions (cotaon oflg ;

and computation oo (\)). However, by computing
KoV —Ko(h) = A (lb:Lg' Agy)*/ad, (22)

the cost can be reduced up to the pre-computation and storfa@gl(Ato) at the beginning of the
SBR iteration. The computation dfo (\) only requires one triangular system inversion (computatio
of 1o ;).

Removal of an arbitrary columnwhen removing a columa;, updatingL o remains possible although
slightly more expensive. This idea was first developed by eBal. [30] who update the Cholesky
factorization of matrixGél. We adapt it to the direct (simpler) factorization Gfp. Let I be the index

such thata; is the I-th column of Ag (with 1 < I < k). Lg can be written in a block matrix form:

A 0 O
Lo=|b d 0 |, (23)
C e F
where the lowercase characters refer to the scalaarfd vector quantitiesb( e) which appear in the
I-th row and in thel-th column. The computation &g = Lo LY, and the removal of thé-th row and

the /-th column inG ¢ leads to

A 0 At C? 0
Go = + [ 0 et ] (24)
C F 0 F? e

By identification of this expression with the Cholesky facation Go = LQ,LtQ, and because the

Cholesky factorization is uniqud, o necessarily reads:

A 0
Lo = ) (25)
C X

where X is a lower triangular matrix satisfying
XX'=FF'+ee'. (26)

The problem of computingX from F' ande is classical; it is known as a positive rank 1 Cholesky
update (update of the Cholesky factbr corresponding to a rank 1 update of the matfx¥ to be
decomposed) and there exists a stable algorithr® (i) operations, wherg = k — I is the size of

F [31].
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TABLE I

EFFICIENT IMPLEMENTATION OF AN ELEMENTARY SBRITERATION.

Input: Q, A
Pre-computed quantitiesA’y and||a;||* for all ¢
Stored quantitieso ()), Lo and L' (ALy)

Setk = Card [Q].
Set/ = 0.
Setl east _cost = Kg(A).
Fori=1ton,
If i ¢ Q,
[+ Test the insertion of ¢ =/

Computelg ; = Lg' Aba; and Ko/ (N) using (22).

else,
[~ Test the renoval of 4 */
Update the Cholesky decomposition (2&: =chol updat e(F, e, +).
ComputeL o, and Kg/ (M) using (25) and (19).
End if.
If Ko/(A) <1 east_cost,
Setl =i.
Dol east_cost = Kg/(A).
End if.
End for.
If £=0,

Terminate SBR.

else,
[+ Performthe single replacenent =/
SetQ’' = QelandKg/(\) =1 east _cost.
ComputeL o using (21) or (25), and theﬂé,l(AtQ,y).
End if.

Output: next SBR iterat@’ = Qe ¢, Ko/ ()), Lo/, and L, (Al y)

Finally, the computation ofCo/(\) involves a positive Cholesky update and a triangular system

inversion in (19). Thus, its overall cost is #A(k?). Notice that matrixF is of sizek — I. Therefore, the

cost of a Cholesky update completely depends on the positiohthe columna; to be removed. The

larger I, the more expensive is the Cholesky update.

January 28, 2010



TECHNICAL REPORT 19

D. Memory requirements and computation burden

The efficient (fast and stable) procedure is summarized bieTH. Given the current active s&®,
the index?¢ defining the next SBR iterat@ e ¢ is chosen according to (12) addy,, is finally updated.
No update of the amplitudes is necessary. If needed, theipatation can be done using (16) and the
knowledge ofL,.

The actual implementation may vary depending on the sizetlamdtructure of matrixd. We briefly
detail the main possible implementations and their requirgs in terms of storage and computation.
Regarding the computation burden, we count the number ohexiéary operations expressed in terms
of scalar multiplications, since the cost of a scalar additis negligible with respect to that of a
multiplication.

