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Abstract

Formulated as a least-square minimization problem under anℓ0 constraint, sparse signal approxi-

mation is a discrete optimization problem, known to be NP complete. Classical algorithms include, by

increasing cost and efficiency, Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), Orthogonal

Least Squares (OLS) and the exhaustive search algorithm. Wefocus on problems (namely for highly

correlated dictionaries) in which OMP and OLS do not guarantee to find the optimal solution. Then,

it is of interest to develop new sub-optimal search algorithms yielding better approximations within a

computation time that may be slightly more expensive than that of OLS but remains much cheaper than

the exhaustive search. We revisit the Single Most Likely Replacement (SMLR) algorithm, developed

in the mid-1980’s for Bernoulli-Gaussian signal restoration. We show that the formulation of sparse

signal approximation as a limit case of Bernoulli-Gaussiansignal restoration leads to anℓ0-penalized

least-square minimization problem, for which the SMLR algorithm can be straightforwardly adapted.

The adapted algorithm, called Single Best Replacement (SBR), is an OLS forward-backward extention

based on successive updates of the sparse signal support by one element (insert a new element inside

the support or remove an existing support element). We finally propose a fast and stable implementation

based on an efficient update of the least-square error. The approach is illustrated on the deconvolution

with a Gaussian impulse response and on the joint detection of discontinuities at different orders in a

signal.
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I. INTRODUCTION

Sparse signal approximation consists in the decompositionof a given signaly by means of a limited

number of elements from a dictionaryA. This problem has received considerable attention over the

past few years, because it occurs in many fields of applications, among which Fourier synthesis, mono-

and multidimensional deconvolution, image compression, statistical regression, compressive sensing. The

popularity of sparse approximation algorithms relies on the fact that it is possible to provide efficient

sparse approximations of a signal even for under-determined problems in which the size of dictionary is

larger than the size of the data.

Sparse signal approximation can be formulated as the minimization of a least-square cost function of

the formE(x) = ‖y − Ax‖2 under the constraint thatx is sparse. This problem is often referred to as

subset selection or feature selection, because imposing the sparsity constraint on the weightsx consists
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in allowing a limited number of non-zero coordinatesxi, or equivalently, selecting a subset of columns

of A. Let us denote byactive setthe set of selected columns. For a given active set, the minimization

of E reduces to an unconstrained least-square problem in which the matrixA is replaced by a smaller

dimension submatrix obtained by gathering the active columns ofA. Imposing the sparsity of the solution

thus consists in minimizing‖y − Ax‖2 subject to the constraint that theℓ0 pseudo-norm ofx, defined

as the number of non-zero entries ofx, is lower than a given numberk. This yields a discrete problem

(since there are a finite number of possible active sets) which is known to be NP-complete [1], [2]. In this

paper, we focus on “difficult” problems, in which some of the columns ofA are highly correlated, the

unknown weight vectorx⋆ is not necessarily sparse and/or the data are noisy. Hereafter, we distinguish

two approaches to address the sparse signal approximation problem in a fast and sub-optimal manner

and we discuss their relevance for difficult problems.

The first approach, which has been the most popular in the lastdecade, approximates the subset selection

problem by a continuous optimization problem, convex or not, which is easier to solve. The function

approximating theℓ0-norm must be non smooth at zero in order to yield sparse solutions [3], [4]. Among

the nonconvex functions approximating theℓ0-norm, let us mention the Gaussian-shaped function [5] and

the ℓp pseudo-norm (p < 1) [6]. Among the convex approximations, the approach utilizing the ℓ1-norm

instead of theℓ0-norm [7], [8] has been increasingly investigated, leadingto the LASSO optimization

problem. Its popularity relies on efficient algorithms, among which the LARS algorithm (also called

homotopy) which finds the solution path,i.e., the set of solutionsfor all degrees of sparsity [9], [10].

Several authors have provided sufficient conditions under which theℓ0- and ℓ1-constrained least-square

problems lead to solutions having the same support [8], [11], [12]. These conditions typically state that

the unknown weight signal is highly sparse, that the correlation between any pair of columns ofA is

sufficiently small, and that the noise level must be low. Theyare often not satisfied when dealing with

real data.

The second approach uses a fast and sub-optimal search algorithm to address theexactsubset selection

problem. A first possibility is to use a thresholding algorithm, e.g., CoSaMP [13] and Iterative Hard

Thresholding (IHT) [14]. These algorithms rely on gradientbased iterations of the formx′ = x+At(y−

Ax), followed by the threshold of a number of non-zero components xi. We observed that they do not

yield accurate approximations in difficult cases in which the dictionary columns are highly correlated.

Another possibility is to resort to greedy search algorithms which gradually increase or decrease by one the

size of the active set. The simplest greedy algorithms are Matching Pursuit (MP) [15] and its improvement

Orthogonal Matching Pursuit (OMP) [16]. Both are referred to as forward greedy algorithms, since they
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start from an empty active set and then gradually increase itby one element. In contrast, the backward

algorithm of Couvreur and Bresler [17] starts from a complete active set which is gradually decreased

by one element. It is only valid if the dictionary is not overcomplete. A few authors have introduced

forward-backward algorithms in which insertion and removals of one element into the active set are both

allowed [18], [19]. Both contributions showed the interestof performing insertions and removals of atoms

from the dictionary. This strategy can indeed handle an early false detection since its further removal

from the support is allowed. In contrast, forward algorithms always add new entries into the active set,

the insertion of a false entry being irreversible.

The choice of the algorithm depends on the amount of time available and on the structure of matrixA.

In specific favorable cases, the sub-optimal search algorithms described above (belonging to the first or

the second approach) provide solutions having the same support than those of theℓ0-norm problem. For

example, if the unknown signalx⋆ is highly sparse and if the correlation between any pair of columns of

A is limited, theℓ1-norm approximation provides optimal solutions [8], [11],[12]. In most cases, however,

the only guarantee to recover the optimal support is to use the exhaustive search algorithm. When fast

sub-optimal algorithms lead to unsatisfactory results, itis of great interest to develop “intermediate” sub-

optimal algorithms providing more accurate solutions within a larger computation time, which nevertheless

remains very small in comparison with the exhaustive search. The Orthogonal Least Squares algorithm

(OLS) [20], which is sometimes confused with OMP [21], fallsinto this category of intermediate quality

algorithms. The structure of OLS is the same as that of OMP, the difference being that at each iteration,

OLS solves a large number of least-square problems (n− k, wherek is the cardinal of the current active

set) while OMP only performs then − k inner products between the current residualy − Ax and the

candidate columnsai and chooses the column ofA having the maximal inner product. OMP solves only

one least-square problem per iteration, once the column to be inserted is selected (in order to update all

the active set entries). In the following, we will propose a forward-backward extension of OLS allowing

an insertion or a removal at each iteration, each iteration requiring to solven least-square problems. It

differs from the bidirectional search algorithm of Haugland [18] and the FoBa algorithm of Zhang [19]

which are OMP forward-backward extensions.

The starting point of our forward-backward algorithm is theSingle Most Likely Replacement (SMLR)

algorithm, which proved to be a very efficient tool for the deconvolution of a sparse signal modeled as a

Bernoulli-Gaussian process [22]–[25]. This approach relies on a Bayesian formulation of a deconvolution

problem of the formy = Ax + n (whereA denotes the convolution matrix) and on the maximuma

posteriori (MAP) estimation of the sparse signal. The Bernoulli-Gaussian model is a probabilistic model
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for sparse signals, in which (binary) Bernoulli random variables are associated to the position of the

non zero values ofx, and the corresponding amplitudes are distributed according to an independent

identically distributed (i.i.d.) centered Gaussian distribution of varianceσ2
x. SMLR is a deterministic

ascent algorithm, which performs the optimization of the posterior likelihood of the support ofx in a

sub-optimal manner. It consists in updates (increase or decrease) of the support by one element, and the

subsequent estimation of the amplitudesxi.

