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Abstract

The rational Chow ring A∗(S[n], Q) of the Hilbert scheme S[n] parametrising
the length n zero-dimensional subschemes of a toric surface S can be described
with the help of equivariant techniques. In this paper, we explain the general
method and we illustrate it through many examples. In the last section, we
present results on the intersection theory of graded Hilbert schemes.

Résumé

Les techniques équivariantes permettent de décrire l’anneau de Chow rationnel
A∗(S[n], Q) du schéma de Hilbert S[n] paramétrant les sous-schémas ponctuels
de longueur n d’une surface torique S. Dans cet article, nous présentons la
démarche générale et nous l’illustrons au travers de nombreux exemples. La
dernière section expose des résultats de théorie d’intersection sur des schémas
de Hilbert gradués.

Introduction

Let S be a smooth projective surface and S[n] the Hilbert scheme parametrising
the length n zero-dimensional subschemes of S. How to describe the cohomology
ring H∗(S[n], Q) and the Chow ring A∗(S[n], Q) ?

A first approach is based on the work of Nakajima, Grojnowski and Lehn
among others [12], [16], [13], [14], [2]. The direct sum ⊕n∈NH∗(S[n], Q) is an
(infinite dimensional) irreducible representation and carries a Fock space struc-
ture [15]. Lehn settles a connection between the Fock space structure and the
intersection theory of the Hilbert scheme via the action of the Chern classes of
tautological bundles [11].

An other method, independent of the Fock space formalism introduced by
Nakajima, has been developed in [5] when S is a toric surface. The point is
that the extra structure coming from the torus action brings into the scene an
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equivariant Chow ring which is easier to compute than the classical Chow ring.
The classical Chow ring is a quotient of the equivariant Chow ring.

The computations of this equivariant approach are explicit. They rely on
the standard description of the cohomology of the Grassmannians and on a
description of the tangent space to the Hilbert scheme at fixed points.

The main goal of this paper is to present this equivariant approach. We
follow the general theory and we illustrate it with the case S = P2 and n = 3
as the main example.

In the last section, we bring our attention to graded Hilbert schemes, which
played an important role in the equivariant computations. We present results on
the set theoretic intersection of Schubert cells, which suggest that intersection
theory on graded Hilbert schemes could be described in terms of combinatorics
of plane partitions.

Throughout the paper, we use the formalism of Chow rings and work over
any algebraically closed field k. When k = C, the Chow ring cöıncides with
usual cohomology since the action of the two-dimensional torus T on S induces
an action of T on S[d] with a finite number of fixed points.

1 Equivariant intersection theory

1.1 General results

In this section, we recall the facts about equivariant Chow rings that we need.
To simplify the presentation, we work with rational coefficients and the notation
A∗(X) := A∗(X, Q) denotes the rational Chow ring.

The construction of an equivariant Chow ring associated with an algebraic
space endowed with an action of a linear algebraic group has been settled by
Edidin and Graham [3]. Their construction is modeled after the Borel construc-
tion in equivariant cohomology.

Proposition 1. Let G be an algebraic group, X an equidimensional quasi-
projective scheme with a linearized G-action and i, j ∈ Z, i ≤ dim(X), j ≥ 0.
There exists a representation V of G such that

• V contains an open set U on which G acts freely,

• U → U/G exists as a scheme and is a principal G bundle,

• codim V V \ U > dim(X) − i.

The quotient XG = (X × U)/G under the diagonal action exists as a scheme.
The groups AG

i (X) := Ai+dim(V )−dim(G)(XG) and Aj
G(X) := AG

dim(X)−j
(X) are

independent of the choice of the couple (U, V ).

Definition 2. The group Ai
G(X) is by definition the equivariant Chow group

of X of degree i.

Example 3. If G = T = (k∗)n is a torus, then a possible choice for the couple
(U, V ) is V = (kl)n with l >> 0, and U = (kl − {0})n with T acting on V by
(t1, . . . , tn)(x1, . . . , xn) = (t1x1, . . . , tnxn). The quotient U/T is isomorphic to
(Pl−1)n.
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Example 4. Let p be a point and T = (k∗)n the torus acting trivially on p.
Then A∗

T (p) ≃ Q[h1, . . . , hn] where hi has degree 1 for all i.

Proof. By the above example, A∗
T (p) = liml→∞ A∗((Pl−1)n) =

liml→∞ Q[h1, . . . , hn]/(hl
1, . . . , h

l
n) = Q[h1, . . . , hn], where hi has degree 1 ( ac-

cording to the definition of the equivariant Chow group, the limit considered is
a degreewise stabilisation thus the limit is the polynomial ring and not a power
series ring).

If X is smooth, then (X × U)/G is smooth too and A∗
T (X) is a ring : the

intersection of two classes u, v ∈ A∗
T (X) takes place in the Chow ring A∗((X ×

U)/G).