When A is relatively small, the computation and storage of the @&ilam matrix A A prior to any
SBR iteration (storage af? scalar elements) avoids to recompute the veckbga,- which are needed
when the insertion of; into the active set is tested. Similarly, we store the valieg? (i = 1,...,n)
and Aly in two 1D arrays of sizer, prior to any SBR loop. The storage of the other quantitiesiriy
Ly) that are being updated in the SBR loops amount®t&?) scalar elements, and each test costs
O(k?) elementary operations, as it involves the inversion of anggular system of sizé x &, plus a
positive rank 1 Cholesky update in the removal case. Thisiesto be compared with th@(k>) scalar
operations which are necessary when inverting the Gramixriatthe basic implementation of SBR.

When A is larger, the storage oA’ A is no longer possible and vecto%ai must be recomputed at
any SBR iteration, for each insertion ta3t = QU {i}. The computation Ofﬁltgai costskm elementary
operations and represents the most important cost of eatdceanent test. Indeed, the remaining part
is in O(k?) and for sparse representatiosis expected to be much lower tham. The cost of a single
replacement finally amounts 0 (k?) + O(km) elementary operations.

When the dictionaryA has some specific structure, the above storage limitationbeaalleviated,
enabling a fast implementation even for large values:ofor instance, if a large number of pairs of
columns of A are orthogonal to each otheA®A can be stored as a sparse array. Also, finite impulse
response deconvolution problems enable a fast implenemtatnce A’ A is then a Toeplitz matrix
(except for a north-west and/or a south-east submatrix ke tundary conditions into account); the
knowledge of the auto-correlation of the impulse respowsssuifficient to describe most of the Gram
matrix.

All the above-mentioned variants have been implementedi@idecodes are available to academic
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users from the authors upon request). In the next two sex;tige analyze the behavior and performance
of SBR on two difficult problems, in which the dictionariesdrighly correlated: the deconvolution of
a sparse signal with a Gaussian impulse response (Secti@md/}he joint detection of discontinuities

at different orders in a signal (Section VI).

V. DECONVOLUTION OF A SPARSE SIGNAL WITH AGAUSSIAN IMPULSE RESPONSE

This is a typical problem for which SMLR was introduced [28].affords us to study the ability
of SBR to perform an exact recovery in a simple noise-fre@ dasparation of two Gaussian features
from noise-free data) and to test the behavior of SBR in ayntése (estimation of a larger number of
Gaussian features).

For simulated problems, we denote by the exact sparse signal and we generate noisy data according
toy = y*+n = Ax*+n, wherey* = Ax* denotes the noise-free data amdtands for the observation
noise. The dictionary columns; are always normalized}a;||?> = 1. The signal to noise ratio (SNR) is
defined by SNR= 10 log(Py /Py ), where Py = |ly*||?/m is the average power of the noise-free data

and Py is the variance of the noise process

A. Dictionary and simulated data

The impulse responsk is a Gaussian signal of standard deviatisnsampled on a regular grid
at integer locations. It is approximated by a finite impulssponse of lengtiéo by thresholding the
smallest values, allowing a fast implementation even faydasize problems (see subsection IV-D). The
deconvolution problem leads to a Toeplitz matAxwhose columng; are obtained by shifting the signal
h. The dimension ofA is chosen to have any Gaussian feature resulting from theotidion h * x*
belonging to the observation windo{, ... ,m}. This implies thatA is slightly undercompletenf > n).
Denoting byn;, = 1 + 2round30) the size of the support di, the data size reads = n + ny — 1.