Sparse signal approximation can be seen as a limit case of theBernoulli-Gaussian restoration problem,

in which the varianceσ2
x of the amplitudes is set to infinity, because by definition, the ℓ0-norm counts the

number of non-zero values whatever their amplitudes. We will consider the limit case in whichσ2
x tends

to infinity and show that the MAP estimation of the weightsx leads to an optimization problem which is

close to theℓ0-constrained problem. This will result in an adaptation of the SMLR algorithm to the sparse

approximation problem which relies on a single insertion ora single removal of an entry into/from the

active set. The paper is organized as follows. In Section II,we introduce the Bernoulli-Gaussian model and

the Bayesian framework in which we formulate the sparse signal approximation problem. In Section III,

we adapt the SMLR algorithm resulting in the so-called Single Best Replacement (SBR) algorithm. In

Section IV, a fast SBR implementation is proposed, based on the efficient update of the least-square error

when the active set is modified by one element. Finally, Sections V and VI illustrate the method on the

deconvolution with a Gaussian impulse response and on the joint detection of discontinuities at different

orders in a signal, formulated as sparse signal approximation problems.

II. FROM BERNOULLI-GAUSSIAN SIGNAL RESTORATION TO SPARSE SIGNAL REPRESENTATION

The starting point of our study is the restoration of a sparsesignal x from a linear observation

y = Ax+ n, wheren stands for the observation noise. An acknowledged probabilistic model dedicated

to sparse signals is the Bernoulli-Gaussian (BG) model [22], [23], [25]. The BG model can actually lead

to MAP and posterior mean estimators of the sparse signal, whose computation rely on optimization [25]

and Monte Carlo Markov chain sampling, respectively [26]. We will first recall the known BG models

and the formulation of sparse signal restoration in the Bayesian framework. Then, we will extend this

formulation to a more general representation of sparse signals.

A. Preliminary definitions and working assumptions

Given an observation vectory ∈ Rm and a dictionaryA = [a1, . . . ,an] ∈ Rm×n, a subset selection

algorithm aims at computing a weight vectorx ∈ Rn yielding an accurate approximationy ≈ Ax of
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the observation. The columnsai of A whose indices correspond to the non zero componentsxi of x

are referred to as the active (or selected) columns.

Throughout this paper, we do not make any assumption on the size of A: m can be either lower or

greater thann. Here, we will assume thatA satisfies the unique representation property (URP). This

assumption is classical in the sparse signal approximationliterature, in the case wherem 6 n [27]. It is

a stronger assumption than the full rank assumption. We now recall this definition and extend it to the

case wherem > n.

Definition 1 Whenm 6 n, A satisfies the URP if and only if any selection ofm columns ofA forms

a family of linearly independent vectors. Whenm > n, A satisfies the URP if and only if it is full rank.

Before going further, let us mention that this assumption can be relaxed providing that the search strategy

can guarantee that the selected columns ofA result in a full rank matrix (see Section VI for details).

Under the URP assumption, whenm 6 n, the systemy = Ax has a number of solutions whoseℓ0-

norm are lower or equal tom: any active set of cardinality lower thanm constitutes a possible support

of such a solution. Whenm > n, there is generally no solution toy = Ax but the least-square estimator

x = (AtA)−1Aty is unique, although not necessarily sparse.

Definition 2 The support of a vectorx ∈ Rn is the setS(x) ⊆ {1, . . . , n} defined byi ∈ S(x) if and

only if xi 6= 0.

Definition 3 We denote byQ ⊆ {1, . . . , n} the active set. GivenQ, we define the related vectorq ∈

{0, 1}n, by qi = 1 if and only if i ∈ Q. Let AQ be the matrix of sizem×Card [Q] formed of the active

columns ofA (ai, i ∈ Q), and lett be the reduced vector of sizeCard [Q] gathering the valuesxi for

which i ∈ Q. The observation modely = Ax + n also readsy = AQt + n.

Definition 4 For all Q ⊆ {1, . . . , n} such thatCard [Q] 6 min(m,n), let xQ be the least-square

solution and letEQ be the associated least-square error:

xQ , arg min
S(x)⊆Q

{E(x) = ‖y − Ax‖2} (1)

EQ , E(xQ) = ‖y − AxQ‖
2. (2)

Notice that due to the URP assumption and becauseCard [Q] 6 min(m,n), xQ is uniquely defined.
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B. Bernoulli-Gaussian models

A BG process can be defined as a random vectorx (1) described by means of a Bernoulli random

vectorq ∈ {0, 1}n corresponding to the active set, and a Gaussian random vector r ∼ N (0, σ2
xIn) such

as each samplexi of x is modeled asxi = qiri [22], [23]. Here,In stands for the identity matrix of

sizen × n. The Bernoulli random variablesqi ∼ B(ρ) are i.i.d. They code for the presence (qi = 1) or

absence (qi = 0) of signal at locationi, the Bernoulli parameterρ = Pr(qi = 1) being the probability of

presence of signal. The nonzero signal amplitudesri are controlled by their varianceσ2
x. Becauseq and

r are independent random variables, the prior likelihoods ofq andx = (q, r) read:

l(q) = ρ‖q‖0(1 − ρ)n−‖q‖0 (3)

l(q, r) = l(r) l(q) = g(r;σ2
xIn) ρ‖q‖0(1 − ρ)n−‖q‖0 , (4)

whereg(. ; Γ) denotes the probability density function of the centered Gaussian distribution with covari-

ance matrixΓ.

C. Bayesian formulation of sparse signal restoration

The Bayesian formulation of an inverse problem of the formy = Ax + n, wheren stands for the

observation noise, consists in inferring the distributionof x = (q, r) knowing y using Bayes’ rule.

One can either infer the marginal distributionl(q|y) [25] or the joint distributionl(q, r|y) [23], [24].

Following [23], we focus on the joint likelihoodl(q, r|y), leading to a cost function involving the least-

square error‖y − Ax‖2 and theℓ0-norm of x.

Assuming an i.i.d. Gaussian noise distribution (n ∼ N (0, σ2
nIm)) and that the noise is independent

from the sparse signalx, the posterior likelihoodl(q, r|y) can be expressed using Bayes’ rule. Denoting

L(q, r) , −2σ2
n log[l(q, r|y)], we have:

l(q, r|y) ∝ g(y − Ar;σ2
nIm) g(r;σ2

xIn) ρ‖q‖0(1 − ρ)n−‖q‖0 .

L(q, r) = ‖y − Ar‖2 +
σ2

n

σ2
x

‖r‖2 + 2σ2
n log

(
1 − ρ

ρ

)
‖q‖0 + constant(m,σn, n, σx), (5)

where∝ indicates proportionality. Introducing the reduced vector t (see definition 3), the amplitudesr

rereadr = {t,u} (with u = {ri | qi = 0}), andL(q, r) takes the separable formL(q, r) = C(q, t) +

σ2
n/σ2

x ‖u‖2 + constant(m,σn, n, σx), where

C(q, t) = ‖y − AQt‖2 +
σ2

n

σ2
x

‖t‖2 + 2σ2
n log

(
1 − ρ

ρ

)
‖q‖0. (6)

1For convenience, we will use the same notations for random variables and their realization.
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The minimization of (5) over{0, 1}n ×Rn leads tou = 0. Finally, the joint MAP estimation problem

consists of the minimization of (6) w.r.t.(q, t) ∈ {0, 1}n ×R‖q‖0 .

Remark 1 In (6), the weight of‖q‖0 is non-negative if and only ifρ 6 1/2. This condition imposes that

in average, at least half of the samplesxi are equal to 0. This is coherent with the sparse assumption.

D. Mixed ℓ2-ℓ0 minimization as a limit case

A sparse signalx is a signal for which a number of entries are equal to 0,i.e., ‖x‖0 6 k for some

value of k. Since this definition does not involve constraints on the range of values of the non zero

amplitudes, we choose to describe a sparse signal by a limit Bernoulli-Gaussian model, in which the

amplitude varianceσ2
x is set to infinity. The minimization of (6) thus rereads:

min
q,t

{C(q, t) = ‖y − AQt‖2 + λ‖q‖0}, (7)

with λ = 2σ2
n log(1/ρ − 1). This compound criterion is composed of a quadratic data-fitting term, and a

penalization term favoring the sparsity of the signalx. The hyperparameterλ is related to the level of

sparsity of the desired solution.

Theorem 1 The above formulation(7) is equivalent to the following problem:

min
x∈Rn

{J (x;λ) = ‖y − Ax‖2 + λ‖x‖0}, (8)

which is referred to as theℓ0-penalized least-square problem. The term “equivalent” means that given

a minimizer(q, t) of (7), the related vectorx = {t,0} is a minimizer of (8), and conversely, given

a minimizerx of (8), the vectorsq and t defined as the support ofx and its non-zero amplitudes,

respectively, are such that(q, t) is a minimizer of(7).

