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Abstract

Formulated as a least-square minimization problem undefyaronstraint, sparse signal approxi-
mation is a discrete optimization problem, known to be NP glete. Classical algorithms include, by
increasing cost and efficiency, Matching Pursuit (MP), Ogitnal Matching Pursuit (OMP), Orthogonal
Least Squares (OLS) and the exhaustive search algorithmfo@ées on problems (namely for highly
correlated dictionaries) in which OMP and OLS do not guarartb find the optimal solution. Then,
it is of interest to develop new sub-optimal search alganihyielding better approximations within a
computation time that may be slightly more expensive thanm ¢fi OLS but remains much cheaper than
the exhaustive search. We revisit the Single Most Likely IRegment (SMLR) algorithm, developed
in the mid-1980’s for Bernoulli-Gaussian signal restaatiWe show that the formulation of sparse
signal approximation as a limit case of Bernoulli-Gaussamnal restoration leads to af3-penalized
least-square minimization problem, for which the SMLR aihon can be straightforwardly adapted.
The adapted algorithm, called Single Best Replacement {SBRin OLS forward-backward extention
based on successive updates of the sparse signal supponebgiement (insert a new element inside
the support or remove an existing support element). We fimathpose a fast and stable implementation
based on an efficient update of the least-square error. Thwagh is illustrated on the deconvolution

with a Gaussian impulse response and on the joint detecfiaisoontinuities at different orders in a

signal.
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. INTRODUCTION

Sparse signal approximation consists in the decompositiangiven signaly by means of a limited
number of elements from a dictionarg. This problem has received considerable attention over the
past few years, because it occurs in many fields of applicgtiamong which Fourier synthesis, mono-
and multidimensional deconvolution, image compressitatissical regression, compressive sensing. The
popularity of sparse approximation algorithms relies oa tiact that it is possible to provide efficient
sparse approximations of a signal even for under-detednmeblems in which the size of dictionary is
larger than the size of the data.

Sparse signhal approximation can be formulated as the nEaiinn of a least-square cost function of
the form&(z) = ||y — Az||? under the constraint that is sparse. This problem is often referred to as

subset selection or feature selection, because imposgparsity constraint on the weightsconsists
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in allowing a limited number of non-zero coordinates or equivalently, selecting a subset of columns
of A. Let us denote bwctive setthe set of selected columns. For a given active set, the ridatian

of £ reduces to an unconstrained least-square problem in wheelmitrix A is replaced by a smaller
dimension submatrix obtained by gathering the active cakipnf A. Imposing the sparsity of the solution
thus consists in minimizingly — Ax||?> subject to the constraint that tig pseudo-norm ofe, defined
as the number of non-zero entriesafis lower than a given numbér. This yields a discrete problem
(since there are a finite number of possible active sets)mibiknown to be NP-complete [1], [2]. In this
paper, we focus on “difficult” problems, in which some of th@wnns of A are highly correlated, the
unknown weight vector* is not necessarily sparse and/or the data are noisy. Herea# distinguish
two approaches to address the sparse signal approximatidnem in a fast and sub-optimal manner
and we discuss their relevance for difficult problems.

The first approach, which has been the most popular in theémstde, approximates the subset selection
problem by a continuous optimization problem, convex or, mdiich is easier to solve. The function
approximating the,-norm must be non smooth at zero in order to yield sparseisnhuif3], [4]. Among
the nonconvex functions approximating thenorm, let us mention the Gaussian-shaped function [5] and
the ¢, pseudo-normy < 1) [6]. Among the convex approximations, the approach uiizthe /;-norm
instead of the/yp-norm [7], [8] has been increasingly investigated, leadimghe LASSO optimization
problem. Its popularity relies on efficient algorithms, amgowhich the LARS algorithm (also called
homotopy) which finds the solution pathe., the set of solutiongor all degrees of sparsity [9], [10].
Several authors have provided sufficient conditions undachvthe ¢y- and ¢;-constrained least-square
problems lead to solutions having the same support [8], [l17]]. These conditions typically state that
the unknown weight signal is highly sparse, that the cotimabetween any pair of columns & is
sufficiently small, and that the noise level must be low. They often not satisfied when dealing with
real data.

The second approach uses a fast and sub-optimal searchratgte address thexactsubset selection
problem. A first possibility is to use a thresholding aldgamit e.g., CoSaMP [13] and Iterative Hard
Thresholding (IHT) [14]. These algorithms rely on gradibased iterations of the formy = z+ A'(y —
Ax), followed by the threshold of a number of non-zero composientWe observed that they do not
yield accurate approximations in difficult cases in whick tfictionary columns are highly correlated.
Another possibility is to resort to greedy search algorghwiich gradually increase or decrease by one the
size of the active set. The simplest greedy algorithms areiitag Pursuit (MP) [15] and its improvement

Orthogonal Matching Pursuit (OMP) [16]. Both are referredas forward greedy algorithms, since they
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start from an empty active set and then gradually increabg @ine element. In contrast, the backward
algorithm of Couvreur and Bresler [17] starts from a conplattive set which is gradually decreased
by one element. It is only valid if the dictionary is not ovenaplete. A few authors have introduced
forward-backward algorithms in which insertion and renmis\a one element into the active set are both
allowed [18], [19]. Both contributions showed the interesperforming insertions and removals of atoms
from the dictionary. This strategy can indeed handle anyefaike detection since its further removal
from the support is allowed. In contrast, forward algorithadways add new entries into the active set,
the insertion of a false entry being irreversible.

The choice of the algorithm depends on the amount of timdabaiand on the structure of matri.

In specific favorable cases, the sub-optimal search afgositdescribed above (belonging to the first or
the second approach) provide solutions having the sameoduiian those of thé,-norm problem. For
example, if the unknown signai* is highly sparse and if the correlation between any pair ddroas of

A is limited, the/;-norm approximation provides optimal solutions [8], [1[]2]. In most cases, however,
the only guarantee to recover the optimal support is to usesitinaustive search algorithm. When fast
sub-optimal algorithms lead to unsatisfactory resultis d@f great interest to develop “intermediate” sub-
optimal algorithms providing more accurate solutions Withlarger computation time, which nevertheless
remains very small in comparison with the exhaustive sedafble Orthogonal Least Squares algorithm
(OLS) [20], which is sometimes confused with OMP [21], fati$o this category of intermediate quality
algorithms. The structure of OLS is the same as that of OMPdifierence being that at each iteration,
OLS solves a large number of least-square problems X, wherek is the cardinal of the current active
set) while OMP only performs the — &k inner products between the current residyalt Az and the
candidate columna; and chooses the column & having the maximal inner product. OMP solves only
one least-square problem per iteration, once the columr timderted is selected (in order to update all
the active set entries). In the following, we will proposecaward-backward extension of OLS allowing
an insertion or a removal at each iteration, each iteratamuiring to solven least-square problems. It
differs from the bidirectional search algorithm of Hauglgi8] and the FoBa algorithm of Zhang [19]
which are OMP forward-backward extensions.