B. Separation of two close Gaussian features

We first analyze the ability of SBR to separate two Gaussiatufes (x*|o = 2) from noise-free data.
The centers of both Gaussian features lay at a relativendista(expressed as a number of samples) and
their weightsz} are set to 1. We generate the corresponding noise-freeydagad we run SBR); \)
with a number of predefined-values. We analyze the SBR outpu®\;d) by computing their size
Card [Q(); d)] and by testing ifQ(\; d) is equal to the true suppo&(x*). Table Ill shows the results

obtained for a problem of siz800 x 270 (m = 300,0 = 5, andn; = 31) with distances equal to
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TABLE 1lI
SEPARATION OF TWOGAUSSIAN FEATURES FROM NOISEFREE DATA WITH SBR.d STANDS FOR THE DISTANCE BETWEEN
THE GAUSSIAN FEATURES WE DISPLAY THE SIZE OF THE SUPPORQ(/\; d) OBTAINED WITH A SEQUENCE OF DECREASING

A-VALUES Ao > A1 > ... > A7. THE LABEL * INDICATES AN EXACT RECOVERY FOR A SUPPORT OF CARDINALITY.

o e[ aen]

d=20| O o|2x| 2|2 |2 | 2 2*
d=13 | O 1 3 4 5 |20 | 2 2*
d=06 0 1 1 3 5 6 8 2*

d = 20, 13, and 6 samples. The grid afvalues for which SBR is run is common to the three tests.
The maximal value\q is chosen in such a way that the outgt\y; d) is empty (see Proposition 2) and
the otherA-values are set according to = \o/10/. It is noticeable that the exact recovery is always
reached provided that is sufficiently small. This result remains true even for deratlistances (from

d = 2). When the Gaussian features strongly overiap, for d < 13, the size of the support obtained as
output first increases whila decreases, and then for lowgfvalues, removals start to occur, enabling
the exact recovery. Similarly to SBR, forward algorithmelsas OMP and OLS start by positioning a
(wrong) Gaussian feature in between the two Gaussians inftfs iteration but in the latter case, the

early wrong detection disables an exact recovery.

C. Behavior of SBR for noisy data

We run SBR on more realistic noisy data and on a larger dimangioblem {» = 3000 samples).
The unknown sparse signal is composed of|z*||o = 17 Gaussian features. The impulse respohse
is of sizen;, = 301 (¢ = 50) yielding an observation matrid of size 3000 x 2700, and the SNR is set
to 20 dB.

Fig. 1 displays the simulated data and the SBR results adadaiith a fewA-values. Wher\ decreases,
the SBR approximations are of better quality but less sp&iselarge)-values, only the main Gaussian
features are found, and then, wh&rdecreases, the smaller features are being recovered éogeiti
unwanted features. Removals rarely occur for coarse appadons. They occur more frequently when
two estimated features are overlapping and for Jewalues. On the simulation of Fig. 1, removals occur
for A < 0.15, yielding approximations that are more accurate than tiogained with OLS and for the

same cardinality (the residuidy — Ax||? is lower), while when\ > 0.15, the SBR output coincides with
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Fig. 1. Gaussian deconvolution results. Problem of 8 x 2700 (¢ = 50). () Generated data signal, with 17 Gaussian
features and with SNR = 20 dB. The exact locatiastsare labeledo. (b,c,d) SBR outputs and data approximations with
empirical settings of\. The estimated amplitudes are shown with vertical spikes. The SBR outputs (suppors)oé size 5,

9, and 19, respectively. The computation time always resbglow 8 seconds (Matlab implementation).

the OLS iterate of same cardinality. Although the perforoeaonf SBR is at least equal to that of OLS,
the exact support o&* is never found. However, it must be stressed that the proldewery difficult
because the data are noisy and the neighboring columdsask highly correlated. In such difficult case,
one needs to perform a wider exploration of the discretd&eit}” by introducing moves that are more
complex than single replacements. Such extensions wezadyirproposed in the case of SMLR. One
can for instance shift a detected spikeforwards of backwards [32] or update a block of neighboring

components jointly €.9.,2; andx;.1) [33].