Example 5. The isomorphism A∗
T (p) ≃ Q[h1, . . . , hn] of the last example is an

isomorphism of rings.

Definition 6. Let E be a G-equivariant vector bundle on X and EG → XG the
vector bundle with total space EG = (E × U)/G. The equivariant Chern class
cG
j (E) is defined by cG

j (E) = cj(EG) ∈ Aj(XG) = Aj
G(X).

The identification of A∗
T (p) with a ring of polynomials R can be made in-

trinsic using equivariant Chern classes.

Proposition 7. Let T̂ be the character group of a torus T ≃ (k∗)n. Any
character χ ∈ T̂ defines a one-dimensional representation of T by t.k = χ(t)k,
hence an equivariant bundle over the point and an equivariant Chern class cT

1 (χ).
The map χ → cT

1 (χ) ∈ A1
T (p) extends to an isomorphism R = SymQ(T̂ ) →

A∗
T (p), where SymQ(T̂ ) is the symmetric algebra over Q of the group T̂ .

Example 8. Let T = k∗ be the one dimensional torus acting on the projective
space Pr = Proj k[x0, . . . , xr] by t.(x0 : · · · : xr) = (tn0x0 : · · · : tnrxr). Then
A∗

T (Pr) = Q[t, h]/p(h, t) where p(h, t) =
∑r

i=0 hr−iei(n0t, . . . , nrt), ei being the
i-th elementary symmetric polynomial.

Proof. XT is the Pr bundle P(O(n0) ⊕ · · · ⊕ O(nr)) over Pl−1. The rational
Chow ring of this projective bundle is Q[h, t]/(p(h, t), tl). We have the result
when l tends to ∞.

Example 9. Let V be a representation of G and G(k, V ) the corresponding
Grassmannian. Then A∗

G(G(k, V )) is generated as an R module by the equiv-
ariant Chern classes of the universal quotient bundle.

Proof. The quotient (G(k, V ) × U)/G is a Grassmann bundle over U/G with
fiber isomorphic to G(k, V ). Since the Chow rings of Grassmann bundles are
generated over the Chow ring of the base by the Chern classes of the universal
quotient bundle, the result follows.
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1.2 Results specific to the action of tori

Brion [1] pushed further the theory of equivariant Chow rings when the group
is a torus T acting on a variety X .

Theorem 10. [1] Let X be a smooth projective T -variety. The restriction
morphism i∗T : A∗

T X → A∗
T XT is injective.

Example 11. Let T = k∗ act on P1 by t.(x : y) = (tx : y). The inclusion
i∗T : A∗

T (P1) → A∗
T ({0,∞}) = R2 identifies A∗

T (P1) with the couples (P, Q) of
polynomials ∈ R = Q[t] such that P (0) = Q(0).

Proof. Let V = V ect(x, y) be the 2 dimensional vector space with P(V ) = P1.
By the above A∗

T (P1) is generated by the Chern classes of the universal quotient
bundle as an R-module. On the point ∞ = ky ∈ P(V ), the quotient bundle Q
is isomorphic to kx and T acts with character t. Thus c1(Q)∞ = t. Similarly,
the restriction of Q to the point 0 = kx is a trivial equivariant bundle and
c1(Q)0 = 0. Thus c1(Q) restricted to {0,∞} is (0, t). Obviously, c0(Q) = (1, 1).
Thus A∗

T (P1) = Q[t](0, t) + Q[t](1, 1) as expected.

If T ′ ⊂ T is a one codimensional torus, the localisation morphism i∗T factor-

izes: A∗
T (X) → A∗

T (XT ′

)
i∗
T ′

→ A∗
T (XT ) = RXT

. Brion has shown

Theorem 12. [1] Let X be a smooth projective variety with an action of T .
The image Im(i∗T ) satisfies Im(i∗T ) = ∩T ′Im(i∗T ′) where the intersection runs
over all subtori T ′ of codimension one in T .

An important point is that the equivariant Chow groups determine the usual
Chow groups. The fibers of XT → U/T are isomorphic to X . Let j : X → XT be
the inclusion of a fiber and j∗ : A∗

T (X) → A∗(X) the corresponding restriction.

Theorem 13. [1] Let R+ = T̂R ⊂ R be the set of polynomials with positive
valuation. The morphism j∗ is surjective with kernel R+A∗

T (X).

Example 14. A∗(P1) = (Q[t](t, 0) + Q[t](1, 1))/(Q[t]+(t, 0) + Q[t]+(1, 1)) ≃
Q[t]/(t2). The isomorphism sends (P =

∑
pit

i, Q =
∑

qiti) with p0 = q0 to
(p0, p1 − q1).

Finally, we have an equivariant Kunneth formula for the restriction to fixed
points, proved in [5].