Proof: To prove the equivalence, we first prove thatminx J = minq,t C:

— Let x be a minimizer ofJ (. ; λ). We setq to the support ofx (qi = 1 if and only if xi 6= 0) andt

to the non zero amplitudes ofx. Obviously, it follows thatJ (x;λ) = C(q, t). Finally, minxJ (x ; λ) >

minq,t C(q, t).

— Let (q, t) be a minimizer ofC. Then, the vectorx defined byx = {t,0} is such thatAx = AQt

and‖x‖0 = ‖t‖0 6 ‖q‖0. Therefore,J (x;λ) 6 C(q, t). It follows thatminq,t C(q, t) > minxJ (x ; λ).

In other words, we haveminxJ = minq,t C. We have also shown that the minimizers of both problems

coincide,i.e., are vectors describing identical signals.
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In the following sections, we will focus on the minimizationproblem (8), involving the penalization

term‖x‖0. The algorithm that will be developed hereafter is based on an efficient search of the support of

x. In that respect, theℓ0-penalized least-square problem does not drastically differ from theℓ0-constrained

problemmin ‖y − Ax‖2 subject to‖x‖0 6 k.

III. A DAPTATION OF SMLR TO ℓ0-PENALIZED LEAST-SQUARE OPTIMIZATION

In this section, we propose to adapt the SMLR algorithm to theminimization of the mixedℓ2-ℓ0

cost functionJ (x ; λ) defined in (8). However, to clearly distinguish SMLR which specifically aims at

minimizing (6), the adapted algorithm will be termed as Single Best Replacement (SBR).

A. Principle of the SMLR algorithm

The Single Most Likely Replacement (SMLR) algorithm [22] isa deterministic coordinatewise ascent

algorithm to maximize log-likelihood functions of the forml(q|y) (marginal MAP estimation) orl(q, t|y)

(joint MAP estimation). In the latter case, it is worth noticing from (6) that givenq, the minimizer of

C(q, t) w.r.t. t has a closed form expressiont = t(q). Consequently, the joint MAP estimation reduces to

the minimization of the cost functionC(q) , C(q, t(q)) w.r.t. q. At each SMLR iteration, all the possible

single replacements of the supportq (set qi = 1 − qi while keeping the otherqj, j 6= i unchanged) are

tested, then the replacement yielding the maximal increaseof C(q) is chosen. This task is repeated

iteratively until no single replacement can increaseC(q) anymore. The number of possible supportsq

being finite (2n) and SMLR being an ascent algorithm, it terminates after a finite number of iterations.

Let us introduce some useful notations.

Definition 5 For convenience, we will use the notationQ • i to refer to a single replacement, i.e., the

insertion (∪) or removal (\) of an indexi into/from the active setQ:

Q • i ,





Q∪ {i} if i /∈ Q,

Q\{i} otherwise.
(9)

Definition 6 For a given subsetQ of {1, . . . , n} such thatCard [Q] 6 min(m,n), we define the cost

functions:

JQ(λ) , J (xQ;λ) = EQ + λ‖xQ‖0, (10)

KQ(λ) , EQ + λCard [Q] , (11)

where the least-square solutionxQ and the corresponding errorEQ have been defined in(1) and (2).
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Obviously,JQ(λ) = KQ(λ) if and only if the minimizerxQ has a support equal toQ. In the next two

paragraphs, we will introduce a first version of SBR involving JQ(λ) only, and then we will present an

alternative (simpler) version relying on the computation of KQ(λ) instead ofJQ(λ). We will discuss the

extent to which both versions differ.

B. The Single Best Replacement algorithm (preliminary version)

The SMLR algorithm described above can be seen as an exploration strategy for discrete optimization

rather than an algorithm specific to a posterior likelihood function. Here, we will use the same strategy to

minimize the cost functionJ (x;λ). However, we rename the algorithm Single Best Replacement (SBR)

to remove the statistical connotation, the search strategybeing applicable to cost functions which are

not likelihood functions. The SBR algorithm works as follows. At each iteration, then possible single

replacementsQ • i, i = 1, . . . , n are tested, then the best is selected,i.e., the replacement yielding the

maximal decrease ofJ (x;λ). This task is repeated untilJ (x;λ) cannot decrease anymore. We now

detail one SBR iteration.

Given an active setQ, the vectorxQ defined in (1) is the corresponding least-square solution. For

each indexi ∈ {1, . . . , n}, we compute the minimizerxQ•i of E(x) whose support is included inQ• i,

and we keep in memory the value ofJQ•i(λ) = J (xQ•i ; λ). Finally, we compute the minimum of

JQ•i(λ), i = 1, . . . , n. If the minimal value is strictly lower thanJQ(λ), then we select the indexi

yielding this minimal value:

ℓ ∈ arg min
i∈{1,...,n}

JQ•i(λ). (12)

The next SBR iterate is thus defined asQ′ = Q • ℓ, yielding the vectorxQ′ .

SBR terminates when none of the indicesi yield a decrease ofJ . Except when an initial support

estimate (of cardinality lower thanmin(m,n)) is available, we suggest to set the initial active set to the

empty set.

Remark 2 (Relationship between SBR and SMLR)We introduced SBR as the application of the SMLR

search strategy to theℓ0-penalized least square cost function, which is obtained bytaking the limit of

the cost function(6) whenσx tends towards infinity. In other words, we first considered the limit form

of the cost function(6), and then applied the search strategy. Conversely, applying SMLR to the cost

function(6) and then, taking the limit of the SMLR formula whenσx tends to infinity also yields the SBR

algorithm.
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Actually, the main difference between the SMLR and SBR algorithms is that SMLR (which can take

several forms depending on the use of the joint distributionl(q, r|y) or the marginal distributionl(q|y))

involves the inversion of a matrix of the formAt
QAQ+αICard[Q] whereas SBR involves the inverse of the

Gram matrixAt
QAQ. For this reason, instabilities are likely to occur while using SBR in the cases where

AQ is ill conditioned, for lowλ-values. The use of the termαICard[Q], which acts as a regularization on

the amplitude values, avoids such a degeneracy while using SMLR, at the price of handling the additional

hyperparameterα.

C. Slight modification of SBR (final version)

We introduce a slight modification of SBR by replacing (12) with:

ℓ ∈ arg min
i∈{1,...,n}

KQ•i(λ). (13)

We propose this modification becauseKQ(λ) = EQ + λCard [Q] can be computed more efficiently than

JQ(λ), the computation ofxQ being no longer necessary. The use ofKQ(λ) makes the penalization

term very easy to update whenQ is modified by one element (add or removeλ), and the only necessary

update is that ofEQ. The following theorem shows that there is almost surely no difference between both

versions of SBR provided that the datay are corrupted with “non degenerate” noise.

Theorem 2 Let y = y0 + n, wherey0 is a given vector ofRm and n is a random vector. We assume

that n is an absolute continuous random vector, i.e., one that admits a probability density function w.r.t.

the Lebesgue measure. Then, whenCard [Q] 6 min(m,n), the probability that‖xQ‖0 < Card [Q] is

equal to 0, i.e.,‖xQ‖0 = Card [Q] almost surely.

Proof: Let k = Card [Q] and let tQ be the minimizer of‖y − AQt‖2 over Rk. Obviously,

‖xQ‖0 = ‖tQ‖0 6 k. Let VQ = (At
QAQ)−1At

Q be the matrix of sizek × m such thattQ = VQy.

Denoting byv1, . . . ,vk ∈ Rm the row vectors ofVQ, ‖tQ‖0 < k if and only if there existsi such

that ytvi = 0. BecauseAQ is full rank, VQ is full rank and then∀i, vi 6= 0. Denoting byH⊥(vi) the

hyperplane ofRm which is orthogonal tovi, we have

‖xQ‖0 < k ⇐⇒ y ∈
k⋃

i=1

H⊥(vi). (14)

Because the set
⋃

i H
⊥(vi) has a Lebesgue measure equal to zero and the random vectory admits a

probability density function, the probability of event (14) is zero, thus Pr(‖xQ‖0 < k) = 0.
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TABLE I

SBR ALGORITHM (FINAL VERSION). BY DEFAULT, THE INITIAL ACTIVE SET IS EMPTY: Q1 = ∅.