VI. JOINT DETECTION OF DISCONTINUITIES AT DIFFERENT ORDERS IN AISNAL

We now consider another challenging problem, the jointat&te of discontinuities at different orders

p=0,...,Pin a signal. We process both simulated and real data and aentipa performance of SBR
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Fig. 2. Elementary signals? related to thep-th order discontinuities at locatiahn a? is the Heaviside step functiom,; is the

ramp function, and:? is the one-sided quadratic function. Each signal is equal &b location: and its support is the interval

{i,...,m}.

with respect to other sparse approximation algorithms (GMB OLS) in terms of discontinuity estima-
tion, approximation accuracy, and computation time. Firste formulate the detection of discontinuities
at a single ordep as a spline approximation problem. Then, we take advanthgi@soformulation to

introduce the joint detection problem more easily.

A. Approximation of a spline of degree

In the continuous case, a signal is a spline of degreeith & knotsif and only if its (p + 1)-th
derivative is a stream of weighted Diracs [34]. In the discrete case, we introducedicdonary AP
formed of shifted versions of the one-sided power functior k* £ [max(k,0)]? for all possible shifts
(see Fig. 2).A? represents the integration operator of degreel. Denoting by{1,...,m} the support

of the data signay, the shifted signala? (for i € {1,...,m}) read
Vke{l,....,m}, a’(k) = (k —i+1)" (27)

and their support is equal tfi,...,m}. Finally, we form the dictionaryd? = [af,...,a;, ] Of size
m X (m — p). It does not make sense to allow the occurrence pftla order discontinuity for the last
samplesi(e., to includea! for i > m — p) since the spline approximation would require to recomstru

a polynomial of degree in the range{i, ..., m} from less tharp + 1 data samples.
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We address the spline approximation problem as the spap®xamation ofy by the piecewise
polynomialg? = APxP (actually, we impose as initial condition that the splinadtion is equal to 0 for
k < 0). The sparse approximation consists in the detection ofdibeontinuity locations (also referred
to as knots in the spline approximation literature) and th&mation of their amplitudes:? codes for
the amplitude of a jump at location(p = 0), the change of slope at locatianp = 1), etc. Here, the

notion of sparsity is related to the number of discontinltyations.

B. Approximation of a piecewise polynomial of maximum dedte

Following [34], we formulate this problem as the joint datex of discontinuities at orderp =
0,...,P. Let us append the elementary dictionari4® in a global dictionaryA = [A°,..., AT]. The
approximationg = Ax of a given signal rereadg = Zp APxP where vectoer = {z,..., 2"} gathers
the p-th order amplitudes:? for all p. Whenx is sparse, all vectors? are sparse, and the approximation
signalg is the sum of piecewise polynomials of degree lower tirawith a limited number of pieces.

The dictionaryA is overcomplete since it is of size x ¢, with ¢ = (P + 1)(m — P/2) > m for all
P > 1. Moreover, it is highly correlated: any columtf is strongly correlated witkall other columns
a;Z- because their respective supports are the inteffals ., m} and {j,...,m}, and hence overlap.
The discontinuity detection problem is difficult, as mosgalthms are very likely to position wrong
discontinuities in their first iterations. For example, whapproximating a signal with two discontinuities
at distinct locationg and j, they start to position a first (wrong) discontinuity in been: and j, and

forward algorithms cannot remove it (see Section VI-E argl Bifor details).

C. Adaptation of SBR

It is important to notice that the dictionary defined aboveslaot satisfy the URP. For instance, the
difference between two discrete ramps at locatibasd: + 1 yields the discrete Heaviside function at

locationi: a; — a},,; = a. More generally, fopp > 1, we have

p—1
p_.p  _ 0 q
a; —a; ., = a +Z Clg:p)aj;,
g=1

whereC(q, p) refers to the binomial coefficient.

As mentioned in Section I, the SBR algorithm basically rieggithat the dictionary satisfies the URP
to ensure that the Gram matiZg = A}, Ao is invertible, but this assumption can be relaxed provided
that only full rank matricesAo are explored. Here, SBR is slightly modified, based on thiahg

proposition which gives a sufficient condition of invertityi of Go.
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Proposition 3 Let n; denote the number of discontinuitie$, p = 0,..., P which are being activated
at sample;, i.e., for whichz! # 0. Let us define the binary conditiaf(i):

o ifn; =0, Ci) = 1;

o ifn;>1, Cli) = (Vje{l,....,n; — 1}, njy; = 0).
If Q is such that for alli, C(i) = 1, thenGyg is invertible.