Theorem 15. Let X and Y be smooth projective T -varieties with finite set of

fixed points XT and Y T . Let A∗
T (X) ⊂ RXT

, A∗
T (Y ) ⊂ RY T

, and A∗
T (X ×

Y ) ⊂ RXT×Y T

the realisation of their equivariant Chow rings via localisation

to fixed points. The canonical isomorphism RXT

⊗R RY T

≃ RXT ×Y T

sends
A∗

T (X) ⊗ A∗
T (Y ) to A∗

T (X × Y ).

Example 16. Let T be the one dimensional torus acting on P1 × P1 by
t.([x1, y1], [x2 : y2]) = ([tx1, y1], [tx2 : y2]). For each copy of P1, A∗

T (P1) is
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generated as an R-module, by the elements e = 1.{0} + 1.{∞} = (1, 1) and
f = 0.{0} + t.{∞} = (0, t). By the Kunneth formula, A∗

T (P1 × P1) ⊂ Q[t]4 is
generated by the elements (1, 1, 1, 1) = (1, 1) ⊗ (1, 1), (0, t, 0, t) = (1, 1) ⊗ (0, t),
(0, 0, t, t) = (0, t) ⊗ (1, 1), (0, 0, 0, t2) = (0, t) ⊗ (0, t) where the coordinates are
the coefficients with respect to the four points (a, b) ∈ P1×P1 with a, b ∈ {0,∞}.

The strategy

Let’s sum up the situation. The equivariant Chow ring A∗
T (X) satisfies the

usual functorial properties of a Chow ring: there is an induced pushforward
for a proper morphism , an induced pull-back for a flat morphism, equivari-
ant vector bundles have equivariant Chern classes... When the fixed point set
XT is finite, the computations are identified with calculations in products of
polynomial rings.

Since it is possible to recover the usual Chow ring from the equivariant Chow
ring, the point is to compute the equivariant Chow ring and its restriction to
fixed points. The strategy that will be followed in the case of the Hilbert schemes
is to use theorem 12 above. It is not obvious a priori that the geometry and
the equivariant Chow rings of (S[n])T ′

and their restriction to fixed points are
easier to describe than the equivariant Chow ring of the original variety S[n].
This is precisely the work to be done.

2 Iarrobino varieties and graded Hilbert scheme

In our computations of the Chow ring of the Hilbert scheme, a central role will
be played by the Iarrobino varieties or graded Hilbert schemes that we introduce
now.

Fix a set of dimensions H = (Hd)d∈N such that Hd = 0 for d >> 0.

Definition-Proposition 17. The Iarrobino variety Hhom,H is the set
of homogeneous ideals I = ⊕Id ⊂ k[x, y] of colength

∑
d Hd such

that codim(Id, k[x, y]d) = Hd. This is a subvariety of G =∏
d s.t. Hd 6=0 Grass(Hd, k[x, y]d). Moreover, Hhom,H is empty or irreducible.

Proof. Each vector space Id corresponds to a point in the Grassman-
nian Grass(Hd, k[x, y]d) and I corresponds to a point in the product G =∏

Grass(Hd, k[x, y]d). Accordingly, Hhom,H is a subvariety of G. The irre-
ducibility of Hhom,H is shown in [9].

The Chow ring A∗(Hhom,H) is related to the Chow ring of G, as shown by
King and Walter [10].

Theorem 18. Let i : Hhom,H →֒ G denote the inclusion. The pull back i∗ :
A∗(G) → A∗(Hhom,H) is surjective.

There are natural generalisations of the Iarrobino varieties, introduced by
Haiman and Sturmfels [8] and called graded Hilbert schemes. In our case, the
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graded Hilbert schemes we are interested in are the quasi-homogeneous Hilbert
schemes.

Definition-Proposition 19. Let weight(x) = a ∈ N,weight(y) = b ∈ N

with (a, b) 6= (0, 0). Consider the set Hab,H of quasi-homogeneous ideals
I = ⊕d∈NId ⊂ k[x, y] with codim(Id, k[x, y]d) = Hd. There is a closed em-
bedding i : Hab,H →֒ G = Πd∈N,Hd 6=0Grass(H(d), k[x, y]d).

Remark 20. We could also consider the case a ∈ Z and/or b ∈ Z. However
when ab < 0, Hab,H would be empty or a point. Moreover, changing (a, b) with
(−a,−b) gives an isomorphic graduation. Consequently, any non trivial variety
Hab,H can be realized with a ≥ 0 and b ≥ 0. We thus consider a ∈ N and b ∈ N

without loss of generality.

One wants to extend in this context the results by Iarrobino and King-
Walter.

Extending Iarrobino’s irreducibility result is possible, but not immediate, as
Iarrobino’s argument does not extend.