The starting point of our forward-backward algorithm is Siagle Most Likely Replacement (SMLR)
algorithm, which proved to be a very efficient tool for the deeolution of a sparse signal modeled as a
Bernoulli-Gaussian process [22]-[25]. This approactesetin a Bayesian formulation of a deconvolution
problem of the formy = Ax + n (where A denotes the convolution matrix) and on the maximam

posteriori (MAP) estimation of the sparse signal. The Bernoulli-G&arssnodel is a probabilistic model
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for sparse signals, in which (binary) Bernoulli random ahtés are associated to the position of the
non zero values ofc, and the corresponding amplitudes are distributed acegrth an independent
identically distributed (i.i.d.) centered Gaussian disttion of variances2. SMLR is a deterministic
ascent algorithm, which performs the optimization of thetpdor likelihood of the support of in a
sub-optimal manner. It consists in updates (increase ardse) of the support by one element, and the
subsequent estimation of the amplitudegs

Sparse signal approximation can be seen as a limit case &etmoulli-Gaussian restoration problem,
in which the variance? of the amplitudes is set to infinity, because by definitioe, 4tnorm counts the
number of non-zero values whatever their amplitudes. Weawgitsider the limit case in which? tends
to infinity and show that the MAP estimation of the weightéeads to an optimization problem which is
close to the/y-constrained problem. This will result in an adaptationief SMLR algorithm to the sparse
approximation problem which relies on a single insertioraaingle removal of an entry into/from the
active set. The paper is organized as follows. In Sectiomdlintroduce the Bernoulli-Gaussian model and
the Bayesian framework in which we formulate the sparseasigpproximation problem. In Section I,
we adapt the SMLR algorithm resulting in the so-called Singest Replacement (SBR) algorithm. In
Section 1V, a fast SBR implementation is proposed, basethemrfficient update of the least-square error
when the active set is modified by one element. Finally, 8astV and VI illustrate the method on the
deconvolution with a Gaussian impulse response and on thiedetection of discontinuities at different

orders in a signal, formulated as sparse signal approxdématioblems.

[I. FROM BERNOULLI-GAUSSIAN SIGNAL RESTORATION TO SPARSE SIGNAL REPRESENTATND

The starting point of our study is the restoration of a spaigmal  from a linear observation
y = Ax + n, wheren stands for the observation noise. An acknowledged prabtbimodel dedicated
to sparse signals is the Bernoulli-Gaussian (BG) model, [[2d], [25]. The BG model can actually lead
to MAP and posterior mean estimators of the sparse signalsevhomputation rely on optimization [25]
and Monte Carlo Markov chain sampling, respectively [26F Wl first recall the known BG models
and the formulation of sparse signal restoration in the Bayeframework. Then, we will extend this

formulation to a more general representation of sparsealign

A. Preliminary definitions and working assumptions

Given an observation vectay € R™ and a dictionaryA = [a,...,a,] € R™*", a subset selection

algorithm aims at computing a weight vecterc R" yielding an accurate approximatign~ Ax of
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the observation. The columns of A whose indices correspond to the non zero components «
are referred to as the active (or selected) columns.

Throughout this paper, we do not make any assumption on #eeafiA: m can be either lower or
greater tham. Here, we will assume thatt satisfies the unique representation property (URP). This
assumption is classical in the sparse signal approximditenature, in the case where < n [27]. It is
a stronger assumption than the full rank assumption. We mmallrthis definition and extend it to the

case wheren > n.

Definition 1 Whenm < n, A satisfies the URP if and only if any selectionmefcolumns ofA forms

a family of linearly independent vectors. When> n, A satisfies the URP if and only if it is full rank.

Before going further, let us mention that this assumptiamlearelaxed providing that the search strategy
can guarantee that the selected columngiafesult in a full rank matrix (see Section VI for details).
Under the URP assumption, whem < n, the systemy = Ax has a number of solutions whogg
norm are lower or equal to: any active set of cardinality lower than constitutes a possible support
of such a solution. Whem > n, there is generally no solution = A« but the least-square estimator

x = (A'A)~! Aly is unique, although not necessarily sparse.

Definition 2 The support of a vectaz € R" is the setS(x) C {1,...,n} defined byi € S(x) if and
only if z; # 0.

Definition 3 We denote byo C {1,...,n} the active set. Givel®, we define the related vectar €
{0,1}", by g; = 1 if and only ifi € Q. Let Ag be the matrix of sizen x Card [Q] formed of the active
columns ofA (a;, i € Q), and lett be the reduced vector of siféard [Q] gathering the values; for

whichi € Q. The observation mode) = Ax + n also readsy = Aot + n.

Definition 4 For all Q@ C {1,...,n} such thatCard [Q] < min(m,n), let xg be the least-square

solution and let€o be the associated least-square error:

g £ argmin{&(z) = |y - Az|*} 1)
S(x)CQ
Eg £ E(zg) = |y — Azol. 2)

Notice that due to the URP assumption and becausel [Q] < min(m,n), xg is uniquely defined.
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B. Bernoulli-Gaussian models

A BG process can be defined as a random veetdt) described by means of a Bernoulli random
vectorq € {0,1}" corresponding to the active set, and a Gaussian randomrveetoV (0, 021,,) such
as each sample; of x is modeled asc; = ¢;r; [22], [23]. Here, I,, stands for the identity matrix of
sizen x n. The Bernoulli random variableg ~ B(p) are i.i.d. They code for the preseneg € 1) or
absence; = 0) of signal at location, the Bernoulli parametes = Pr(q; = 1) being the probability of
presence of signal. The nonzero signal amplitudeare controlled by their variance?. Becausey and

r are independent random variables, the prior likelihoodg ahdx = (g, r) read:
lq) = plalo(r— pyn—lalo (3)
lg,r) = Ur)lg) = g(r;oily) pldlo( — p)nlale, @)

whereg(.; I') denotes the probability density function of the centered<S&n distribution with covari-

ance matrixT.

C. Bayesian formulation of sparse signal restoration

The Bayesian formulation of an inverse problem of the fayme= Ax + n, wheren stands for the
observation noise, consists in inferring the distributiminz = (g,r) knowing y using Bayes’ rule.
One can either infer the marginal distributiéfy|y) [25] or the joint distributioni(q, r|y) [23], [24].
Following [23], we focus on the joint likelihoot{q, r|y), leading to a cost function involving the least-
square errofly — Az||? and thely-norm of x.

Assuming an i.i.d. Gaussian noise distribution £ N(0,021,,)) and that the noise is independent
from the sparse signal, the posterior likelihood(q, r|y) can be expressed using Bayes’ rule. Denoting
L(q,r) & —202%1ogll(q,r|y)], we have:

lg.rly) o« gly— Ario )g(r o2 1,) pllo(1 — p)yr=lale,
Ligr) = ly- Ar||2 + 28 2+ 202 log(l ; >HQ||0 + constantm, o, n,0,), (5)

T

wherex indicates proportionality. Introducing the reduced vedtgsee definition 3), the amplitudes
rereadr = {t,u} (with u = {r; | ¢, = 0}), andL(q, r) takes the separable forfi(q,r) = C(q,t) +

o2 /o2 ||u|? + constantm, o, n, 0,,), where

n 1-—
Clart) = Ny~ Aot + 5 Il + 202 os(*=L ) lal. ©

X
1For convenience, we will use the same notations for randamiahlas and their realization.
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The minimization of (5) ovef0,1}" x R™ leads tou = 0. Finally, the joint MAP estimation problem

consists of the minimization of (6) w.r.tg,t) € {0,1}" x Rllall,

Remark 1 In (6), the weight of|q||o is hon-negative if and only j < 1/2. This condition imposes that

in average, at least half of the samplesare equal to 0. This is coherent with the sparse assumption.

D. Mixed ¢3-¢3 minimization as a limit case

A sparse signalk is a signal for which a number of entries are equal 0.4, ||z|o < k for some
value of k. Since this definition does not involve constraints on thegeaof values of the non zero
amplitudes, we choose to describe a sparse signal by a liemvdBilli-Gaussian model, in which the

amplitude variance? is set to infinity. The minimization of (6) thus rereads:

Izlitn{C(q,t) = |ly — Agt|* + Allgllo}, @)

with A = 202 log(1/p — 1). This compound criterion is composed of a quadratic ddiaditerm, and a
penalization term favoring the sparsity of the signalThe hyperparametex is related to the level of

sparsity of the desired solution.

