
HAL Id: hal-00443763
https://hal.science/hal-00443763v1

Submitted on 4 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast characterization of radiation patterns of conformal
array antennas in the presence of excitation errors

Christine Letrou, Amir Boag, Amir Shlivinski

To cite this version:
Christine Letrou, Amir Boag, Amir Shlivinski. Fast characterization of radiation patterns of conformal
array antennas in the presence of excitation errors. RADAR 2009 : International Radar Conference
”Surveillance for a safer world”, Oct 2009, Bordeaux, France. pp.1 - 5. �hal-00443763�

https://hal.science/hal-00443763v1
https://hal.archives-ouvertes.fr


Fast Characterization of Radiation Patterns 
 of Conformal Array Antennas  

in the Presence of Excitation Errors 
 

Christine Letrou 
Lab. SAMOVAR (UMR CNRS 5157) 

Institut TELECOM SudParis, Evry, France 
Christine.Letrou@it-sudparis.eu 

Amir Shlivinski 
Dept. of ECE, Ben-Gurion University 

Beer-Sheva 84105, Israel 
amirshli@ee.bgu.ac.il  

Amir Boag 
Dept. of Physical Electronics, Tel Aviv University 

Tel Aviv 69978, Israel  
boag@eng.tau.ac.il 

 
 
 
 

 
Abstract—A multilevel algorithm for the statistical 
characterization of the radiation patterns of beam steered 
conformal arrays is presented.  The algorithm can be used to 
obtain average complex field patterns and power patterns in the 
presence of random amplitude and phase excitation errors.  The 
computational scheme is based on a hierarchical decomposition 
of the array into smaller sub-arrays.  At the finest level of 
decomposition, the radiation patterns of single element arrays 
are computed or measured over a sparse grid of directions.  The 
subsequent computational sequence comprises interpolations and 
aggregations of sub-array contributions repeated until obtaining 
the radiation pattern of the array.  The proposed algorithm 
attains a computational complexity substantially lower than that 
of the direct computation and thus can be employed for Monte 
Carlo type statistical simulations. 
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I.  INTRODUCTION 
Conformal array antennas offer well-known advantages 

over conventional planar arrays: aerodynamic shape, 
potentially greater effective aperture for a given platform, 
reduced weight.  Conformal structural integrated antennas are 
thus of special interest for imaging radar systems mounted on 
the fuselage of an Unmanned Aerial Vehicle (UAV) or of an 
aircraft [1].  This new generation of radar imaging systems is 
based on multifunctional Synthetic Aperture Radars that aim 
at providing high resolution and long range imaging 
capabilities as well as highly sensitive ground moving target 
indication.  Such radars make use of highly reconfigurable 
array antennas, with severe demands on beam direction 
precision, beam-width, and side-lobe levels, as required by 
high resolution algorithms.  A large number of densely packed 
radiating elements is highly desirable for this type of antennas 
to increase the performance and achieve high space-time 

resolution of the radiated fields over a wide angular sector of 
beam steering directions.   

Evaluation of radiation patterns of such large arrays for a 
range of beam steering and observation directions poses a non-
trivial computational challenge.  Presence of excitation errors 
due to random noise and imperfect calibration further 
exacerbates the situation by requiring complex compensation 
techniques [2] and making the radiation patterns 
nondeterministic [3,4].  Some statistical properties of radiation 
patterns such as averages can be deduced from those of the 
excitation coefficients.  However, probability density 
functions of radiation patterns can be obtained from those of 
the excitation coefficients, only at special points such as the 
main lobe peak and zeros, and, even this, using far reaching 
approximations [4].  Full statistical description can be 
obtained via Monte Carlo Type simulations at the cost of 
repeated evaluation of radiation patterns for various 
realizations of all random variables involved.  Such brute-force 
approach comes at a substantial computational cost making a 
conventional radiation pattern evaluation for large conformal 
arrays impractical.  In this paper, a multilevel array 
decomposition (MAD) algorithm [5,6] is introduced as a 
numerically efficient scheme for statistical characterization of 
the field and power radiation patterns (RPs) of arbitrary shaped 
arrays. 

II. PROBLEM FORMULATION 

Consider an antenna array conformal to a surface 3S ∈R  
and comprising N radiating elements distributed over an 
arbitrary spatial lattice { } 1

N
n n

S
=
∈r  (see Fig. 1).  We assume 

that the inter-element coupling is negligible.  The array is 
circumscribed by a sphere of radius aR  centered at the array's 
center ar . 



 
Figure 1.  Example of a multilevel conformal array decomposition. 

The elements are excited by incident currents { }
1

n
Nj

n n
A e φ

=
.  

We assume that excitation amplitudes and phases are random 
variables, i.e., (1 )n n nA A Aδ= +  and n n nφ φ δφ= + , where nA  
and nφ  denote the mean values while nAδ  and nδφ  denote 
zero mean statistically independent random variables.  Here, 

nA  describes the amplitude taper, and the phase 

0̂ ( )n an kφ = − ⋅ −r r r  is designed to steer the main beam to the 
direction 0 0 0 0 0 0ˆ (sin cos ,sin sin ,cos )θ ϕ θ ϕ θ=r  defined by 
angles 0 0( , )θ ϕ  in the spherical coordinate system with the 
origin at the array center ar .   