Theorem 21. [7] The graded Hilbert scheme Hab,H is empty or irreducible.

Idea of the proof. Since Hab,H is smooth as the fixed locus of (A2)[
P

Hd] under the
action of a one dimensional torus, irreducibility is equivalent to connectedness.
To prove connectedness, Hab,H admits a stratification where the cells are the
inverse images of the product of Schubert cells on G by the immersion Hab,H →
G. Each cell is an affine space. The cells being connected spaces, it suffices
to connect together the different cells to prove the connectedness of Hab,H . To
this aim, one writes down explicit flat families over P1. These flat families
correspond to curves drawn on Hab,H that give the link between the different
cells.

The arguments of King and Walter generalise easily to the quasi-
homogeneous case. Moreover, the affine plane A2 is a toric variety. The action
of T = k∗×k∗ on A2 induces an action of T on Hab,H . It is possible to generalise
the results of King-Walter to the equivariant setting. With minor modifications
of their method, one gets the following theorem.

Theorem 22. The natural restriction morphisms i∗ : A∗(G) → A∗(Hab,H) and
i∗T : A∗

T (G) → A∗
T (Hab,H) are surjective.

Corollary 23. The above theorem induces a description of A∗
T (Hab,H). Indeed,

if j : (Hab,H)T → Hab,H is the inclusion of the T -fixed points, then A∗(Hab,H) =
im(j∗T ) = im(ij)∗T and the computation of (ij)∗T : A∗

T (G) → A∗
T (HT

ab,H) follows
easily from the description of A∗

T (G) using equivariant Chern classes.

Example 24. Let Hhom,H be the Iarrobino variety parametrising the ho-
mogeneous ideals in k[x, y] with Hilbert function H = (1, 1, 0, 0, . . . ). The
torus T = k∗ acts by t(x, y) = (tx, y). The two fixed points are the ideals
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(x2, y) and (x, y2). The Iarrobino variety Hhom,H embeds in the Grassman-
nian Grass(1, k[x, y]1) of one dimensional subspace of linear forms. The uni-
versal quotient Q over the Grassmannian is a T -bundle. Its restriction over
the points (x2, y) and (x, y2) is a T -representation corresponding to the charac-
ters t 7→ t and t 7→ 1. Thus the first Chern class of the universal quotient is

(t, 0) ∈ RHT
hom,H = R2. Finally A∗

T Hhom,H = (cT
1 (Q), cT

0 (Q)) = R(t, 0)+R(1, 1).

3 Geometry of the fixed locus

3.1 Geometry of (S [d])T

Let S be a smooth projective toric surface. The 2-dimensional torus T which
acts on S acts naturally on S[d]. According to theorems 10 and 12, one main
ingredient to describe the equivariant Chow ring A∗

T (S[d]) is to describe the

geometry of the fixed loci (S[d])T and (S[d])T ′

of the Hilbert scheme S[d] under
the action of the two dimensional torus T and under the action of any one-
dimensional torus T ′ ⊂ T .

Consider the example S = P2 = Proj k[X, Y, Z] and (P2)[3] the associ-
ated Hilbert scheme. The action of T = k∗ × k∗ on P2 is (t1, t2).X

aY bZc =
(t1X)a(t2Y )bZc. First, we describe the finite set ((P2)[3])T . Obviously, a
subscheme Z ∈ ((P2)[3])T has a support included in {p1, p2, p3} where the
pi’s are the toric points of P2 fixed under T . Through each toric point,
there are two toric lines with local equations x = 0 and y = 0. Since
Z is T -invariant, the ideal I(Z) is locally generated by monomials xαyβ .

1 x

line x=0

line y=0

Monomials

1 x

xyy x^2y

x^2

Ideal (x^2,y)

Using the two lines, we can represent graphically the monomials xαyβ as
shown. An ideal I ⊂ k[x, y] generated by monomials is represented by the set
of monomials which are not in the ideal. For instance, the ideal (x2, y) which
does not contain the monomials 1, x is drawn in the above figure.

A B C D E

p_1

p_3

p_2

Proposition 25. In (P2)[3], there are a finite number of subschemes invari-
ant under the action of the two-dimensional torus. Up to permutation of the
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projective variables X, Y, Z of P2, there are five such subschemes A, B, C, D, E.

Proof. By the above, the invariant subschemes are represented by monomials
around each toric point of P2. The number of monomials is the degree of the
subscheme, ie. 3 in our situation. Up to permutation of the axes, all the possible
cases A, B, C, D, E are given in the picture.

In general, we have:

Proposition 26. The points of (S[d])T are in one-to-one correspondence with
the tuples of staircases (Ei)i∈ST such that

∑
i∈ST cardinal(Ei) = d.