Theorem 1 The above formulatio7) is equivalent to the following problem:

min {7(@;2) = [y — Aw|® + Xzlo}, ®)

which is referred to as théy-penalized least-square probleithe term “equivalent” means that given
a minimizer(q,t) of (7), the related vectoer = {¢,0} is a minimizer of (8), and conversely, given
a minimizerx of (8), the vectorsqg and t defined as the support af and its non-zero amplitudes,

respectively, are such thag, t) is a minimizer of(7).

Proof: To prove the equivalence, we first prove thaith, J = ming ¢+ C:
— Let « be a minimizer of7(.; A\). We setq to the support ofc (¢; = 1 if and only if z; # 0) andt
to the non zero amplitudes af. Obviously, it follows that7 (x; A\) = C(q,t). Finally, ming, J(x; A) >
ming +C(q, t).
— Let (g,t) be a minimizer ofC. Then, the vector: defined byxz = {¢,0} is such thatAz = Aot
and||z|o = ||t]lo < ||gllo. Therefore, 7 (x; \) < C(q,t). It follows thatming + C(q,t) > ming J(x; ).
In other words, we havaiin, J = ming; C. We have also shown that the minimizers of both problems

coincide,i.e., are vectors describing identical signals. [ |
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In the following sections, we will focus on the minimizatigmoblem (8), involving the penalization
term ||z ||o. The algorithm that will be developed hereafter is basedroefficient search of the support of
x. In that respect, th&)-penalized least-square problem does not drasticallgrdifom thel,-constrained

problemmin ||y — Az||? subject to||z||o < k.

I1l. ADAPTATION OF SMLR TO ¢3-PENALIZED LEAST-SQUARE OPTIMIZATION

In this section, we propose to adapt the SMLR algorithm to rhirimization of the mixed/s-¢,
cost function7 (x; \) defined in (8). However, to clearly distinguish SMLR whiclesifically aims at

minimizing (6), the adapted algorithm will be termed as &ngest Replacement (SBR).

A. Principle of the SMLR algorithm

The Single Most Likely Replacement (SMLR) algorithm [22]aisleterministic coordinatewise ascent
algorithm to maximize log-likelihood functions of the fority|y) (marginal MAP estimation) oi(q, t|y)
(joint MAP estimation). In the latter case, it is worth natig from (6) that giveng, the minimizer of
C(q,t) w.r.t. t has a closed form expressién- t(q). Consequently, the joint MAP estimation reduces to
the minimization of the cost functiofi(q) = C(q, t(q)) w.r.t. . At each SMLR iteration, all the possible
single replacements of the suppari(setq; = 1 — ¢; while keeping the otheg;, j # ¢ unchanged) are
tested, then the replacement yielding the maximal increds€(q) is chosen. This task is repeated
iteratively until no single replacement can incre@4g) anymore. The number of possible supparts
being finite ") and SMLR being an ascent algorithm, it terminates after itefilumber of iterations.

Let us introduce some useful notations.

Definition 5 For convenience, we will use the notatighe 7 to refer to a single replacement, i.e., the

insertion (J) or removal {) of an index: into/from the active se@:

Qeil QU{Z} ifi¢ Q, ©)
O\{i} otherwise.

Definition 6 For a given subse® of {1,...,n} such thatCard [Q] < min(m,n), we define the cost
functions:
Jo(\) £ T(xo;A) = Eg + Azallo, (10)
Ko(\) & &g+ MCard[Q], (11)

where the least-square solutiary and the corresponding errafo have been defined ifl) and (2).
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Obviously, 7o(A) = Ko(A) if and only if the minimizerzo has a support equal t@. In the next two
paragraphs, we will introduce a first version of SBR involyifig(A) only, and then we will present an
alternative (simpler) version relying on the computatidérk, (\) instead of 7o (). We will discuss the

extent to which both versions differ.

B. The Single Best Replacement algorithm (preliminaryigajs

The SMLR algorithm described above can be seen as an explosttategy for discrete optimization
rather than an algorithm specific to a posterior likelihooddtion. Here, we will use the same strategy to
minimize the cost functio7 (x; \). However, we rename the algorithm Single Best ReplacenSBIR}
to remove the statistical connotation, the search strabegyg applicable to cost functions which are
not likelihood functions. The SBR algorithm works as follwAt each iteration, the possible single
replacement® e i, i = 1,...,n are tested, then the best is selecteal, the replacement yielding the
maximal decrease aff (x; \). This task is repeated untffy (x; \) cannot decrease anymore. We now
detail one SBR iteration.

Given an active se®, the vectorzo defined in (1) is the corresponding least-square solutian. F
each index € {1,...,n}, we compute the minimizetg,.; of £(x) whose support is included i@ o i,
and we keep in memory the value 0fgei(\) = J(xgei; A). Finally, we compute the minimum of
Joei(A), i = 1,...,n. If the minimal value is strictly lower tha/g()), then we select the indek
yielding this minimal value:

¢ € argmin Jgei(A). (12)
i€{1,...,n}
The next SBR iterate is thus defined @s= Q e ¢, yielding the vector .

SBR terminates when none of the indiceyield a decrease qff. Except when an initial support

estimate (of cardinality lower thamin(m,n)) is available, we suggest to set the initial active set to the

empty set.

Remark 2 (Relationship between SBR and SMLR)We introduced SBR as the application of the SMLR
search strategy to théy-penalized least square cost function, which is obtainedalking the limit of
the cost function6) wheno, tends towards infinity. In other words, we first considered lilmit form

of the cost functior(6), and then applied the search strategy. Conversely, appl@NLR to the cost
function(6) and then, taking the limit of the SMLR formula whentends to infinity also yields the SBR

algorithm.
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Actually, the main difference between the SMLR and SBRitigwm is that SMLR (which can take
several forms depending on the use of the joint distributignr|y) or the marginal distributiori(q|y))
involves the inversion of a matrix of the forAEAQ+aICard[Q} whereas SBR involves the inverse of the
Gram matrixAtQAQ. For this reason, instabilities are likely to occur whileing SBR in the cases where
Ag is ill conditioned, for lowA-values. The use of the termi,.q¢], Which acts as a regularization on
the amplitude values, avoids such a degeneracy while usitigRS at the price of handling the additional

hyperparametet.

C. Slight modification of SBR (final version)

We introduce a slight modification of SBR by replacing (12}hwi
¢ € argmin Kgei(A). (13)
ie{l,...,n}
We propose this modification becauseg (\) = £g + ACard [Q] can be computed more efficiently than
Jo(N), the computation ofcg being no longer necessary. The usekaf(A\) makes the penalization
term very easy to update whé&d is modified by one element (add or remoVg and the only necessary
update is that ofg. The following theorem shows that there is almost surely ifferénce between both

versions of SBR provided that the dagaare corrupted with “non degenerate” noise.

Theorem 2 Lety = yg + n, whereyy is a given vector olR”™ and n is a random vector. We assume
that n is an absolute continuous random vector, i.e., one that edenprobability density function w.r.t.
the Lebesgue measure. Then, wiignd [Q] < min(m,n), the probability that||zg|o < Card[Q] is

equal to 0, i.e.||xgllo = Card [Q] almost surely.

Proof: Let k = Card[Q] and letty be the minimizer of|ly — Aot||? over R*. Obviously,
lzallo = Iltallo < k. Let Vo = (AL Ag) ' AL be the matrix of sizet x m such thattg = Voy.

Denoting byw!,...,v* € R™ the row vectors ofVp,

tollo < k if and only if there existsi such
that y'v® = 0. BecauseA is full rank, Vg is full rank and thervi, v # 0. Denoting byH*(v’) the
hyperplane ofR™ which is orthogonal ta’, we have
k
lzollo <k < yel]H (). (14)
i=1
Because the sdt), H-(v') has a Lebesgue measure equal to zero and the random yeetimits a

probability density function, the probability of event (14 zero, thus Rijzo|lo < k) = 0. [ |

January 4, 2010 DRAFT



TECHNICAL REPORT 13

TABLE |

SBRALGORITHM (FINAL VERSION). BY DEFAULT, THE INITIAL ACTIVE SET IS EMPTY: Q; = ().