Input: A, y, λ and active setQ1 of cardinality lower thanmin(m, n)

Step 1: Setj to 1.

Step 2: Fori = 1 to n,

ComputeKQj•i(λ).

End for.

Computeℓ using (13).

If KQj•ℓ(λ) < KQj
(λ),

SetQj+1 = Qj • ℓ,

else,

Terminate SBR.

End if.

Step 3: Doj = j + 1 and go to step 2.

Output: active setQj = SBR(Q1; λ)

The above theorem implies that when dealing with real noisy data, it is almost sure that‖xQ‖0 =

Card [Q], i.e., that no active component is exactly equal to 0. Thus, the original and slightly modified

versions of SBR almost surely lead to exactly the same iterates. Even in the noiseless case, an active

component is rarely numerically evaluated to 0 due to the round-off errors occurring during the numerical

computations. In all cases, the modified version of SBR can beapplied without restriction and the

properties stated below (e.g.,the termination after a finite number of iterations) remain valid even when

an SBR iterate satisfies‖xQ‖0 < Card [Q].

For all these reasons, we will adopt the modified version of SBR in the rest of the paper. It is

summarized in Table I.

D. Behavior and adaptations of SBR

Termination of SBR:SBR is a descent algorithm in the sense that the value ofKQ(λ) is always

decreasing. Consequently, a setQ cannot be explored twice and similarly to SMLR, SBR terminates after

a finite number of iterations. The SBR outputQ is a “local minimizer” of the functionQ 7→ KQ(λ) in

the sense that no replacement ofQ with Q • i yields a decrease of the cost:∀i, KQ(λ) 6 KQ•i(λ).

Notice that the size ofQ remains lower or equal tomin(m,n). Indeed, if a setQ of cardinality

January 4, 2010 DRAFT



TECHNICAL REPORT 14

min(m,n) is reached, thenEQ is equal to 0 due to the URP assumption. Then, any setQ′ of the form

Q ∪ i yields a larger valueKQ′(λ) = KQ(λ) + λ of the cost function. We emphasize that no stopping

condition is needed unlike many algorithms which require toset a maximum number of iterations (MP

and variations, OLS) and/or a threshold on the squared errorvariation (CoSaMP, IHT).

Proposition 1 Under the assumptions of Theorem 2, each SBR iteratexQ is almost surely a local

minimizer of theℓ0-constrained problem

min
‖x‖06k

E(x) (15)

with k = Card [Q]. This property holds in particular for the SBR output.

Proof: Let x = xQ be an SBR iterate and letk = Card [Q]. According to Theorem 2,‖x‖0 = k

almost surely. Settingε = mini∈Q |xi| (ε > 0), it is obvious that ifx′ ∈ Rn satisfies‖x′ − x‖2 < ε,

then∀i ∈ Q, x′
i 6= 0. Thus,‖x′ − x‖2 < ε implies thatS(x) ⊆ S(x′) and‖x′‖0 > k.

If x′ satisfies‖x′ − x‖2 < ε and ‖x′‖0 6 k, then necessarily,‖x′‖0 = k andS(x) = S(x′). Since

x = xQ, it follows thatE(x′) > E(x) almost surely.

OLS as a special case:Whenλ = 0, SBR coincides with the well known Orthogonal Least Squares

(OLS) algorithm [20], [28]. The removal operation never occurs, because it automatically leads to an

increase of the least-square costKQ(0) = EQ. Consequently, only insertions are worth being tested

(Q′ = Q ∪ i, i /∈ Q).

Empty solutions:

Proposition 2 (Empty solutions) Denoting byλmax , maxi(a
t
iy)2/‖ai‖

2, the output of SBR(∅;λ) is

equal to the empty set if and only ifλ > λmax.

Proof: SBR stops during its first iteration if all the insertion trials fail, i.e.,

∀i, E{i} + λ > E∅ = ‖y‖2. (16)

For a given value ofi, the minimum of‖y − xiai‖
2 is reached whenxi = at

iy/‖ai‖
2, leading to

E{i} = ‖y‖2 − (at
iy)2/‖ai‖

2. Thus, (16) is equivalent to the condition∀i, λ > (at
iy)2/‖ai‖

2, i.e., to

λ > λmax.

Reduced search:Instead of trying all the replacementsQ′ = Q • i at each SBR iteration, it is

advantageous, if possible, to explore only a subset of thesen replacements. We give two ideas to reduce

the number of trials: the first idea is an acceleration of the SBR algorithm, yielding the same iterates

with a slightly reduced search. The second idea is a modification of SBR.
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Given an active setQ, a removalQ′ = Q\{i} yields an increase of the squared error and a decrease

of the penalty equal toλ. Hence, the maximum decrease of theℓ0-penalized cost function which can be

expected with a removal isλ: KQ′(λ) −KQ(λ) > −λ. Consequently, if a given insertionQ′ = Q∪ {i}

is such thatKQ′(λ)−KQ(λ) < −λ, then no removal can yield a larger decrease. The acceleration of the

SBR algorithm thus consists in trying all the insertions first, and if the best insertion yields a decrease

larger thanλ, selecting the best insertion. Otherwise, all the removalsneed to be explored as stated in

Table I. This acceleration does not alter the SBR iterates. However, the gain is limited when the level of

sparsity is high,i.e., when the number of removals to be tried is reduced.

Haugland and Zhang pointed out that in a forward-backward strategy, it can be helpful to favor

removals [18], [19]. Adapted to SBR, this idea leads to a modified algorithm in which the removal

operations are explored in a first pace, and the insertions are explored only if no removal yields a decrease

of the cost function. If a removal decreases the cost, then the selected replacement is the removal yielding

the maximal decrease.

In our experiments, the average performance of SBR and this modified version are quite comparable

(there is no obvious gain or loss of quality nor a significant saving in computation time). Thus, in the

following, we will keep the version of SBR presented on TableI for the sake of clarity.

IV. I MPLEMENTATION ISSUES

Given the current active setQ, an SBR iteration consists in computing the least-square error EQ′ for

all the configurationsQ′ = Q • i, allowing the computation ofKQ′(λ) using (11). We first present a

basic implementation in whichEQ′ is computed independently of the knowledge ofEQ, and then an

efficient implementation allowing a fast update whenQ is modified. We will denote byk , Card [Q]

the cardinality of the active set.

A. Basic implementation

Given a supportQ ⊆ {1, . . . , n} of cardinality lower thanmin(m,n), (1) reduces to the unconstrained

minimization of‖y − AQt‖2 w.r.t. t ∈ Rk. BecauseAQ is full rank, the unconstrained problem has a

unique minimizer that reads:

tQ , arg min
t

‖y − AQt‖2 = (At
QAQ)−1At

Qy (17)

and the minimal least-square error reads:

EQ = ‖y − AQtQ‖
2 = ‖y‖2 − ytAQtQ. (18)
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Finally, given an active setQ, an SBR iteration involves the computation oftQ′ and the corresponding

error EQ′ for all possible updatesQ′ = Q • i of Q, using (17) and (18).

B. Recursive implementation of SBR

At each SBR iteration,n least-square problems of the form (17) must be solved, each requiring the

inversion of the Gram matrix (of sizek × k)

GQ , At
QAQ. (19)

The computational cost can be high when the number of active entries k is large since in the general

case, a matrix inversion costsO(k3) scalar operations. Following an idea widely spread in the subset

selection literature, we propose to use a recursive computation of the inverse of the Gram matrix.

A first possibility is to use the Gram-Schmidt procedure [20], [28] which yields an orthogonal de-

composition ofAQ = WU , whereW is anm × k matrix with orthogonal columns andU is a k × k

upper triangular matrix. Although it yields an efficient updating strategy when including an index into

the active set (leading to the update ofAQ′ = [AQ,ai]), the Gram-Schmidt procedure does not extend

with the same level of efficiency when an index removal is considered [29].

An alternative possibility is to use the block matrix inversion lemma [30] allowing an efficient update

of G−1
Q for both index insertion and removal. The reader is referredto [25] which proposed an efficient

SMLR implementation based on the recursive update of matrices of the form(GQ + αIk)−1. This

approach can also be used with SBR. However, the matrix to update isG−1
Q , thus numerical instabilities

are likely to occur when the selected columns ofA are highly correlated and for lowλ-values.