3.2 Tangent space at p ∈ (S [d])T

We recall the description of the tangent space at a point p ∈ (S[d])T ([7], but
see also [4] for an other description) .

The six cleft couples for the 6−dimensional tangent space 

For simplicity, we suppose that the subscheme p is supported by a single
point. Recall that we have associated to p the staircase F of monomials xayb

not in I(p) where x, y are the toric coordinates around the support of p. A cleft
for F is a monomial m = xayb /∈ F with (a = 0 or xa−1yb ∈ F ) and (b = 0
or xayb−1 ∈ F ). We order the clefts of F according to their x-coordinates:
c1 = yb1 , c2 = xa2yb2 , . . . , cp = xap with a1 = 0 < a2 < · · · < ap. An x-cleft
couple for F is a couple C = (ck, m), where ck is a cleft (k 6= p), m ∈ F , and
mxak+1−ak /∈ F . By symmetry, there is a notion of y-cleft couple for F . The
set of cleft couples is by definition the union of the (x or y)-cleft couples.

Theorem 27. The vector space TpS
[d] is in bijection with the formal sums∑

λiCi, where Ci is a cleft couple for p.

Example 28. (P2)[3] is a 6 dimensional variety. A basis for the tangent space
at a point with local equation (x2, xy, y2) is the set of cleft couples shown in the
figure.

With equivariant techniques, it is desirable to describe the tangent space as
a representation. The torus T acts on the monomials ck and m with characters
χk and χm. We let χC = χm − χk.

Proposition 29. Under the correspondence of the above theorem, the cleft cou-
ple C is an eigenvector for the action of T with character χC.

3.3 Geometry of (S [d])T ′

We come now to the description of (S[d])T ′

where T ′ is a one-dimensional
subtorus of T . We start with an example.
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Example 30. If S = P2 and T ′ ≃ k∗ acts on A2 ⊂ P2 via t.(x, y) = (tx, ty)
the irreducible components of ((P2)[3])T ′

through the points A, B, C, D, E are
isomorphic to an isolated point, P1, P1 × P1, P1 × P1, P2.

Proof. The tangent space to ((P2)[3])T ′

at a point p ∈ ((P2)[3])T is the tangent
space to (P2)[3] invariant under T ′. Using the description of the tangent space to
(P2)[3] as a representation in the previous section, one computes the dimension
of the tangent space of ((P2)[3])T ′

at each of the points A, B, C, D, E. The
corresponding dimensions are 0, 1, 2, 2, 2.

In particular, an irreducible variety through A (resp. B, C, D, E) invariant
under T ′ with dimension 0 (resp. 1, 2, 2, 2) is the irreducible component of
((P2)[3])T ′

through A (resp. through B, C, D, E). It thus suffices to exhibit
such irreducible varieties.

A is an isolated point and there is nothing to do.
The component P1 passing through B can be described geometrically. The

set of lines through the origin of A2 is a P1. To each such line D, we consider
the subscheme Z of degree 3 supported by the origin and included in D. The set
of such subschemes Z moves in a P1. It is the component of ((P2)[3])T ′

through
B. This component can be identified with the Iarrobino variety with Hilbert
function H = (1, 1, 1, 0, 0, . . . ).

With the same set of lines through the origin, one can consider the sub-
schemes Z of degree 2 supported by the origin and included in a line D. Since
Z moves in a P1, Z ∪ p where p is a point on the line at infinity moves in a
P1 × P1. It is a component through C and D.

Finally, a subscheme Z of degree 2 included in the line at infinity moves in
a P2. Thus the union of Z and the origin moves in a P2 which is the component
of (S[d])T ′

through E.

The following proposition says that all but a finite number of representations
of T ′ give a trivial result.

Proposition 31. Let a and b be coprime with |a| ≥ 3 or |b| ≥ 3. Suppose
that T ′ = k∗ acts on A2 ⊂ P2 via t.(x, y) = (tax, tby). Then the irreducible
components of ((P2)[3])T ′

through the points A, B, C, D, E are isolated points.

Proof. The tangent space at these points is trivial.

We see in the examples that the irreducible components of (P2)T ′

are the
three toric points of P2 for a general T ′. For some special T ′, there are two
components, namely a toric point and the line joining the remaining two toric
points.

For a general toric surface S, the situation is similar.

Proposition 32. For any T ′ one codimensional subtorus of T , ST ′

is made up
of isolated toric points (wi) and of toric lines (yj) joining pairs of the remaining
toric points.
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Definition 33. We denote by PFix(T ′) = {wi} the set of isolated toric points
in ST ′

and by LFix(T ′) = {yj} the set of lines in ST ′

.

In the (P2)[3] example, we identified the irreducible components of ((P2)[3])T ′

with products B1 × . . .×Br of projective spaces. Some of the projective spaces
were identified with a graded Hilbert scheme. For instance, the component of
((P2)[3])T ′

through B has been identified with the Iarrobino variety with Hilbert
function H = (1, 1, 1, 0, 0, . . . ).