Input: A, y, A and active sef; of cardinality lower thanmin(m,n)

Step 1: Sefj to 1.

Step 2: Fori =1 to n,
ComputeKo;ei(A).
End for.
Compute/ using (13).

If Ko,ee(N) < Ko, (V)

SetQjt1 = Qj e,
else,
Terminate SBR.
End if.
Step 3: Doj = j + 1 and go to step 2.
Output: active seR; = SBR(Q1; )

The above theorem implies that when dealing with real noiatadit is almost sure thdtxg|lo =
Card [Q], i.e., that no active component is exactly equal to 0. Thus, their@igand slightly modified
versions of SBR almost surely lead to exactly the same ésréEven in the noiseless case, an active
component is rarely numerically evaluated to 0 due to thedeaff errors occurring during the numerical
computations. In all cases, the modified version of SBR carafygied without restriction and the
properties stated belove@.,the termination after a finite number of iterations) remaatid’even when
an SBR iterate satisfigirgl|o < Card [Q].

For all these reasons, we will adopt the modified version oRSB the rest of the paper. It is

summarized in Table I.

D. Behavior and adaptations of SBR

Termination of SBR:SBR is a descent algorithm in the sense that the valuEf\) is always
decreasing. Consequently, a setannot be explored twice and similarly to SMLR, SBR termisadfter
a finite number of iterations. The SBR outp@tis a “local minimizer” of the functionQ — Kg(\) in
the sense that no replacement@fwith Q e i yields a decrease of the costi, Ko(\) < Kgei(N).

Notice that the size oD remains lower or equal tain(m,n). Indeed, if a setQ of cardinality
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min(m,n) is reached, thedy is equal to 0 due to the URP assumption. Then, anyBetf the form
Q U1 yields a larger valuéCo/(A) = Kg(\) + A of the cost function. We emphasize that no stopping
condition is needed unlike many algorithms which requireséd a maximum number of iterations (MP

and variations, OLS) and/or a threshold on the squared gamation (CoSaMP, IHT).

Proposition 1 Under the assumptions of Theorem 2, each SBR iterafeis almost surely a local
minimizer of thefy-constrained problem
min &(x) (15)

llzello <k

with & = Card [Q]. This property holds in particular for the SBR output.

Proof: Let xz = xg be an SBR iterate and lét= Card [Q]. According to Theorem 2|x||o = k
almost surely. Setting = min;ecg |z;| (¢ > 0), it is obvious that ifx’ € R" satisfies|z’ — z|2 < ¢,
thenVi € Q, z # 0. Thus, ||z’ — x||]2 < ¢ implies thatS(z) C S(z’) and||z’|| > k.

If o’ satisfies|a’ — x||2 < e and ||2/||o < k, then necessarily|z’||o = k£ andS(x) = S(z’). Since
x = xg, it follows that&(x’) > £(x) almost surely. [

OLS as a special casalVhen\ = 0, SBR coincides with the well known Orthogonal Least Squares
(OLS) algorithm [20], [28]. The removal operation never uis; because it automatically leads to an
increase of the least-square cdSy(0) = E£o. Consequently, only insertions are worth being tested
(@ =9QUi, i ¢ Q).

Empty solutions:

Proposition 2 (Empty solutions) Denoting by\y.x = max;(aly)?/||la;||?, the output of SBR()) is

equal to the empty set if and onlyXf> A\ ax.
Proof: SBR stops during its first iteration if all the insertion tsidail, i.e.,
Vi, g+ A = & = |yl (16)

For a given value ofi, the minimum of||y — z;a;||* is reached when; = aly/||a;|?, leading to

Ey = lyl* — (aly)?/|la]|*. Thus, (16) is equivalent to the conditiafi, A > (aly)?/|la;?, i.e., to

A > Amax- [ |
Reduced searchinstead of trying all the replacemen = Q e i at each SBR iteration, it is

advantageous, if possible, to explore only a subset of thegplacements. We give two ideas to reduce

the number of trials: the first idea is an acceleration of tB& S&lgorithm, yielding the same iterates

with a slightly reduced search. The second idea is a moddicaf SBR.
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Given an active se@, a removalQ’ = Q\{i} yields an increase of the squared error and a decrease
of the penalty equal ta. Hence, the maximum decrease of tepenalized cost function which can be
expected with a removal i5: Ko/(\) — Kgo(A) = —\. Consequently, if a given insertio’ = Q U {i}
is such thatCo () — Ko () < —A, then no removal can yield a larger decrease. The acceleratithe
SBR algorithm thus consists in trying all the insertionstfiesnd if the best insertion yields a decrease
larger than), selecting the best insertion. Otherwise, all the remowalsd to be explored as stated in
Table I. This acceleration does not alter the SBR iteratesve¥er, the gain is limited when the level of
sparsity is highj.e., when the number of removals to be tried is reduced.

Haugland and Zhang pointed out that in a forward-backwardtesyy, it can be helpful to favor
removals [18], [19]. Adapted to SBR, this idea leads to a fiedlialgorithm in which the removal
operations are explored in a first pace, and the insertiansxgrlored only if no removal yields a decrease
of the cost function. If a removal decreases the cost, thesetected replacement is the removal yielding
the maximal decrease.

In our experiments, the average performance of SBR and tbdified version are quite comparable
(there is no obvious gain or loss of quality nor a significaamtiisg in computation time). Thus, in the

following, we will keep the version of SBR presented on Tablfer the sake of clarity.

IV. IMPLEMENTATION ISSUES

Given the current active s&, an SBR iteration consists in computing the least-squa €y, for
all the configurations®’ = Q e 4, allowing the computation oK. (\) using (11). We first present a
basic implementation in whiclo is computed independently of the knowledge&§, and then an
efficient implementation allowing a fast update wh@nis modified. We will denote by: £ Card [Q]

the cardinality of the active set.

A. Basic implementation

Given a supporR C {1,...,n} of cardinality lower thamin(m,n), (1) reduces to the unconstrained
minimization of ||y — Agt|? w.r.t. t € R¥. Becausedg is full rank, the unconstrained problem has a

unique minimizer that reads:
to 2 inly — Agt|? = (ALA0) AL (17)
Q arg;nm Yy Q o9 oY
and the minimal least-square error reads:
Eo = |ly—Acto|? = |yl - y'Agto. (18)
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Finally, given an active se®, an SBR iteration involves the computation#f and the corresponding

error £o for all possible update®’ = Q i of Q, using (17) and (18).

B. Recursive implementation of SBR

At each SBR iterationp least-square problems of the form (17) must be solved, eaghiring the

inversion of the Gram matrix (of size x k)
Gg £ AL Ao. (19)

The computational cost can be high when the number of actitdes k is large since in the general
case, a matrix inversion cost3(k®) scalar operations. Following an idea widely spread in thesst
selection literature, we propose to use a recursive cortipataf the inverse of the Gram matrix.

A first possibility is to use the Gram-Schmidt procedure [Z@B] which yields an orthogonal de-
composition ofAg = WU, whereW is anm x k matrix with orthogonal columns antl' is ak x k
upper triangular matrix. Although it yields an efficient @ithg strategy when including an index into
the active set (leading to the update Af = [Ao, a;]), the Gram-Schmidt procedure does not extend
with the same level of efficiency when an index removal is @ered [29].

An alternative possibility is to use the block matrix inverslemma [30] allowing an efficient update
of Gél for both index insertion and removal. The reader is refeteef25] which proposed an efficient
SMLR implementation based on the recursive update of nestrinf the form(Gg + oIj)~!. This
approach can also be used with SBR. However, the matrix tatapdGél, thus numerical instabilities
are likely to occur when the selected columnsAfare highly correlated and for low-values.