Proposition 3 is proved in Appendix |.

Basically, Proposition 3 states that we can allow severstdtitinuities to be activated at the same
location ¢, but then, the next samplést 1,...,i +n; — 1 = 0 must not host any discontinuity. This
condition ensures that there are at mestiscontinuities in the interva]i, ... ,i+n; — 1} of lengthn;.
Notice that it is less restrictive than to forbid the detectpdf two discontinuities at the same location.
The adaptation of SBR consists in testing insertions inéoctirrent active set only if the above condition

remains true.

D. Numerical simulations

We first consider the case where = 1, leading to the joint detection of zero and first order
discontinuitiesj.e., the piecewise affine approximation problem. We simulatsafiee datay* = Ax*
of sizem = 1000 and with ||z*||o = 18 discontinuities (see Fig. 3 (a)). The dictionary is of size
1000 x 1999.
We use the result of Proposition 2 to compute the value A, below which the SBR output is not
the empty set, and we run:
e SBR With \; = A\pax 107772 for j = 0,..., Jymax, With Jpae = 20. Thesel-values provide a
sequence of solutions at different sparsity levels;
« for comparison purpose, we run 27 iterations of OMP and OL&bvem store all the OMP and OLS
iterates.

The SBR approximation shown in Fig. 3 (a) corresponds todhsth-value )\ ;

max

. The recovery is exact
and the reconstructed signal totally coincides with thesediee data. Thels-¢,” curves represented on
Fig. 3 (b) express the squared residligl— Ax||? versus the cardinalityjz||o for the output of each
algorithm. Whatever the level of sparsity, SBR yields thasteresidual.

We did the same experiment with noisy dgta= Ax*+n, setting the SNR to 35 dB (see Figs. 3 (c,d)).
Again, the ?5-¢y” curve corresponding to SBR lays below the OMP and OLS curi¥es most sparsity
levels, SBR outperforms the other algorithms. Note thatnfimre noisy datag.g., SNR = 15 dB), the

SBR and OLS curves coincide, and still lay below the OMP curve

January 28, 2010 DRAFT



TECHNICAL REPORT 26

1
ety
— AX
0.75| © Order O (unknown) _
’ @ Order 0 (estimation) g
A Order1 (unknown) 3
05 A Order 1 (estimation) S
. kS)
5
<
0.25) 2
N
® &
A
0 A A o
© 10" : : ‘ : ‘
-0.25 ! ! ! ! 0 5 10 15 20 25 30
0 200 400 600 800 1000 CARDINALITY
(a) Noise-free data and SBR approximation (B)-£o” curves (noise-free data)
1
==ty
— AX
0.75 O Order 0 (unknown)
' @ Order 0 (estimation) 1
A Order 1 (unknown)
0514 Order 1 (estimation)
0.251
@A 1
A .A °
©
Wo s 10 15w
-0.25 : : : :
0 200 400 600 800 1000 CARDINALITY
(c) Noisy data (SNR= 35 dB) (d)¢5-£y" curves (noisy data)
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Fig. 3. Joint detection of discontinuities at orders 0 andite dictionary is of sizd 000 x 1999 and the data signa} includes
18 discontinuities. The true and estimated discontinuatations are represented with unfilled black and filled gebels. The
shape of the labels (circular or triangular) indicates tiseahtinuity order. The dashed gray and solid black curegsesent the
data signaly and its approximatiomAx for the leastA\-value. (a) Signal approximation from noise-free data. Téwvery
is exact and both curves are superimposed. {B)¢5” curves showing the squared residual as a function of thdimality
for SBR, OLS, and OMP. The SBR performance is expressed onlthe \-values that are larger thaxy,, because below this

value, the recovery is exact and the log-residual is equatdo.  (c,d) Similar results for noisy data (SNR = 35 dB).