A possible stable solution is based on the Cholesky factorization GQ = LQLt
Q, whereLQ is a lower

triangular matrix. UpdatingLQ rather thanG−1
Q is advantageous, sinceLQ is better conditioned. Its

update can be easily done in the insertion case [31] but the removal case necessitates more care, as a

removal breaks the structure of the lower triangular matrixLQ. Ge et al. recently proposed a stable

implementation of SMLR [32] which relies on the recursive update of the Cholesky factor ofG−1
Q . Here,

we propose a slightly simpler strategy that relies on the factorization of the Gram matrixGQ itself.

C. Efficient strategy based on the Cholesky factorization

First, we notice that any new columnai can be inserted at the last location inAQ∪i, since the value of

EQ∪i does not depend on the position ofai in matrix AQ∪i. On the contrary, when removing a column
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from the active set, we do not knowa priori the position of the column to be removed, thus it cannot

be assumed to be the last column ofAQ.

Given an active setQ and the corresponding matrixAQ of size m × k, we will describe the cases

where:

• a non active indexi 6∈ Q is included after the other columns:AQ′ = [AQ,ai];

• an active indexi ∈ Q is to be removed, the columnai being in an arbitrary position.

As a symmetric positive-definite matrix,GQ readsGQ = LQLt
Q where the Cholesky factorLQ is a

lower triangular matrix of sizek×k. Applying (17), the least-square minimizer readstQ = L−t
Q L−1

Q At
Qy

where the superscript−t refers to the inverse transposition operator, and using (18), the cost function

rereads:

KQ(λ) = EQ(λ) + λk = ‖y‖2 − ‖L−1
Q At

Qy‖2 + λk. (20)

Given LQ, its computation costsO(k2) scalar operations to solve the triangular systemL−1
Q (At

Qy).

Insertion of a new column after the existing columns:Given an active setQ of size k, including

a new index intoQ leads toAQ′ = [AQ,ai]. Thus, the new Gram matrix can be expressed as a2 × 2

block matrix:

GQ′ =



 GQ At
Qai

(At
Qai)

t ‖ai‖
2



 , (21)

and the Cholesky factor ofGQ′ can be straightforwardly updated:

LQ′ =



 LQ 0

ltQ,i αQ,i



 , (22)

with lQ,i = L−1
Q At

Qai andαQ,i =
√

‖ai‖2 − ‖lQ,i‖2.

The computation ofKQ′(λ) using (20) leads to two inversions of triangular systems (computation of

lQ,i and computation ofKQ′(λ)). Advantageously, by computing

KQ′(λ) −KQ(λ) = λ −
(
ltQ,iL

−1
Q At

Qy
)2

/α2
Q,i, (23)

the cost can be reduced up to the pre-computation and storageof L−1
Q (At

Qy) at the beginning of the SBR

iteration. The computation ofKQ′(λ) only requires one inversion of a triangular system (computation of

lQ,i).

Removal of an arbitrary column:When removing a columnai, updatingLQ remains possible,

although slightly more expensive. This idea was first developed by Geet al. [32], who update the

Cholesky factorization of matrixG−1
Q . We adapt it to the direct factorization ofGQ. Let I be the index
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such thatai is the I-th column ofAQ (with 1 6 I 6 k). Matrix LQ can be written in a block matrix

form:

LQ =





A 0 0

bt d 0

C e F




, (24)

where the lowercase characters refer to the scalar (d) and vector quantities (b, e) which appear at the

I-th row and at theI-th column. The computation ofGQ = LQLt
Q and the removal of theI-th row and

the I-th column inGQ leads to

GQ′ =



 A 0

C F







 At Ct

0 F t



 +



 0

e



 [
0 et

]
. (25)

By identification of this expression with the Cholesky factorization GQ′ = LQ′Lt
Q′ and because the

Cholesky factorization is unique,LQ′ necessarily reads:

LQ′ =



 A 0

C X



 , (26)

whereX is a lower triangular matrix satisfying

XXt = F F t + eet. (27)

The problem of computingX from F and e is classical; it is known as a positive rank 1 Cholesky

update (update of the Cholesky factorF corresponding to a rank 1 update of the matrixF F t to be

decomposed), and there exists a stable algorithm inO(f2) operations, wheref = k − I is the size of

F [33].

Finally, the computation ofKQ′(λ) involves a positive Cholesky update and a triangular system

inversion in (20). Thus, its overall cost is inO(k2). Notice that matrixF is of sizek− I. Therefore, the

cost of a Cholesky update completely depends on the positionI of the columnai to be removed. The

largerI, the more expensive is the Cholesky update.

D. Memory requirements and computation burden

The efficient (fast and stable) procedure is finally summarized in Table II. Given the current active

setQ, the indexℓ defining the next SBR iterateQ • ℓ is chosen according to (13) andLQ•ℓ is finally

updated. No update of the amplitudes is necessary. If needed, their computation can be done using (17)

and the knowledge ofLQ.
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TABLE II

EFFICIENT IMPLEMENTATION OF AN ELEMENTARY SBR ITERATION.

Input: Q, λ

Pre-computed quantities:Aty and‖ai‖
2 for all i

Stored quantities:KQ(λ), LQ andL−1

Q
(At

Qy)

Setk = Card [Q].

Set ℓ = 0.

Setleast_cost = KQ(λ).

For i = 1 to n,

If i /∈ Q,

/* Try the insertion of i */

ComputelQ,i = L−1

Q
At

Qai andKQ′(λ) using (23).

else,

/* Try the removal of i */

Update the Cholesky decomposition (27):X =cholupdate(F ,e, ′+′)

ComputeLQ′ andKQ′ (λ) using (26) and (20).

End if.

If KQ′(λ) < least_cost,

Set ℓ = i.

Do least_cost = KQ′ (λ).

End if.

End for.

If ℓ = 0,

Terminate SBR.

else, /* Perform the single replacement */

SetQ′ = Q • ℓ andKQ′ (λ) = least_cost.

ComputeLQ′ = LQ•ℓ using (22) or (26), and thenL−1

Q′ (A
t
Q′y).

End if.

Output: next SBR iterateQ′ = Q • ℓ, KQ′(λ), LQ′ andL−1

Q′ (A
t
Q′y)

The actual implementation may vary depending on the size andthe structure of matrixA. We now detail

the main possible implementations and their requirements in terms of storage and computation. Regarding

the computation burden, we count the number of elementary operations, expressed in terms of scalar

multiplications, since the cost of a scalar addition is negligible with respect to that of a multiplication.

When A is relatively small, one can take advantage of the situationby computing the full Gram
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matrix AtA prior to any SBR iteration (storage ofn2 scalar elements). Its storage avoids recomputing

vectorsAt
Qai which are needed whenever the insertion ofai into the active set is tried. Similarly, we

systematically store the values‖ai‖
2 (i = 1, . . . , n) andAty in two 1D arrays of sizen, prior to any

SBR loop. The storage of the other quantities (mainlyLQ) that are being updated in the SBR loops

amounts toO(k2) scalar elements, and each trial costsO(k2) elementary operations, as it involves the

inversion of a triangular system of sizek × k, plus a positive rank 1 Cholesky update in the removal

case. This cost must be compared with theO(k3) scalar operations which are necessary when inverting

the Gram matrix in the basic implementation of SBR.

When A is larger, the computation ofAtA is not possible anymore, and vectorsAt
Qai must be

recomputed at any SBR iteration, for each insertion trialQ′ = Q∪{i}. The computation ofAt
Qai costs

km elementary operations. It is a great burden and actually themain part of the cost corresponding to the

trial of one single replacement, since the remaining part isin O(k2) and for sparse representations,k is

expected to be much lower thanm. The cost of a single replacement finally amounts toO(k2)+O(km)

elementary operations.

When the dictionaryA has some specific structure, the above storage limitation can be alleviated,

enabling a fast implementation even for large values ofn. For instance, ifAtA is a sparse matrix (i.e.,

a large number of pairs of columns ofA are orthogonal to each other), it can be stored as a sparse array

in the sense that only the non-zero elements and their indices are stored. Also, deconvolution problems

enable a fast implementation, sinceAtA is then a Toeplitz matrix (except for a north-west and/or a

south-east submatrix in some cases of boundary conditions); the knowledge of the auto-correlation of the

impulse response is sufficient to completely describe the matrix or a large part of it.