A possible stable solution is based on the Cholesky faetidan Go = LoL{,, whereLg is a lower

triangular matrix. UpdatingLo rather thanGé1

is advantageous, sincBg is better conditioned. Its
update can be easily done in the insertion case [31] but tim@val case necessitates more care, as a
removal breaks the structure of the lower triangular maliix. Ge et al. recently proposed a stable
implementation of SMLR [32] which relies on the recursivalafe of the Cholesky factor (ﬁlél. Here,

we propose a slightly simpler strategy that relies on théofazation of the Gram matrixG o itself.

C. Efficient strategy based on the Cholesky factorization

First, we notice that any new colunear) can be inserted at the last location4y,;, since the value of

Eoui does not depend on the position @f in matrix Ag;. On the contrary, when removing a column
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from the active set, we do not knoa priori the position of the column to be removed, thus it cannot
be assumed to be the last column4b.
Given an active se@ and the corresponding matrido of sizem x k, we will describe the cases

where:

« a non active index ¢ Q is included after the other columngy = [Ag, a;];

« an active index € Q is to be removed, the columm; being in an arbitrary position.

As a symmetric positive-definite matrio readsGg = LoL{, where the Cholesky factakg is a
lower triangular matrix of sizé x k. Applying (17), the least-square minimizer redgs= LétLélAto
where the superscriptt refers to the inverse transposition operator, and using, (h& cost function
rereads:

Ko(N) = Eo(\) + Mk = |ly|* — |ILg AQyll* + Ak. (20)

Given Lo, its computation cost®(k?) scalar operations to solve the triangular systbg?(Ato).
Insertion of a new column after the existing columi&iven an active se@ of size &, including
a new index intoQ leads toAg = [Ag, a;]. Thus, the new Gram matrix can be expressed as<a
block matrix:
G Aba;
Go = © e, (21)
a; a;
(Agai)" las]?
and the Cholesky factor diro can be straightforwardly updated:

L 0
Lo=| ° , (22)

th,i Qi
with lQJ' = LélAtQaZ andagi = 4/ ||CLZH2 — HlQﬂ'Hz'
The computation ofCo (A) using (20) leads to two inversions of triangular systemsnfootation of

lo; and computation oo ())). Advantageously, by computing
Ko\ —Ko(h) = A= (loLg' Aby)’/ad,, (23)

the cost can be reduced up to the pre-computation and stofe[ggl(Ato) at the beginning of the SBR
iteration. The computation d€o (\) only requires one inversion of a triangular system (conmmrieof
lo,).

Removal of an arbitrary columnWhen removing a columm;, updatingLo remains possible,
although slightly more expensive. This idea was first dgyetbby Geet al. [32], who update the

Cholesky factorization of matriJGél. We adapt it to the direct factorization 6fo. Let I be the index
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such thata; is the I-th column of Ag (with 1 < I < k). Matrix Lo can be written in a block matrix

form:
A 0 O

Lo=|b d 0 |, (24)
C e F
where the lowercase characters refer to the scdlaaifd vector quantitiesb( €) which appear at the
I-th row and at thel-th column. The computation dg = LoL{, and the removal of thé-th row and

the I-th column inG o leads to

A 0 At Ct 0
Go = + [0 e ]. (25)
C F 0 Ft! e

By identification of this expression with the Cholesky fatzation Go = LQ,LtQ, and because the

Cholesky factorization is uniqud, o necessarily reads:

A 0
Lo — , (26)
c X

where X is a lower triangular matrix satisfying
XX!'=FF'+ee'. (27)

The problem of computingX from F' ande is classical; it is known as a positive rank 1 Cholesky
update (update of the Cholesky factbr corresponding to a rank 1 update of the matfdx¥ to be
decomposed), and there exists a stable algorithif?(ii*) operations, wherg = k — I is the size of
F [33].

Finally, the computation ofCo/ ()\) involves a positive Cholesky update and a triangular system
inversion in (20). Thus, its overall cost is '(ﬁ(krz). Notice that matrixF' is of sizek — I. Therefore, the
cost of a Cholesky update completely depends on the positiohthe columna; to be removed. The

larger I, the more expensive is the Cholesky update.

D. Memory requirements and computation burden

The efficient (fast and stable) procedure is finally sumneakiin Table Il. Given the current active
set Q, the index¢ defining the next SBR iterat® e ¢ is chosen according to (13) arfdy,, is finally
updated. No update of the amplitudes is necessary. If nedlaeid computation can be done using (17)

and the knowledge oL .
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TABLE I

EFFICIENT IMPLEMENTATION OF AN ELEMENTARY SBRITERATION.

Input: Q, A

Pre-computed quantitiesA®y and ||a;|| for all i
Stored quantitieso (), Lo and L' (ALy)
Setk = Card [Q)].

Set/ = 0.

Setl east _cost = Kg(N).

Fori=1ton,

fi¢Q,
/+* Try the insertion of i */
Computelg ; = L' Aba; and Ko/ () using (23).

else,
[+ Try the renmoval of ¢ */
Update the Cholesky decomposition (2&: =chol updat e(F,e,’+’)
ComputeL o and Ko/ (M) using (26) and (20).
End if.
If Lo/(X) <1 east_cost,
Setl =i.
Do | east _cost = Kgo/ ().
End if.
End for.
If ¢=0,

Terminate SBR.
else, [/* Performthe single replacenent */

SetQ' = Qe/landKo/(N\) =1 east _cost.

ComputeL o/ = Lo., using (22) or (26), and thefi 5, (A% y).
End if.
Output: next SBR iterat@’ = Qe ¢, Ko/ (), Lo and L) (Al y)

The actual implementation may vary depending on the sizeranstructure of matrixd. We now detail
the main possible implementations and their requirementsrms of storage and computation. Regarding
the computation burden, we count the number of elementaeyatipns, expressed in terms of scalar
multiplications, since the cost of a scalar addition is igggle with respect to that of a multiplication.

When A is relatively small, one can take advantage of the situakipncomputing the full Gram
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matrix A’A prior to any SBR iteration (storage af scalar elements). Its storage avoids recomputing
vectorsAtQaZ- which are needed whenever the insertionagfinto the active set is tried. Similarly, we
systematically store the valuda;||> (i = 1,...,n) and A'y in two 1D arrays of size:, prior to any
SBR loop. The storage of the other quantities (maibly) that are being updated in the SBR loops
amounts toO(k?) scalar elements, and each trial co§t&?) elementary operations, as it involves the
inversion of a triangular system of sizex k, plus a positive rank 1 Cholesky update in the removal
case. This cost must be compared with t¢?3) scalar operations which are necessary when inverting
the Gram matrix in the basic implementation of SBR.

When A is larger, the computation oA’ A is not possible anymore, and vect@%ai must be
recomputed at any SBR iteration, for each insertion @ak= Q U {i}. The computation oWQaZ— costs
km elementary operations. It is a great burden and actuallyniie part of the cost corresponding to the
trial of one single replacement, since the remaining pain i©(k?) and for sparse representatiofsis
expected to be much lower than. The cost of a single replacement finally amount&i@?) + O (km)
elementary operations.

When the dictionaryA has some specific structure, the above storage limitationbeaalleviated,

enabling a fast implementation even for large values.oFor instance, ifA’ A is a sparse matrix.g.,
a large number of pairs of columns df are orthogonal to each other), it can be stored as a spaese arr
in the sense that only the non-zero elements and their indioe stored. Also, deconvolution problems
enable a fast implementation, sing€ A is then a Toeplitz matrix (except for a north-west and/or a
south-east submatrix in some cases of boundary condititressknowledge of the auto-correlation of the

impulse response is sufficient to completely describe theixnar a large part of it.