E. AFM data processing

We process an experimental signal, which is a force curvesured in Atomic Force Microscopy
(AFM). A force curve measures the interatomic forces ergrietween a probe associated to a cantilever
and a nano-object. The data signal> y(z) shows the force evolution as a function of the probe-sample

distancez, expressed in nanometers. The research of discontin(libestion, order, and amplitude) in a
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Fig. 4. AFM data processing: joint detection of discontifas at orders 0, 1, and 2 (problem of si2é67 x 6498).
(a) Experimental data showing the force evolution as a fanatf the probe-sample distanee (b) “/2-£o" curves displaying
the squared residual versus the cardinality for the outpdtSBR, OLS, and OMP. (c) Curves displaying the time of

reconstruction versus the cardinality for the three atbors.

force curve is a critical task because they are used to peavigrecise characterization of the nano-object
and its physico-chemical properties (topography, enefggdbesiongetc) [35].

The data displayed on Fig. 4 (a) are related to a bacteribbbelwanella putrefacieraying in aqueous
solution, in interaction with the tip of the AFM probe [36].fArce curve is recorded in two steps. Firstly,
the tip is positioned far away from the sample. It is movedamis the sample until the contact is reached
and the surface of the bacterial cell is deformed (approacteg. Secondly, the tip is retracted from the
sample until it loses contact. The experimental curve showfig. 4 (a) is a retraction curve composed
of m = 2167 force measurements. We can distinguish three regions eifeisit on this curve, from the
right to the left. The linear region on the right part chaeaizes the rigid contact between the probe and
the sample. It describes the mechanical interactions otéimtilever and the sample. The rigid contact
is maintained untilz ~ —2840 nm. The interactions occurring in the intervale [—3050, —2840] nm
are adhesion forces during the retraction of the tip. In taeghrt on the left, no interaction occurs as

the cantilever has lost contact with the sample.
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Fig. 5. AFM data processing: joint detection of discontiies at orders 0, 1, and 2. The estimated discontinuitiesre
represented with vertical spikes and with a label indigatine discontinuity order. The dashed gray and solid blaakesu
represent the data signgl and its approximationAz, respectively. (a) SBR output of cardinality 2: 4 insersoand 2
removals have been dong £ 2085). (b,c) OLS and OMP outputs after 2 iterations. (d,e,f) Samaulation with a lower
A-value = 66). The SBR output is of cardinality 5 (7 insertions and 2 reaigjyand we stop OLS and OMP after 5 iterations.

We search for the discontinuities of orders 0, 1, and 2. Sifyilto the processing of simulated data,
we run SBR withJ,,x = 14 A-values and we run OLS and OMP until iteration 41. For eacbrilyn,
we plot the ¥2-£y” curve representing the squared residig Ax||? versus the cardinalityz|o, and a
curve displaying the time of reconstruction versus the ioalily (see Figs. 4 (b,c)). These figures show
that the performance of SBR is at least equal and sometimsr lean that of OLS. Both algorithms
yield results that are far more accurate than OMP, excepvéoy sparse approximations. The price
to pay for these accurate approximations is an increaseeotdmputation time. However, notice that
the recorded computation time always remains below 350nekcon the case of SBR (in a Matlab
implementation taking advantage of the block Toeplitztriee of the dictionary: see Section IV-D).