V. DECONVOLUTION OF A SPARSE SIGNAL WITH AGAUSSIAN IMPULSE RESPONSE

We will analyze the behavior and performance of the proposedalgorithm on two difficult problems,

in which the dictionaries are highly correlated: the deconvolution of a sparse signal with a Gaussian

impulse response, and the joint detection of discontinuities at different orders in a signal (section VI).

The first problem is a typical problem for which the SMLR algorithm was introduced [25]. It affords

to study the ability of SBR to perform an exact recovery in a simple noiseless case (separation of two

Gaussian features from noiseless data) and to roughly understand the behavior of SBR in a noisy case

(approximation of a larger number of features from noisy data).

In the following and for simulated problems, we will denote by x⋆ the exact (known) sparse signal

and we will generate noisy data according toy = y⋆ + n = Ax⋆ + n, wherey⋆ = Ax⋆ denotes
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(a) Exact recovery (binary) (b) Size of support

Fig. 1. Separation of two Gaussian features from noiseless data. Behavior of the reconstructionbQ(λ; d) as a function ofλ and

of the distanced between both Gaussian features. For a givend-value, the curvesλ 7→ true(d, λ) (a) andλ 7→ size(d, λ) (b)

indicate the exact recovery (binary value) and the size of the support bQ(λ; d), respectively.

the noiseless data andn stands for the observation noise. The dictionary columnsai will always be

normalized:‖ai‖
2 = 1. The signal to noise ratio (SNR) is defined by SNR= 10 log10(PY /PN ), where

PY = ‖y⋆‖2/m is the average power of the noiseless data andPN is the variance of the noise process

n.

A. Dictionary and simulated data

The impulse responseh is a Gaussian signal of standard deviationσ, sampled on a regular grid at

integer locations. For convenience reasons, it is approximated by a finite impulse response of length6σ

by thresholding the least values. The deconvolution problem leads to a Toeplitz matrixA whose columns

ai are obtained by shifting the signalh. The dimension ofA is chosen in such a way that any Gaussian

feature resulting from the convolutionh∗x⋆ belongs to the observation window{1, . . . ,m}. This implies

that A is slightly overcomplete (m > n). Denoting bynh = 1 + 2round(3σ) the size of the support of

h, the data size readsm = n + nh − 1. Setting a largeσ-value yields a high correlation between the

neighboring columns of the dictionary.

B. Separation of two close Gaussian features

We first analyze the ability of SBR to separate two Gaussian features from noiseless data (‖x⋆‖0 = 2).

The centers of both Gaussian features lay at a relative distance d and their amplitude is set to 1. We

generate the corresponding noiseless datay⋆ and we run SBR(∅;λ) for a number of predefinedλ-values.
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We analyze the SBR outputŝQ(λ; d) by testing if Q̂(λ; d) is the true supportS(x⋆) and by computing

its size. For eachd-value, the procedure yields two curvesλ 7→ true(d, λ) andλ 7→ size(d, λ).

Fig. 1 shows the curves obtained for a problem of size300 × 270 (m = 300, σ = 5, andnh = 31).

These results correspond to distances equal tod = 20, 13 and 6 samples (red, black, and blue curves). It

is noticeable that the exact recovery is always reached provided thatλ is sufficiently small. This result

remains true even for smaller distances (for alld > 2). The curveλ 7→ size(d, λ) illustrates that when

the Gaussian features strongly overlap (i.e., for d = 13 and 6), the size of the support obtained as output

increases whileλ decreases, and then for lowerλ-values, removals start to occur, making the exact

recovery possible. On the contrary, forward methods such asOMP and OLS start by positioning a (false)

Gaussian feature in between the two Gaussians in their first iteration; this early false detection disables

a true recovery in the further iterations.

C. Behavior of SBR for noisy data

In order to understand the behavior of SBR, we run SBR on more realistic noisy data and on a

larger dimension problem (m = 3000 samples). The unknown sparse signalx⋆ is generated by using the

Bernoulli-Gaussian model introduced in Section II and is composed of‖x⋆‖0 = 13 Gaussian features. The

impulse responseh is of sizenh = 181 (σ = 30) yielding an observation matrixA of size3000× 2820,

and the SNR is set to 20 dB.

Fig. 2 displays the simulated data and the SBR results obtained with a fewλ-values. Whenλ decreases,

the SBR approximations are of better quality but less sparse. The main Gaussian features are first found

for largeλ-values, and whenλ decreases, the smaller features are being recovered. Removals rarely occur

for coarse approximations. They occur more frequently whentwo spikes are overlapping and for low

λ-values. For the reconstruction of Fig. 2, the exact supportof x⋆ is not found. However, it must be

stressed that the columns ofA are highly correlated and the approximations provided by SBR are of very

good quality. Whenλ = 0.01, two very close neighboring columns ofA are selected and both belong to

the active set. Thus, the submatrixAQ formed of the active columns ofA is ill conditioned. Despite the

use of the Cholesky decomposition of the Gram matrixGQ = At
QAQ, these highly correlated columns

provoke numerical instability leading to degenerate amplitude values. We believe that this problem is not

due to SBR itself but to the low level of regularization. The same problem occurs while running OLS

for more than 14 iterations.
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Fig. 2. Gaussian deconvolution results. Problem of size3000× 2820 (σ = 30). (a) Generated data signal, with 13 Gaussian

features (‖x⋆‖0=13) and with SNR = 20 dB. (b,c,d) Sparse approximations of the data with empirical settings ofλ: SBR

outputs and data approximations. The amplitudesbx are shown in red. The SBR outputs (supports) are of size 4, 10 and 14,

respectively. The time of reconstruction always remains below 2 seconds (Matlab implementation).

VI. JOINT DETECTION OF DISCONTINUITIES AT DIFFERENT ORDERS IN A SIGNAL

We now consider a more general problem, the joint detection of discontinuities at different orders

p = 0, . . . , P in a signal. We will handle simulated and real data, and compare the performance of

SBR with respect to other sparse approximation algorithms (OMP and OLS) in terms of approximation

accuracy and computation time.

In a preliminary step, we formulate the detection of discontinuities at a single orderp as a spline

approximation problem. Then, we will take advantage of thisformulation to introduce more easily the

joint detection problem.
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Signala1
2

i − 1 i i + 1

Fig. 3. The elementary signalap
i associated to ap-th order discontinuity at locationi. a0

i is the Heaviside step function,a1
i

is the ramp function anda2
i is a truncated quadratic function. Each function is equal to1 at locationi, and its support is the

interval {i, . . . , m}.

A. Approximation of a spline of degreep

In the continuous case, a signal is a spline of degreep with k knots if and only if its (p + 1)-th

derivative is a stream ofk weighted Diracs [34]. In the discrete case, we introduce thedictionary Ap

formed of signals which are shifted versions of the one-sided power functionk 7→ kp
+ , [max(k, 0)]p

for all possible shifts (see Fig. 3).Ap represents the integration operator of degreep + 1. Denoting by

{1, . . . ,m} the support of the data signaly, the shifted signalsap
i (for i ∈ {1, . . . ,m}) read

∀k ∈ {1, . . . ,m}, a
p
i (k) = (k − i + 1)p+ (28)

and their support is equal to{i, . . . ,m}. Finally, we form the dictionaryAp = [ap
1, . . . ,a

p
m−p] of size

m × (m − p). It does not make sense to allow the occurrence of ap-th order discontinuity for the last
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samples (i.e., to includea
p
i for i > m − p) since the spline approximation would require to reconstruct

a polynomial of degreep in the range{i, . . . ,m} from less thanp + 1 data samples.

We address the spline approximation problem as the sparse approximation of y by the piecewise

polynomialgp = Apxp. The vectorxp refers to the(p + 1)-th discrete derivatives of the approximate

signalgp; its non zero valuesxp
i code for the amplitude of a jump at locationi (p = 0), the change of

slope at locationi (p = 1), etc. In brief, the sparse approximation ofy provides the detection of the

location (i) of the p-th order discontinuities and the estimation of their change of amplitudes (xp
i ).

B. Approximation of a piecewise polynomial of maximum degree P

Following [34], we formulate this problem as the joint detection of discontinuities at ordersp =

0, . . . , P . Let us append the elementary dictionariesAp in a global dictionaryA = [A0, . . . ,AP ]. The

approximationg = Ax of a given signal rereadsg =
∑

p Apxp where vectorx = {x0, . . . ,xP } gathers

the p-th order amplitudesxp for all p. Whenx is sparse, all vectorsxp are sparse, and the approximate

signalg is the sum of piecewise polynomials of degree lower thanP with a limited number of pieces.