V. DECONVOLUTION OF A SPARSE SIGNAL WITH AGAUSSIAN IMPULSE RESPONSE

We will analyze the behavior and performance of the propa@dgdrithm on two difficult problems,
in which the dictionaries are highly correlated: the deadmion of a sparse signal with a Gaussian
impulse response, and the joint detection of discontiesiitit different orders in a signal (section VI).
The first problem is a typical problem for which the SMLR aigfuom was introduced [25]. It affords
to study the ability of SBR to perform an exact recovery in @m@e noiseless case (separation of two
Gaussian features from noiseless data) and to roughly stadhelr the behavior of SBR in a noisy case
(approximation of a larger number of features from noisyaylat

In the following and for simulated problems, we will denotg b* the exact (known) sparse signal

and we will generate noisy data accordinggo= y* + n = Ax* + n, wherey* = Ax* denotes
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Exact recovery: noiseless case Exact recovery: noiseless case
T

°

Rate of exact recovery
o o o o o
2 & 5 % 3
Size of support

°

F

(a) Exact recovery (binary) (b) Size of support

Fig. 1. Separation of two Gaussian features from noiselats @ehavior of the reconstructi@(/\; d) as a function ofA and
of the distancel between both Gaussian features. For a giwemlue, the curves\ — true(d, A) (a) and\ — size(d, A) (b)

indicate the exact recovery (binary value) and the size fslhpport@()\; d), respectively.

the noiseless data and stands for the observation noise. The dictionary columnsvill always be
normalized:||a;||? = 1. The signal to noise ratio (SNR) is defined by SNRO log,(Py/Py), Where
Py = |ly*||?/m is the average power of the noiseless data Brdis the variance of the noise process

n.

A. Dictionary and simulated data

The impulse responsk is a Gaussian signal of standard deviatipnsampled on a regular grid at
integer locations. For convenience reasons, it is appratathby a finite impulse response of length
by thresholding the least values. The deconvolution prob&ads to a Toeplitz matrixd whose columns
a; are obtained by shifting the signal The dimension of4 is chosen in such a way that any Gaussian
feature resulting from the convolutidoxx* belongs to the observation windo, . .., m}. This implies
that A is slightly overcompleter¢ > n). Denoting byn;, = 1 + 2round(30) the size of the support of
h, the data size reads = n + n;, — 1. Setting a larges-value yields a high correlation between the

neighboring columns of the dictionary.

B. Separation of two close Gaussian features

We first analyze the ability of SBR to separate two Gaussiatufes from noiseless datga(*||o = 2).
The centers of both Gaussian features lay at a relativengistd and their amplitude is set to 1. We

generate the corresponding noiseless gétand we run SBR); \) for a number of predefine-values.
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We analyze the SBR outpu@()\;d) by testing if@()\;d) is the true suppor&(x*) and by computing
its size. For eacld-value, the procedure yields two curves— true(d,\) and A — size(d, A).

Fig. 1 shows the curves obtained for a problem of sige x 270 (m = 300, = 5, andn;, = 31).
These results correspond to distances equdl+020, 13 and 6 samples (red, black, and blue curves). It
is noticeable that the exact recovery is always reachedigedvthat) is sufficiently small. This result
remains true even for smaller distances (foralk 2). The curvel — size(d, \) illustrates that when
the Gaussian features strongly overlap.(for d = 13 and 6), the size of the support obtained as output
increases while\ decreases, and then for lowarvalues, removals start to occur, making the exact
recovery possible. On the contrary, forward methods sucbMB and OLS start by positioning a (false)
Gaussian feature in between the two Gaussians in their tinsgttion; this early false detection disables

a true recovery in the further iterations.

C. Behavior of SBR for noisy data

In order to understand the behavior of SBR, we run SBR on meadistic noisy data and on a
larger dimension problemm{ = 3000 samples). The unknown sparse sigmalis generated by using the
Bernoulli-Gaussian model introduced in Section Il and ismposed of|z* ||y = 13 Gaussian features. The
impulse responsa is of sizen;, = 181 (¢ = 30) yielding an observation matrid of size3000 x 2820,
and the SNR is set to 20 dB.

Fig. 2 displays the simulated data and the SBR results addaiith a few\-values. Wher\ decreases,
the SBR approximations are of better quality but less spdise main Gaussian features are first found
for large A\-values, and when decreases, the smaller features are being recovered. Rismaxely occur
for coarse approximations. They occur more frequently wivem spikes are overlapping and for low
A-values. For the reconstruction of Fig. 2, the exact suppbet* is not found. However, it must be
stressed that the columns df are highly correlated and the approximations provided big $Be of very
good quality. Whem\ = 0.01, two very close neighboring columns & are selected and both belong to
the active set. Thus, the submatix, formed of the active columns A is ill conditioned. Despite the
use of the Cholesky decomposition of the Gram mafiy = AtQAQ, these highly correlated columns
provoke numerical instability leading to degenerate amg@é values. We believe that this problem is not
due to SBR itself but to the low level of regularization. There problem occurs while running OLS

for more than 14 iterations.
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Fig. 2. Gaussian deconvolution results. Problem of 8 x 2820 (¢ = 30). (a) Generated data signal, with 13 Gaussian
features (z*||o0=13) and with SNR = 20 dB. (b,c,d) Sparse approximations efdata with empirical settings of: SBR
outputs and data approximations. The amplitu@teare shown in red. The SBR outputs (supports) are of size 4,n#l014,

respectively. The time of reconstruction always remainswe seconds (Matlab implementation).

VI. JOINT DETECTION OF DISCONTINUITIES AT DIFFERENT ORDERS IN AISNAL

We now consider a more general problem, the joint detectiodiscontinuities at different orders
p = 0,...,P in a signal. We will handle simulated and real data, and compiae performance of
SBR with respect to other sparse approximation algorith@®RP and OLS) in terms of approximation
accuracy and computation time.

In a preliminary step, we formulate the detection of distuiities at a single ordep as a spline
approximation problem. Then, we will take advantage of tbisnulation to introduce more easily the

joint detection problem.
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Fig. 3. The elementary signal’ associated to @-th order discontinuity at location a! is the Heaviside step functiom;
is the ramp function and.? is a truncated quadratic function. Each function is equal @t location:, and its support is the

interval {i,...,m}.

A. Approximation of a spline of degree

In the continuous case, a signal is a spline of degreeith & knotsif and only if its (p + 1)-th
derivative is a stream of weighted Diracs [34]. In the discrete case, we introducedic&onary A?
formed of signals which are shifted versions of the oneesigdewer functionk — k% £ [max(k,0)]?
for all possible shifts (see Fig. 3AP represents the integration operator of degsee 1. Denoting by

{1,...,m} the support of the data signgl the shifted signala? (for i € {1,...,m}) read
Vke{l,...,m}, a?(k) = (k—i+ 1)} (28)

and their support is equal tfi,...,m}. Finally, we form the dictionaryd? = [af,...,a}, ] of size

m x (m — p). It does not make sense to allow the occurrence pftla order discontinuity for the last
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samplesie., to includea? for i > m — p) since the spline approximation would require to recormstru
a polynomial of degree in the range{i, ..., m} from less tharp + 1 data samples.

We address the spline approximation problem as the spap®xamation of y by the piecewise
polynomial g? = APxP. The vectorz? refers to the(p + 1)-th discrete derivatives of the approximate
signalg?; its non zero values? code for the amplitude of a jump at locatier(p = 0), the change of
slope at locatiori (p = 1), etc. In brief, the sparse approximation gf provides the detection of the

location ¢) of the p-th order discontinuities and the estimation of their cteanfamplitudes «?).