Fig. 5 displays the approximations yielded by the three rilgms for supports of cardinality 2 and 5.
SBR actually runs during 6 iterations (4 insertions and 2aeais are performed) to reach a support of

cardinality 2. This approximation is very accurate comdamethe OMP and OLS results obtained after
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TABLE IV
BEHAVIOR OF THE SBRITERATES FOR BOTH APPROXIMATIONS OFFIG. 5 (A,D). THE TABLES DISPLAY THE SQUARED

ERROR||y — Az||? VERSUS THE CARDINALITY |z||o FOR EACHSBRITERATE. i STANDS FOR THE ITERATION INDEX

‘ i ‘ lz|lo Error
) 0 0 2101408
‘ i ‘ |z |lo ‘ Error ‘

1 1 16870

0 0 2101408
2 2 12266

1 1 16870
3 3 3074

2 2 12266
4 4 642

3 3 3074
5 3 663

4 4 642
6 4 555

5 3 663
7 5 480

6 2 938
8 4 532
9 5 464

SBR (A = 2085, 4+/ 2-) SBR & = 66, 7+/2-)

2 iterations (Figs. 5 (a,b,c)). SBR provides a very preaialization of both discontinuities, which are
crucial information for the physical interpretation of thata. On the contrary, OLS does not succeed after
two iterations; it is able to locate accurately both disgurities once 5 iterations have been performed
(the desired discontinuities are the first and the last omesng the 5) while OMP fails even after 5
iterations (Figs. 5 (d,e,f)). The residual yielded by theRS&pproximation of cardinality 5 remains lower
than the corresponding OLS and OMP residuals.

In order to better understand the forward and backward m{respectively, insertions and removals)
occurring during the SBR iterations, we display in Table hé tresidually — Ax||> and the cardinality
of each SBR iterate for both SBR executions. Because SBR &seedt algorithm, the penalized cost
J(z; \) keeps decreasing but when a removal ocdigs; Ax||? increases. For the coarse approximation
of Fig. 5 (a) (whose cardinality is equal to 2), the residigahiuch smaller than the residual yielded
by OLS since two configurations of cardinality 2 have beenlaea (see the left table and the rows in
bold). We observed the same behavior for the finer approlamatf cardinality 5 (right table). Notice

that for small\-values, removals occur more often in the last SBR iteration
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F. Discussion

In the two previous subsections, we chose to compare SBROMP and OLS. We did not consider
simpler algorithms like MP which are well suited to rapidihee easier problems in which the dictionary
columns are almost orthogonal. Because SBR involves momplex operations (matrix inversions), we
chose to compare it with OMP and OLS which also require toesalivleast one least-square problem
per iteration. Their target is to provide results which arerenaccurate than the MP approximations in
the case of difficult problems.

Up to our knowledge, the only minimization algorithm dedéshto the/y-penalized cost function
J(x; ) = ||y — Az||> + \||z|o is the IHT algorithm proposed by Blumensath and Davies [It2Elies
on gradient based iterations of the fowh= x + A'(y — Ax), followed by the thresholding of all the
non-zero components; such that|z;| < A% and their replacement with 0. We tested this version of
IHT on both deconvolution and discontinuity detection penhs and we observed that it is less efficient
than the standard version of IHT, dedicated to &eonstrained problem. In the constrained version, the
k componentsz;| having the largest amplitudes are kept and the others ang lti@iesholded. Generally
speaking, we observed that IHT is competitive when the &atiom between any pair of dictionary
columns is limited, but for highly correlated dictionaridslT needs a very large number of iterations
(O(m?)) to reach convergence. SBR seems to be better suited to &fichldoroblems. It is less sensitive
to the initial solution and “skips” some local minimizersvireg a large cost7 (x; A). We here recall that
according to Proposition 1, each SBR iterate is almost gwdbcal minimizer of7 (x; \).