The dictionaryA is undercomplete since it is roughly of sizem × m(P + 1) (there are actually

(P + 1)(m−P/2) columns since matricesAp are not exactly square). Moreover, it is highly correlated:

any columnap
i is strongly correlated withall other columnsaq

j because their respective supports are the

intervals{i, . . . ,m} and{j, . . . ,m}, and hence overlap. The discontinuity detection problem isdifficult,

as most algorithms are very likely to position false discontinuities in their early iterations. For example,

when approximating a signal with two discontinuities at distinct locationsi andj, they start to position

a first (false) discontinuity in betweeni andj, and forward algorithms cannot remove it.

C. Adaptation of SBR

It is important to notice that the dictionary defined above does not satisfy the URP. For instance, the

difference between two discrete ramps at locationsi and i + 1 yields the discrete Heaviside function at

location i: a1
i − a1

i+1 = a0
i . More generally, forp > 1, we have

a
p
i − a

p
i+1 = a0

i +

p−1∑

q=1

[
p

q

]
a

q
i+1

where

[
p

q

]
refers to the binomial coefficient.

As mentioned in Section II, the SBR algorithm basically requires that the dictionary satisfies the URP

in order to guarantee that the Gram matrixGQ = At
QAQ is invertible, but this assumption can be relaxed
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provided that only full rank matricesAQ are explored. Here, it is not obvious to formulate a necessary

and sufficient condition for the full rankness ofAQ. We rather favor a simple sufficient condition which is

little enough restrictive (a more restrictive condition than the condition below would forbid the detection

of two discontinuities at the same location).

Proposition 3 Let d(i) denote the number of discontinuitiesa
p
i , p = 0, . . . , P which are being activated

at samplei, i.e., for whichxp
i 6= 0. Let us define the binary conditionCond(i):

• if d(i) = 0, Cond(i) , 1;

• if d(i) > 1, Cond(i) ,
(
∀j ∈ {1, . . . , d(i) − 1}, d(i + j) = 0

)
.

If the active setQ is such that for alli, Cond(i) = 1, thenGQ is invertible.

To prove Proposition 3, we first prove the following lemma.

Lemma 1 Consider an active setQ satisfying the condition of Proposition 3, and leti− = min{i | d(i) >

0} denote the least location of an active entry. Up to a reordering of the columns,AQ rereadsAQ =

[Ai− , AQ\{i−}]. If AQ\{i−} is full rank, thenAQ is also full rank.

Proof: [Proof of lemma 1] LetI = d(i−) denote the number of discontinuities at locationi− and

let 0 6 p1 < p2 < . . . < pI denote their order, sorted in the ascending order.

Suppose that there exist two families of scalars{µ1
i− , . . . , µI

i−} and{µp
i | i 6= i− and i is active at order

p} such that

I∑

j=1

µ
pj

i− a
pj

i− +
∑

i6=i−

∑

p

µp
i a

p
i = 0. (29)

We will show that allµ-values are necessarily equal to 0.

Rewriting the firstI nonzero equations in this system and becauseQ satisfies the condition of

Proposition 3, we have

∀k ∈ {i−, . . . , i− + I − 1},
I∑

j=1

µ
pj

i− (k + i− − 1)pj = 0.

In other words, the polynomialF (X) =
∑I

j=1 µ
pj

i− Xpj hasI positive roots. It can be shown [35] (page

76) that a non-zero polynomial formed ofI monomials of different degree has at mostI − 1 positive

roots. Therefore,F is the zero polynomial and all scalarsµ
pj

i− are 0. We deduce from (29) and from the

full rankness ofAQ\{i−} that µp
i = 0 for all (i, p).

We have shown that the column vectors ofAQ are linearly independent,i.e., that AQ is full rank.
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Proof: [Proof of Proposition 3] The proof of Proposition 3 directlyresults from a recursive application

of lemma 1 when including all active locationsi, sorted in the decreasing order, into the empty set.

Roughly speaking, Proposition 3 states that we allow to activate several discontinuities at the same

location i, but then, the next samplesi + 1, . . . , i + d(i) − 1 = 0 must not host any discontinuity. This

condition ensures that there are at mostd(i) discontinuities in the interval{i, . . . , i+ d(i)− 1} of length

d(i). The adaptation of SBR consists in trying the insertion or removal of an index into the current active

set only if the above condition is true, and ignoring the other trials.

D. Numerical simulations

We first consider the case whereP = 1, leading to the joint detection of zero and first order

discontinuities,i.e., the piecewise affine approximation problem. We simulate noiseless datay⋆ = Ax⋆ of

sizem = 1000 and with‖x⋆‖0 = 18 discontinuities (see Fig. 4 (a)). The dictionary is of size1000×1999.

We use the result of Proposition 2 to compute the valueλ = λmax below which the SBR output is not

the empty set, and we run:

• SBR with λk = λmax 10(1−k)/2 for k = 1, . . . ,Kmax, with Kmax = 20. These executions provide a

sequence of solutions at different sparsity levels;

• for comparison purpose, we run OMP and OLS until the iteration k = 27 and we store all the OMP

and OLS iterates.

The SBR reconstruction shown in Fig. 4 (a) corresponds to theleastλ-value. The reconstructed signal

totally coincides with the noiseless data although the recovery is not exact (19 discontinuities have been

found among which two false discontinuities). The “ℓ2-ℓ0” curves represented on Fig. 4 (b) express the

least-square residual‖y−Ax‖2 versus the cardinality of the result‖x‖0, for each algorithm. This figure

shows that for a given level of sparsity, SBR yields the best recovery.

We did the same experiment with noisy datay = Ax⋆+n, setting the SNR to 35 dB (see Figs. 4 (c,d)).

Here again, the “ℓ2-ℓ0” curve corresponding to SBR lays below the OMP and OLS curves. For most

sparsity levels, SBR outperforms the other algorithms. Note that for more noisy data (e.g., SNR = 15

dB), the SBR and OLS curves coincide, and still lay below the OMP curve.

E. Real data processing

We process a set of experimental data, which are force curvesmeasured in Atomic Force Microscopy

(AFM). A force curve measures the interatomic forces exerting between a probe associated to a cantilever

and a nano-object. This signalz 7→ y(z) shows the force evolution as a function of the probe-sample
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(c) Noisy data (SNR= 35 dB) (d) “ℓ2-ℓ0” curve

and SBR reconstruction

Fig. 4. Joint detection of discontinuities at orders 0 and 1.The dictionary is of size1000×1999 and the data signaly includes

18 jumps at orders 0 and 1 (‖x⋆‖0 = 18). The true and estimated positions of the jumps are labeledo and+. The blue and

black colors indicate zero and first order discontinuities,respectively. The green and pink curves represent the data signal y

and its approximationAx for the leastλ-value. (a) Signal approximation from noiseless data. The green and pink curves

are superimposed. (b) Curves showing the least-square residual as a function of the cardinality for SBR, OLS, and OMP.

(c,d) Similar results on noisy data (SNR = 35 dB).

distancez, expressed in nanometers. The research of discontinuitiesin a force curve is a critical task

because the location of the discontinuities and their amplitude provide a precise characterization of the

nano-object and its physico-chemical properties (topography, energy of adhesion,etc.) [36].

The data displayed on Fig. 5 (a) are related to a bacterial cell Shewanella putrefacienslaying in

aqueous solution, in interaction with the tip of the AFM probe [37]. The recording of a force curve

consists of two steps. Firstly, the tip lays far away from thesample. It is moved towards the sample
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Fig. 5. Experimental AFM data processing: joint detection of discontinuities at orders 0, 1, and 2 (problem of size2167×6498).

(a) Experimental data showing the force evolution as a function of the probe-sample distancez. (b) Curves showing the least-

square residual as a function of the cardinality for the outputs of SBR, OLS and OMP. (c) Curves showing the time of

reconstruction as a function of the cardinality for the three algorithms.

until the contact is reached and the surface of the bacterialcell is deformed (approach curve). Secondly,

the tip is retracted from the sample. During the retraction,the occurrence of an hysteresis between the

approach and retraction curves is due to the viscoelastic properties of the sample. When the tip continues

to retract, several jumps are likely to occur in the force curve as the tip loses contact with the cell.