In general, the irreducible components of (S[d])T ′

are products B1× . . .×Br

where the components Bi are projective spaces or graded Hilbert schemes.
Let’s look at the situation more closely to describe these components. If

Z ∈ (S[d])T ′

, the support of Z is invariant under T ′. The invariant locus in S is
a union of isolated points (wi) and lines (yi). We denote by Wi(Z) and Yi(Z)
the subscheme of Z supported respectively by the point wi and by the line yi.
By construction, we have:

Proposition 34. A subscheme Z ∈ (S[d])T ′

admits a decomposition Z =
∪wi∈PFix(T ′)Wi(Z) ∪yi∈LFix(T ′) Yi(Z).

Obviously, (S[d])T ′

is not irreducible : when Z moves in in a connected
component, the degree of Wi(Z) and Yi(Z) should be constant. But fixing
the degree of Wi(Z) and Yi(Z) is not sufficient to characterize the irreducible
components of (S[d])T ′

as shown by the components identified in example 30.

Example 35. The components of ((P2)[3])T ′

through A and B are 2 distinct
Iarrobino varieties corresponding to the same degrees 3 on the point (0, 0) in A2

and 0 on the line at infinity.

The finer invariant which distinguishes the irreducible components is similar
to the one used for the Iarrobino varieties. It is a Hilbert function taking into
account the graduation provided by the action.

Example 36. Let OA = k[x, y]/(x2, xy, y2) and OB = k[x, y]/(y, x3) be the
ring functions corresponding to the points A and B in example 30. The action
of T ′ on OA is diagonalizable with characters 1, t, t whereas the action of T ′ on
OB acts with characters 1, t, t2.

Let Z = Spec OZ ∈ (S[d])T ′

. The torus T ′ acts on OZ with a diagonalizable
action. In symbols, OZ = ⊕Vχ, where Vχ ⊂ OZ is the locus where T ′ acts

through the character χ ∈ T̂ ′.

Definition 37. If Z ∈ (S[d])T ′

, we define HZ : T̂ ′ → N, χ → dimVχ and we
let Z = ∪Wi(Z) ∪ Yi(Z) the decomposition of Z introduced above. The tuple of
functions HZ = (HWi(Z), HYi(Z)) indexed by the connected components {wi, yj}

of ST ′

is by definition the Hilbert function associated to Z.

Theorem 38. [7] The set of Hilbert functions HZ = (HWi(Z), HYi(Z)) corre-

sponding to the subschemes Z ∈ (S[d])T ′

is a finite set. Moreover, the irreducible
components of (S[d])T ′

are in one-to-one correspondence with this set of Hilbert
functions HZ .

10



The decomposition of (S[d])T ′

as a product follows easily from the description
of the Hilbert functions. Let Bwi

(H) be the set of subschemes Wi ⊂ S, T ′ fixed,
supported by the fixed point wi with HWi

= H . Similarly, let Byi
(H) be the set

of subschemes Yi ⊂ S, T ′ fixed, with support in the fixed line yi and HYi
= H .

A reformulation of the above is thus:

Theorem 39. S[d],T ′

= ∪Bw1(Hw1)× . . . Bwr
(Hwr

)×By1(Hy1) . . .×Bys
(Hys

)
where {w1, . . . , wr} = PFix(T ′) are the isolated fixed points, {y1, . . . , ys} =
LFix(T ′) are the fixed lines, and the union runs through all the possible tuples
of Hilbert functions (Hw1 , . . . , Hwr

, Hy1 , . . . , Hys
).

The next two propositions identify geometrically the factors Bwi
(Hwi

) and
Byj

(Hyj
) of the above product.

By the very definition, we have:

Proposition 40. For every isolated fixed point wi ∈ PFix(T ′) and every func-
tion Hwi

: T̂ ′ → N, the variety Bwi
(Hwi

) is a graded Hilbert scheme.

Example 41. In example 30, take w = (0, 0) ∈ A2 and Hilbert function H(χ) =
1 for the three characters χ = 1, t, t2 and H(χ) = 0 otherwise. Then Bw(H) is
the component of ((P2)[3])T ′

passing through B, which has been identified with
the homogeneous Hilbert scheme Hhom,H.

As for the other components, we have:

Proposition 42. For every fixed line yi ∈ LFix(T ′) and every function Hyi
:

T̂ ′ → N, Byi
(Hyi

) is a product of projective spaces.