B. Approximation of a piecewise polynomial of maximum degte

Following [34], we formulate this problem as the joint detex of discontinuities at orderp =
0,...,P. Let us append the elementary dictionari4® in a global dictionaryA = [A°,..., AT]. The
approximationg = Ax of a given signal rereadg = Zp APxP where vectoer = {z,..., 2"} gathers
the p-th order amplitudes:? for all p. Whenz is sparse, all vectors? are sparse, and the approximate
signalg is the sum of piecewise polynomials of degree lower tfrawith a limited number of pieces.

The dictionary A is undercomplete since it is roughly of size x m(P + 1) (there are actually
(P +1)(m— P/2) columns since matriced, are not exactly square). Moreover, it is highly correlated:
any columna? is strongly correlated witlall other columnsaj because their respective supports are the
intervals{i,...,m} and{j,...,m}, and hence overlap. The discontinuity detection problediffult,
as most algorithms are very likely to position false disgarities in their early iterations. For example,
when approximating a signal with two discontinuities attidist locations: and j, they start to position

a first (false) discontinuity in betweenand j, and forward algorithms cannot remove it.

C. Adaptation of SBR

It is important to notice that the dictionary defined aboveslaot satisfy the URP. For instance, the
difference between two discrete ramps at locatibasdi + 1 yields the discrete Heaviside function at

locationi: a} — a;,, = a). More generally, fop > 1, we have

p—1
p
0
a; — af+1 = a; + Z ] ag+1
q=1 q
where[ P ] refers to the binomial coefficient.
q

As mentioned in Section Il, the SBR algorithm basically rieggithat the dictionary satisfies the URP

in order to guarantee that the Gram matthe = A, Ag is invertible, but this assumption can be relaxed

January 4, 2010 DRAFT



TECHNICAL REPORT 26

provided that only full rank matriced o are explored. Here, it is not obvious to formulate a necgssar
and sufficient condition for the full rankness dfy. We rather favor a simple sufficient condition which is
little enough restrictive (a more restrictive conditiomththe condition below would forbid the detection

of two discontinuities at the same location).

Proposition 3 Letd(i) denote the number of discontinuitie$, p = 0,..., P which are being activated
at sample;, i.e., for whichz! # 0. Let us define the binary conditiafiond(i):

o if d(i) =0, Cond(i) £ 1;

o if d(i) =1, Cond(i) £ (Vj e {l,...,d(i) — 1}, d(i + j) = 0).

If the active setQ is such that for alli, Cond(i) = 1, thenGg is invertible.

To prove Proposition 3, we first prove the following lemma.

Lemma 1 Consider an active s&® satisfying the condition of Proposition 3, and fet = min{i | d(i) >
0} denote the least location of an active entry. Up to a reontigrof the columnsAg rereadsAg =

[Ai-, Ag\gi-y)- If Ag\(i-y s full rank, thenAy is also full rank.

Proof: [Proof of lemma 1] Let/ = d(:~) denote the number of discontinuities at locationand
let 0 < p1 < p2 < ... < pr denote their order, sorted in the ascending order.
Suppose that there exist two families of scakus , ..., ul} and{u? |i # i~ and i is active at order
p} such that
I
el Y Y el =0 @9
Jj=1 i#i— P
We will show that allpy-values are necessarily equal to 0.
Rewriting the first/ nonzero equations in this system and beca@ssatisfies the condition of

Proposition 3, we have
I
Ve (i, i +1—-1}, > @ (k+i" -1 =0.
j=1

In other words, the polynomiat'(X) = ZIZI (1t XPi hasI positive roots. It can be shown [35] (page
76) that a non-zero polynomial formed éfmonomials of different degree has at mdst 1 positive
roots. ThereforeF is the zero polynomial and all scalaazﬁi are 0. We deduce from (29) and from the
full rankness ofA g (;-} that i = 0 for all (i,p).

We have shown that the column vectorsAf are linearly independenite., that Ao is full rank. =
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Proof: [Proof of Proposition 3] The proof of Proposition 3 directfsults from a recursive application
of lemma 1 when including all active locationssorted in the decreasing order, into the empty smt.
Roughly speaking, Proposition 3 states that we allow tovatdi several discontinuities at the same
location, but then, the next samplést 1,...,i+ d(i) — 1 = 0 must not host any discontinuity. This
condition ensures that there are at mé@) discontinuities in the interva{i, ..., i+ d(i) — 1} of length
d(i). The adaptation of SBR consists in trying the insertion anoeal of an index into the current active

set only if the above condition is true, and ignoring the otials.

D. Numerical simulations

We first consider the case where = 1, leading to the joint detection of zero and first order
discontinuitiesj.e., the piecewise affine approximation problem. We simulatseless datg* = Ax* of
sizem = 1000 and with||x*||o = 18 discontinuities (see Fig. 4 (a)). The dictionary is of si#e0 x 1999.

We use the result of Proposition 2 to compute the value )\, below which the SBR output is not
the empty set, and we run:

e SBR With \; = Mnax 1007572 for k = 1,..., Kpax, With K. = 20. These executions provide a

sequence of solutions at different sparsity levels;

« for comparison purpose, we run OMP and OLS until the iteratie= 27 and we store all the OMP

and OLS iterates.
The SBR reconstruction shown in Fig. 4 (a) corresponds tdehst A\-value. The reconstructed signal
totally coincides with the noiseless data although thewegois not exact (19 discontinuities have been
found among which two false discontinuities). Th&-¥,” curves represented on Fig. 4 (b) express the
least-square residudy — Ax||? versus the cardinality of the resuli||o, for each algorithm. This figure
shows that for a given level of sparsity, SBR yields the besbvery.

We did the same experiment with noisy dgta= Ax*+n, setting the SNR to 35 dB (see Figs. 4 (c,d)).
Here again, the ¢5-£y," curve corresponding to SBR lays below the OMP and OLS curf#es most
sparsity levels, SBR outperforms the other algorithms.eNb&t for more noisy datae(g., SNR = 15
dB), the SBR and OLS curves coincide, and still lay below thdFOcurve.

E. Real data processing

We process a set of experimental data, which are force cumeasured in Atomic Force Microscopy
(AFM). A force curve measures the interatomic forces ergriietween a probe associated to a cantilever

and a nano-object. This signal— y(z) shows the force evolution as a function of the probe-sample
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(a) Noiseless data and SBR reconstruction )¢y" curve
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(c) Noisy data (SNR= 35 dB) (d)¢5-£y" curve
and SBR reconstruction

Fig. 4. Joint detection of discontinuities at orders 0 andite dictionary is of sizd 000 x 1999 and the data signa} includes

18 jumps at orders 0 and Jj£*|lo = 18). The true and estimated positions of the jumps are labeledd +. The blue and
black colors indicate zero and first order discontinuitiespectively. The green and pink curves represent the datal gy
and its approximationAx for the least\-value. (a) Signal approximation from noiseless data. Tiem and pink curves
are superimposed. (b) Curves showing the least-squarduegsas a function of the cardinality for SBR, OLS, and OMP.

(c,d) Similar results on noisy data (SNR = 35 dB).

distancez, expressed in nanometers. The research of discontinuitiesforce curve is a critical task
because the location of the discontinuities and their aog#i provide a precise characterization of the
nano-object and its physico-chemical properties (topagyaenergy of adhesiomic) [36].

The data displayed on Fig. 5 (a) are related to a bacteridl Stlswanella putrefaciensying in
agueous solution, in interaction with the tip of the AFM peof87]. The recording of a force curve

consists of two steps. Firstly, the tip lays far away from #anple. It is moved towards the sample
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(a) Real data (b) £5-4y” curve (c) Timevs cardinality

Fig. 5. Experimental AFM data processing: joint detectibdiecontinuities at orders 0, 1, and 2 (problem of s1267 x 6498).
(a) Experimental data showing the force evolution as a fanaif the probe-sample distanee (b) Curves showing the least-
square residual as a function of the cardinality for the otgpf SBR, OLS and OMP. (c) Curves showing the time of

reconstruction as a function of the cardinality for the ¢éhedgorithms.

until the contact is reached and the surface of the bacteglhls deformed (approach curve). Secondly,
the tip is retracted from the sample. During the retractitwe, occurrence of an hysteresis between the
approach and retraction curves is due to the viscoelasijpepties of the sample. When the tip continues
to retract, several jumps are likely to occur in the forceveuas the tip loses contact with the cell.