The experimental curve shown on Fig. 5 (a) is a retraction curve composed ofm = 2167 force

measurements. We can distinguish three regions of intereston this curve, from the right to the left. The

linear region on the right part characterizes the contact between the probe and the sample. It describes the

mechanical interactions of the cantilever and/or the sample. The contact is maintained untilz ≈ −2840

nm. The interactions occurring in the intervalz ∈ [−3050,−2840] nm are adhesion forces during the

retraction of the tip. In the flat part on the left, no interaction occurs as the cantilever loses contact with

the sample.

We search for the discontinuities of orders 0, 1 and 2. Similarly to what was done with the simulated

data, we run SBR forKmax = 15 λ-values and we run OLS and OMP until the iterationk = 41. We

plot for each algorithm, the “ℓ2-ℓ0” curve representing the least-square residual‖y − Ax‖2 versus the

cardinality‖x‖0, and a curve showing the time of reconstruction versus the cardinality (see Fig. 5 (b,c)).

These figures show that the performance of SBR is at least equal and sometimes better than that of OLS.

Both algorithms yield results that are far more accurate than OMP, except for very sparse reconstructions.

The price to pay for these accurate approximations is an increase of the computation time. However, notice

that the recorded computation time always remains below 350seconds in the case of SBR (in a Matlab

implementation that takes advantage of the block Toeplitz structure of the dictionary: see Section IV-D).
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Fig. 6. Experimental AFM data processing: joint detection of discontinuities at orders 0, 1 and 2. The blue, black and red

colors indicate zero, first and second order discontinuities, respectively. The estimated jumpsx are labeled with a +. The green

and pink curves represent the data signaly and its approximationAx. (a) SBR output of cardinality 2: 4 insertions and 2

removals have been done. (b,c) OLS and OMP output after 2 iterations. (d,e,f) Same simulation with a lowerλ-value. The

SBR output is of cardinality 5 (7 insertions and 2 removals) and we stop OLS and OMP after 5 iterations.

Fig. 6 shows the approximations yielded by the three algorithms for supports of cardinality 2 and

5, respectively. For the supports of cardinality 2, SBR actually runs during 6 iterations (4 insertions

and 2 removals are performed) and the approximation is very accurate compared to the OMP and OLS

results obtained after 2 iterations (which are identical).For the supports of cardinality 5, OLS now

performs better than OMP and the solution obtained with SBR still yields a residual which is lower

than the OLS and OMP residuals. In order to better understandthe forward (insertions) and backward

moves (removals) occurring during the SBR iterations, we plot on Fig. 7 a curve showing for each SBR

iterate, the corresponding least-square residual‖y−Ax‖2 versus its cardinality. Because SBR is a descent

algorithm, the penalized costJ (x;λ) keeps decreasing but when a removal occurs,‖y−Ax‖2 increases.

On theses curves, insertion and removals correspond to south-east and north-west moves, respectively.

Notice that for smallλ-values, removals occur more often in the last iterations.

January 4, 2010 DRAFT



TECHNICAL REPORT 31

0 0.5 1 1.5 2 2.5 3 3.5 4
10

2

10
3

10
4

10
5

10
6

10
7

FORWARD AND BACKWARD STEPS

SPARSITY LEVEL k

S
Q

U
A

R
E

 E
R

R
O

R
 (

lo
g.

 s
ca

le
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

2

10
3

10
4

10
5

10
6

10
7

FORWARD AND BACKWARD STEPS

SPARSITY LEVEL k

S
Q

U
A

R
E

 E
R

R
O

R
 (

lo
g.

 s
ca

le
)

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

10
3

FORWARD AND BACKWARD STEPS

SPARSITY LEVEL k

S
Q

U
A

R
E

 E
R

R
O

R
 (

lo
g.

 s
ca

le
)

(a) SBR (4+/ 2-) (b) SBR (7+/2-) (c) Zoom in of (b)

Fig. 7. Display of the SBR iterates corresponding to both reconstructions of Fig. 6. The curves represent‖y − Ax‖2 as a

function of ‖x‖0 for each iteratex. (a) 4 insertions and 2 removals are done. (b,c) 7 insertionsand 2 removals are done.

F. Discussion

In the comparisons above, we chose to compare SBR with OMP andOLS. We did not consider

simpler algorithms like MP which are well suited to solve simpler problems, in which the columns of the

dictionary are almost orthogonal, with speed (real-time) constraints. Because SBR involves more complex

operations (matrix inversions), we chose to compare it withOMP and OLS because they also require to

solve at least one least-square minimization problem per iteration, and their target is to provide results

which are more accurate than the MP approximations in the case of difficult problems.

Up to our knowledge, the only minimization algorithm dedicated to theℓ0-penalized cost function

J (x;λ) = ‖y−Ax‖2 + λ‖x‖0 is the IHT algorithm proposed by Blumensath and Davies [14].It relies

on gradient based iterations of the formx′ = x + At(y − Ax), followed by the threshold of all the

non-zero componentsxi such that|xi| 6 λ0.5 and their replacement with 0. On both deconvolution and

discontinuity detection problems, we observed that this version of IHT is less accurate than the standard

version of IHT, related to theℓ0-constrained problem. In the constrained version, thek components

|xi| having the largest amplitudes are kept, and the others are being thresholded. Generally speaking,

we observed that the IHT algorithm is competitive when the correlation between any pair of dictionary

columns is limited, but for highly correlated dictionaries, a very large number of iterations (O(m2)) are

needed in order that IHT reaches convergence. SBR seems to bebetter suited to such difficult problems.

It is less sensitive to the initial solution and “skips” somelocal minimizers whose cost is very high. We

here recall that according to Proposition 1, each SBR iterate is almost surely a local minimizer of the

cost functionJ (x;λ).

In order to compare our approach with the forward-backward algorithm of [19], we also programmed
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an OMP-like adaptation of SBR in which only one least-squareproblem is solved at each iteration,

instead ofn. This adaptation consists in replacing the selection rule (13) in the following way. When an

insertionQ∪ {i} is tried, all the active componentsxj are kept constant andxi is set to the minimizer

of ‖y − AxQ − xiai‖
2. This leads to an approximation ofKQ•i(λ) without solving any least-square

problem. Similarly, the removal of the active indexi consists in settingxi to 0 and leaving the other

componentsxj unchanged. In brief, this adapted version is an algorithm aimed at the minimization of

J (x;λ) at a cost which is comparable to that of OMP. In all our trials,SBR yields a more accurate

result than the adapted version except in very simple cases (limited correlation between the columnsai)

in which SBR and the adapted versions yield the same result. The performance of the adapted version

fluctuates below or above those of OMP, but are almost always far less accurate than the OLS and SBR

approximations.

VII. C ONCLUSION

We have evaluated the SBR algorithm on two problems in which the dictionary columns are highly

correlated. SBR provides solutions which are at least as accurate as the OLS solutions, and sometimes

more accurate, with a cost of the same order of magnitude. Forsuch difficult problems, the MP and OMP

algorithms provide poor approximations in comparison withOLS and SBR within a lower computation

time.

For smallλ-values, we believe that performing removals is the price topay if one expects a better

quality approximation in comparison with OLS. Zhang arguedthat the low number of removals occurring

in the early iterations is a strong limitation of any descentalgorithm dedicated to the minimization of the

ℓ0-penalized least-square cost function (see the discussionsection in [19]). We rather believe that in the

early iterations of SBR, the main features need to be found, thus justifying to process mainly insertions.

More removals occur when a fine quality approximation is wanted, i.e., for low λ-values. Nevertheless, it

would be interesting to compare our approach with an algorithm like FoBa [19] which imposes removals

even in its early iterations. This rule also provides a framework for proving exact recovery results for

problems satisfying the Restricted Isometry Property (RIP). We will investigate whether these proofs are

extendable to SBR.

In the proposed approach, the main difficulty relies in the choice of theλ-value. If a specific sparsity

level k or approximation residual is desired, one needs to resort toa trial and error procedure in which

a number ofλ-values are tried until the desired approximation level is found. In [38], we proposed a

continuation version in which a series of SBR solutions are successively estimated with a decreasing
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level of sparsityλ, and theλ-values are recursively computed. The firstλ-value is set toλ0 = +∞,

and at a given valueλi, the initial solution (input of SBR) is set to the SBR output at λ = λi−1. This

continuation version provides promising results and will be the subject of a future extended contribution.
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