Illustration of the last proposition on an example. Consider T ′ = k∗ acting on
A2 ⊂ P2 via t.(x, y) = (tx, y). The line x = 0 is T ′-fixed. We say that a scheme
Z is horizontal of length n if it is in the affine plane and I(Z) = (y − a, xn),
or if it is a limit of such schemes when the support (0, a) moves to infinity.
Two horizontal schemes Z1 and Z2 of respective length n1 6= n2 move in a
P1 × P1. When the supports of Z1 and Z2 are distinct, Z1 ∪ Z2 is a scheme of
length n1 + n2. We thus obtain a rational function P1 × P1 · · · > (P2)[n1+n2].
The schemes being horizontal, the limit of Z1 ∪Z2 is completely determined by
the support when the schemes Z1 and Z2 collide. More formally, the rational
function extends to a well defined morphism ϕ : P1 × P1 → (P2)[n1+n2]. This
morphism is an embedding and gives an isomorphism between P1 × P1 and one
of the components Byi

(Hyi
) introduced above.

If n1 = n2 in the above paragraph, ϕ is not an embedding any more because
of the action of the symmetric group which exchanges the roles of Z1 and Z2. But
taking the quotient, we obtain an embedding P2 = (P1 × P1)/σ2 → (P2)[n1+n2]

which is an isomorphism on a component.
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4 Description of the Chow ring

4.1 Description using generators

Let T ′ ⊂ T be a one dimensional subtorus. Recall that each irreducible com-
ponent C of (S[d])T ′

is a product Bw1(Hw1) × . . . Bwr
(Hwr

) × By1(Hy1) . . . ×
Bys

(Hys
) where {w1, . . . , wr} = PFix(T ′) and {y1, . . . , ys} = LFix(T ′).

The factors Bwi
(Hwi

) are graded Hilbert schemes. We have seen in example
24 the computation of generators for their equivariant Chow ring. We denote
by Mwi,T ′,Hwi

this equivariant Chow ring.
The factors Byi

(Hyi
) are product of projective spaces. We have seen in

examples 8, 9 or 16 the computation of generators for their equivariant Chow
ring. We denote by Nyi,T ′,Hyi

this equivariant Chow ring.
Then the equivariant Chow ring of the component C is given by the Kunneth

formula of theorem 15:

A∗
T (C) =

⊗

wi∈PFix(T ′)

Mwi,T ′,Hwi

⊗

yi∈Lfix(T ′)

Nyi,T ′,Hyi

When H = (Hw1 , . . . , Hwr
, Hy1 , . . . , Hys

) runs through the possible Hilbert

functions to describe all the irreducible components C of (S[d])T ′

and using
theorem 12, we finally get:

Theorem 43. [5]

A∗
T (S[d]) =

⋂

T ′⊂T

⊕

#H=d

(
⊗

wi∈PFix(T ′)

Mwi,T ′,Hwi

⊗

yi∈LFix(T ′)

Nyi,T ′,Hyi
)

4.2 Second description of the Chow ring: From generators

to relations

In the last formula, the modules Mwi,T ′,Hwi
and Nyi,T ′,Hyi

were described with
explicit generators. It is possible to adopt the relations point of view rather than
the generators point of view. This is an algebraic trick which relies on Bott’s
integration formula, proved by Edidin and Graham in an algebraic context.
The equivariant Chow ring is then described as a set of tuples of polynomials
satisfying congruence relations.

The proposition below that makes the transition from generators to relations
involves equivariant Chern classes of the restrictions TS[d],p of the tangent bundle

TS[d] at fixed points p ∈ (S[d])T . Since we have described the fiber of the tangent
bundle at these points as a T -representation, computing the equivariant Chern
classes is straightforward and the set of relations can be computed.

Proposition 44. [5] Let βi = (βip)p∈(S[d])T be a set of generators of the

Q[t1, t2]-module i∗T A∗
T (S[d]) ⊂ Q[t1, t2]

(S[d])T

. Let α = (αp) ∈ Q[t1, t2]
(S[d])T

.
Then the following conditions are equivalent.

• α ∈ i∗T A∗
T (S[d])

12



• ∀i, the congruence

∑

p∈(S[d])T

(αpβip

∏

q 6=p

cT
dim S[d](TS[d],q)) ≡ 0 (mod

∏

p∈(S[d])T

cT
dim S[d](TS[d],p))

holds.

We apply the method to (P2)[3]. There are 22 fixed points thus the equiv-
ariant Chow ring is a subring of Q[t1, t2]

22. Five of the fixed points A, . . . , E
have been introduced in the examples. The other fixed points are obtained
from these five by a symmetry. For instance, A12 = σ(A) where σ is the toric
automorphism of P2 exchanging the points p1 and p2.