In order to link up our approach to the forward-backward gtgm of [17], we also tested an OMP-
like adaptation of SBR in which only one least-square pnobie solved per iteration, instead of This
adaptation consists in replacing the selection rule (12hénfollowing way. When an insertio@ U {i} is
tested, all the active componentsare kept constant and is set to the minimizer ofy — Az g —z;a|?.
This leads to an approximation dfg.;(\) without solving any least-square problem. Similarly, the
removal test consists in setting to 0 and leaving the other components unchanged. In brief, this
adapted version is an algorithm aimed at the minimization/o¢&; \) at a cost which is comparable
to that of OMP. In all our trials, SBR yields a more accuratsutethan the OMP-like version except
in very simple cases (limited correlation between the caisia,;) where both versions yield the same
result. The performance of the OMP-like version fluctuatelw or above that of OMP but is almost

always far less accurate than the OLS and SBR approximations
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VIlI. CONCLUSION

We have evaluated the SBR algorithm on two problems in whighdictionary columns are highly
correlated. SBR provides solutions which are at least agratee as the OLS solutions, and sometimes
more accurate, with a cost of the same order of magnitudethiése difficult problems, the MP and OMP
algorithms provide poor approximations in comparison vithS and SBR within a lower computation
time. Compared to OLS, we believe that performing removalshe price to pay if one expects an
enhanced quality approximation. Although removals racelgur in comparison with the insertions, they
play an important role in the enhancement of the approxonati

In the proposed approach, the main difficulty relies in theich of the\-value. If a specific sparsity
level k£ or approximation residual is desired, one can resort toa @amd error procedure in which a
number of A-values are tried until the desired approximation levelasrd. In [37], we sketched a
continuation version in which a series of SBR solutions arecessively estimated with a decreasing
level of sparsity), and the\-values are recursively computed. The fidsstalue is set to\g = +oc,
and at a given valug,, the initial solution (input of SBR) is set to the SBR outptitha= \;_;. This
continuation version provides promising results and wéllthe subject of a future extended contribution.
A similar perspective is actually proposed by Zhang to galil his FoBa algorithm in a path-following
algorithm (see the discussion section in [17]).

Another important perspective is to investigate whetheR$Bn guarantee exact recovery in the noise-
free case under some conditions on matixand the unknown sparse signal. In the simulations done
in Section V, we observed that SBR is able to exactly recower ¢lose Gaussian features whatever
their distance, provided that the hyperparametés sufficiently small. This promising result is a first
step towards a more general theoretical study. The FoBaitlgo[17] yields exact recovery results for
problems satisfying the Restricted Isometry Property JRBihce the structure of SBR is somewhat close
to that of FoBa, we expect that SBR shares similar theotgpicgperties. We will investigate whether

the proofs provided in [17] are extendable to SBR.

APPENDIX |

PROOF OFPROPOSITION3

To prove Proposition 3, we first prove the following lemma.

Lemma 1 Consider an active sap satisfying the condition of Proposition 3, and et = min{i |n; >

0} denote the lowest location of an active entry. Up to a redraeof the columnsAg rereadsAg =
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[A;-, Ag\(i-}] with obvious notations. IfAg\ (;-y is full rank, thenAg is also full rank.

Proof: Let I = n;- denote the number of discontinuities at locationand let0 < p1 <p2 < ... <
pr denote their order, sorted in the ascending order.
Suppose that there exist two families of scalge', . .., 1!’ } and{! | i # i~ andi is active at order

p} such that

I
Z,ufﬁ a? + Z Z,uf a? = 0. (28)
j=1

i#i- P
We will show that ally-values are necessarily equal to 0.
Rewriting the first/ nonzero equations in this system and beca@seatisfies the condition of

Proposition 3, we have
I
Vke{im,...,i 11}, > @ (k+i" -1 =0.
j=1

In other words, the polynomial'(X) = Z§:1 pt” XPi hasl positive roots. It is shown in [38] (page
76) that a non-zero polynomial formed éfmonomials of different degree has at mdst 1 positive
roots. ThereforeF' is the zero polynomial and all scala;ngi are 0. We deduce from (28) and from the
full rankness ofAg\ f;-} that i = 0 for all (i, p).

We have shown that the column vectors4§ are linearly independenite., that Ao is full rank. ®
The proof of Proposition 3 directly results from a recursagplication of Lemma 1. Starting from the

empty set, all the indices, sorted by decreasing order,retaded successively.
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