The experimental curve shown on Fig. 5 (a) is a retractiorveelwaomposed ofn = 2167 force
measurements. We can distinguish three regions of intereshis curve, from the right to the left. The
linear region on the right part characterizes the contawtédxen the probe and the sample. It describes the
mechanical interactions of the cantilever and/or the samphe contact is maintained until~ —2840
nm. The interactions occurring in the intervale [—3050, —2840] nm are adhesion forces during the
retraction of the tip. In the flat part on the left, no interawtoccurs as the cantilever loses contact with
the sample.

We search for the discontinuities of orders 0, 1 and 2. Sityil® what was done with the simulated
data, we run SBR folK,,,x = 15 A-values and we run OLS and OMP until the iteratibr= 41. We
plot for each algorithm, the/s-¢y” curve representing the least-square resida- Ax||? versus the
cardinality |x||p, and a curve showing the time of reconstruction versus thdireaity (see Fig. 5 (b,c)).
These figures show that the performance of SBR is at least agqdasometimes better than that of OLS.
Both algorithms yield results that are far more accurate (&P, except for very sparse reconstructions.
The price to pay for these accurate approximations is ae&ser of the computation time. However, notice
that the recorded computation time always remains belowsgs®nds in the case of SBR (in a Matlab

implementation that takes advantage of the block Toeplitzcture of the dictionary: see Section I1V-D).
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Fig. 6. Experimental AFM data processing: joint detectidrdiscontinuities at orders 0, 1 and 2. The blue, black and red
colors indicate zero, first and second order discontirsjitiespectively. The estimated jumpsare labeled with a +. The green
and pink curves represent the data siggahnd its approximatiodz. (a) SBR output of cardinality 2: 4 insertions and 2
removals have been done. (b,c) OLS and OMP output after &ibes.  (d,e,f) Same simulation with a lowgivalue. The

SBR output is of cardinality 5 (7 insertions and 2 removals) ave stop OLS and OMP after 5 iterations.

Fig. 6 shows the approximations yielded by the three algarit for supports of cardinality 2 and
5, respectively. For the supports of cardinality 2, SBR altyuruns during 6 iterations (4 insertions
and 2 removals are performed) and the approximation is vecyrate compared to the OMP and OLS
results obtained after 2 iterations (which are identickr the supports of cardinality 5, OLS now
performs better than OMP and the solution obtained with SBIRyselds a residual which is lower
than the OLS and OMP residuals. In order to better underdtamdorward (insertions) and backward
moves (removals) occurring during the SBR iterations, we ph Fig. 7 a curve showing for each SBR
iterate, the corresponding least-square resifjyal Ax||? versus its cardinality. Because SBR is a descent
algorithm, the penalized cosf(x; \) keeps decreasing but when a removal ocdiys; Ax||? increases.
On theses curves, insertion and removals correspond th-seaist and north-west moves, respectively.

Notice that for small\-values, removals occur more often in the last iterations.
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Fig. 7. Display of the SBR iterates corresponding to bottomstructions of Fig. 6. The curves represgpt— Az||* as a

function of ||z||o for each iteratec. (a) 4 insertions and 2 removals are done. (b,c) 7 insertois2 removals are done.

F. Discussion

In the comparisons above, we chose to compare SBR with OMPCirffl We did not consider
simpler algorithms like MP which are well suited to solve plar problems, in which the columns of the
dictionary are almost orthogonal, with speed (real-tin@)straints. Because SBR involves more complex
operations (matrix inversions), we chose to compare it WNP and OLS because they also require to
solve at least one least-square minimization problem eatibn, and their target is to provide results
which are more accurate than the MP approximations in the ofslifficult problems.

Up to our knowledge, the only minimization algorithm dedéshto the/y-penalized cost function
J(xz;\) = ||y — Az||? + )| z|o is the IHT algorithm proposed by Blumensath and Davies [lt4Elies
on gradient based iterations of the forh = = + Af(y — Ax), followed by the threshold of all the
non-zero components; such thatiz;| < A% and their replacement with 0. On both deconvolution and
discontinuity detection problems, we observed that thisiea of IHT is less accurate than the standard
version of IHT, related to thé,-constrained problem. In the constrained version, theomponents
|x;| having the largest amplitudes are kept, and the others ang ieresholded. Generally speaking,
we observed that the IHT algorithm is competitive when theredation between any pair of dictionary
columns is limited, but for highly correlated dictionari@esvery large number of iteration®(m?)) are
needed in order that IHT reaches convergence. SBR seemshiettee suited to such difficult problems.
It is less sensitive to the initial solution and “skips” solbeal minimizers whose cost is very high. We
here recall that according to Proposition 1, each SBR #eimaalmost surely a local minimizer of the
cost functionJ (x; \).

In order to compare our approach with the forward-backwégdrahm of [19], we also programmed
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an OMP-like adaptation of SBR in which only one least-squyam@blem is solved at each iteration,
instead ofn. This adaptation consists in replacing the selection 8 (n the following way. When an
insertionQ U {i} is tried, all the active componenis are kept constant ang; is set to the minimizer
of |y — Azg — z;a;||?. This leads to an approximation éfg.;(\) without solving any least-square
problem. Similarly, the removal of the active indéxconsists in setting:; to 0 and leaving the other
componentse; unchanged. In brief, this adapted version is an algorithmedi at the minimization of
J(x;\) at a cost which is comparable to that of OMP. In all our tri88R yields a more accurate
result than the adapted version except in very simple cdisgitefd correlation between the columnsg)

in which SBR and the adapted versions yield the same reshit. performance of the adapted version
fluctuates below or above those of OMP, but are almost alwayke$s accurate than the OLS and SBR

approximations.

VIlI. CONCLUSION

We have evaluated the SBR algorithm on two problems in whighdictionary columns are highly
correlated. SBR provides solutions which are at least agrate as the OLS solutions, and sometimes
more accurate, with a cost of the same order of magnitudestkr difficult problems, the MP and OMP
algorithms provide poor approximations in comparison vithS and SBR within a lower computation
time.

For small A-values, we believe that performing removals is the pricgdy if one expects a better
guality approximation in comparison with OLS. Zhang argtteat the low humber of removals occurring
in the early iterations is a strong limitation of any descagorithm dedicated to the minimization of the
{p-penalized least-square cost function (see the discussiotion in [19]). We rather believe that in the
early iterations of SBR, the main features need to be foung; justifying to process mainly insertions.
More removals occur when a fine quality approximation is wdnte., for low A-values. Nevertheless, it
would be interesting to compare our approach with an algoriike FoBa [19] which imposes removals
even in its early iterations. This rule also provides a fraonl for proving exact recovery results for
problems satisfying the Restricted Isometry Property [R¥e will investigate whether these proofs are
extendable to SBR.

In the proposed approach, the main difficulty relies in theich of the\-value. If a specific sparsity
level k& or approximation residual is desired, one needs to resattt@l and error procedure in which
a number of\-values are tried until the desired approximation levelasnd. In [38], we proposed a

continuation version in which a series of SBR solutions arecessively estimated with a decreasing
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level of sparsity\, and theA-values are recursively computed. The fidsvalue is set tog = +oo,

and at a given value;, the initial solution (input of SBR) is set to the SBR outptitha= X;_;. This

continuation version provides promising results and wélltbe subject of a future extended contribution.
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