Theorem 45. [5] The equivariant Chow ring A∗
T ((P2)[3]) ⊂ Q[t1, t2]

{A,A12,...,E}

is the set of linear combinations aA+ a12A12 + · · ·+ eE satisfying the relations

• a + a13 − d − d13 ≡ 0 (mod t22)

• d − d13 ≡ 0 (mod t2)

• a − a13 ≡ 0 (mod t2)

• a − b ≡ 0 (mod 2t1 − t2)

• b − b13 ≡ 0 (mod t2)

• −b + 3c − 3c12 + b12 ≡ 0 (mod t31)

• −b + c + c12 − b12 ≡ 0 (mod t21)

• 3b − c + c12 + −3b12 ≡ 0 (mod t1)

• b − b23 ≡ 0 (mod t2 − t1)

• c − d + c23 − d23 ≡ 0 (mod (t1 − t2)
2)

• c + d − c23 − d23 ≡ 0 (mod (t1 − t2))

• c23 − d23 ≡ 0 (mod (t1 − t2))

• c − c13 ≡ 0 (mod t2)

• d − 2e + d12 ≡ 0 (mod t21)

• d − d12 ≡ 0 (mod t1)

• all relations deduced from the above by the action of the symmetric group
S3.

The Chow ring A∗((P2)[3]) is the quotient of A∗
T ((P2)[3]) by the ideal generated

by the elements fA + · · · + fE, f ∈ Q[t1, t2]
+.

5 Graded Hilbert schemes revisited

The quasi-homogeneous Hilbert schemes played a central role in the computa-
tion of A∗

T (S[d]) and their Chow ring was computed using equivariant techniques.
In this section, we present a result suggesting that their Chow ring could admit
an alternative description in terms of combinatorics of partitions.

To simplify the notations, we restrict from now on our attention to the homo-
geneous case of Iarrobino varieties, but the statements below can be formulated
in the quasi-homogeneous case [6].
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Recall that the graded Hilbert scheme Hhom,H embeds in a product of Grass-
mannians: Hhom,H →֒ G =

∏
d∈N,Hd 6=0 Grass(Hd, k[x, y]d). The Grassmanni-

ans are stratified by their Schubert cells, constructed with respect to the flag
F1 = V ect(xd) ⊂ F2 = V ect(xd, xd−1y) ⊂ . . . Fd+1 = k[x, y]d. The product G

is stratified by the product of Schubert cells, and Hhom,H is stratified by the
restrictions of these products of Schubert cells. We still call these restrictions
Schubert cells on Hhom,H .

Example 46. A Schubert cell of a Iarrobino variety Hhom,H contains a unique
monomial ideal I ⊂ k[x, y] that we represent as usual by the set of monomials
E(I) = {xayb /∈ I}.

The Grassmannians in the product G are trivial when Hd = dim k[x, y]d.
When the numbers of non trivial Grassmannians in G is one, the inclusion
Hhom,H ⊂ G is an isomorphism. In this Grassmannian case, the closures of the
Schubert cells form a base of A∗(Hhom,H) and the intersection is classically
described in terms of combinatorics involving the partitions associated to the
cells.

Question: Is it possible to describe the intersection theory in terms of
partitions when Hhom,H is not a Grassmannian ?

The intersection theory when Hhom,H is not a Grassmannian is more com-
plicated than in the Grassmannian case. On the set theoretical level, the inter-
section C∩D between the closures of two cells C and D is difficult to determine.
The closure C of a cell C is not a union of cells any more.

However, a necessary condition for the incidence C ∩ D 6= ∅ is known and
expressed in terms of reverse plane partitions with shape E(J), where J is the
unique monomial ideal in D.

5
2

1

0

0 0
0 0 0
0 0 0 0

0 0 0 0 0

5
2

1

0

0 0
0 0 0
0 0 0 0

0 0 0 0 0

E(I)E(J) and the plane partition

Definition 47. A reverse plane partition with shape E ⊂ N2 is a two-
dimensional array of integers nij , (i, j) ∈ E such that ni,j ≤ ni,j+1, ni,j ≤
ni+1,j

Definition 48. A monomial ideal I is linked to a monomial ideal J by a reverse
plane partition nij with support E(J) if E(I) = {xa+na,byb−nab , (a, b) ∈ E(J)}

Example 49. In the above figure, E(I) is linked to E(J).

Definition 50. If I ⊂ k[x, y] is a monomial ideal of colength n, the complement
of I is the ideal C(I) such that E(C(I)) contains the monomials xayb, a < n,
b < n with xn−1−ayn−1−b ∈ I (see the figure below).
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E(I) E(C(I))

Theorem 51. [6] Let C and C′ ⊂ Hhom,H be two cells containing the monomial
ideals I and I ′. If C ∩ C′ 6= ∅, then

• I is linked to I ′ by a reverse plane partition.

• C(I) is linked to C(I ′) by a reverse plane partition.

By analogy with the Grassmannian case, we are led to the following open
question: Can we describe the intersection theory on the Graded Hilbert

schemes in terms of combinatorics of the plane partitions ?
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