The far field at an observation point ˆr=r r  can be 
expressed as 0 0ˆ ˆ ˆ( ) ( ) / 4jkr, , e rπ−≈E r r U r r , where we define 
the vector RP 
 ˆ[ ( - )+ ]

0
1

ˆ ˆ ˆ( ) ( )n a n

N
j k

n n
n

, A e φ⋅

=

= ∑ r r rU r r u r .  (1) 

Here, ˆ( )nu r  denotes the vector radiation pattern of the nth 
element produced by unit excitation current.  The elemental 
radiation patterns { } 1

ˆ( ) N
n n=

u r  can be found by computation or 
measurement.  For example, we have 

[ ] ˆ ( )ˆ ˆˆ( ) ( ) njk
n nj e dωμ ⋅ −= − − ⋅∫∫∫ 1 r r' ru r rr J r' r'  where ( )nJ r  

denotes a physical or equivalent electric current distribution 
on the nth element’s due to unit excitation, see [5].  It must be 
noted that in typical non-planar arrays comprising identical 
radiating elements, the elements have different orientations 
and, consequently, their radiation patterns ˆ( )nu r  are obtained 
by rotation of the elemental pattern with respect to the whole 
array.  Hence pattern multiplication by an array factor, 
commonly used for planar arrays, is no longer valid.  Instead, 
the field radiated by each element must be evaluated 

separately for the observation directions r̂  defined in the 
global coordinate system.  

For given beam steering and observation directions, RP 
0ˆ ˆ( ),U r r  behaves as a random variable due to the presence of 

amplitude and phase errors, nAδ  and nδφ .  The statistical 
characterization of the stochastic RP can be effected along two 
paths described below.  Though, the two approaches are 
markedly different, we will show that they can both greatly 
benefit from the use of the algorithm to be presented in the 
next section. 

First, straightforward Monte Carlo type simulations can be 
enacted by performing array RP calculations for multiple 
realizations of the random errors.  Towards evaluating the 
computational cost of this approach, we note that often the RP 
is of interest for all observation directions 
ˆ (sin cos ,sin sin ,cos )θ ϕ θ ϕ θ= ∈Ωr  and for all beam 

steering directions 0̂ 0∈Ωr .  Here, Ω  and 0Ω  denote the 
observation and steering direction domains of interest on the 
unit sphere.  Since, the RP is an essentially bandlimited 
function with respect to the observation and steering angles, it 
may be represented by a finite set of samples.  Angular 
bandlimitness entails that for given Ω and Ω0, the RP is 
calculated over grids of steering and observation directions 
with numbers of points proportional to 2( )akR , which (for 
"uniformly populated'' arrays) is proportional to N .  Thus, 
both Ω and Ω0 are sampled at ( )O N  angular directions.  The 
direct evaluation of 0ˆ ˆ( ),U r r  via (1) for all ˆ∈Ωr  and 0̂ 0∈Ωr  

requires ( )3O N  floating point operations.  For a large 
number of elements this computational cost becomes 
prohibitively high.  The situation is further exacerbated when, 
as stated above, the computations have to be repeated a large 
number of times, in order to obtain statistically reliable 
estimates of the RP parameters.  Towards reducing the 
computational burden of such approach, in the next section we 
present the multi-level array decomposition method that 
accelerates the RP calculation. 

As a computationally lighter alternative approach, we may 
attempt to evaluate the statistical parameters of the RP directly 
given the properties of the excitation errors.  Thus assuming 
for the phase error nδφ  Gaussian distributions with known 
standard deviation 

nφ
σ , we obtain the average RP 
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Note that the expectation of the random phase factor can be 
directly expressed as 

2 / 2( )n nj jE e e e ϕσφ φ −=  [7,8].  Comparing 
(2) to (1), we note that the two expressions have the same 
form except for replacing 

2 /2n
n nA A e φσ−→  and n nφ φ→ .  Thus, 

average radiation pattern in (2) can be evaluated using the 
proposed fast algorithm developed for (1).  When evaluating 
the effect of errors on the sidelobe levels, we are often 
interested in the average power pattern defined as 



*
0 0ˆ ˆ ˆ ˆ[ ( ) ( )]E , ,⋅U r r U r r .  Directly multiplying (1) by its 

conjugate, we obtain for the average power pattern 
 
 * * 2
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where, 2

Uσ  stands for the variance of the field RP that can be 
computed as 

2
2 2 2
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n

N

U A n n
n

e Aφσσ σ
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with 2
nAσ  denoting the variance of nAδ . 

The average power pattern computation via (3) calls for the 
evaluation of the average RP already defined in (2).  The 
additional computation of 2

Uσ  via (4) involves the elemental 
radiation patterns, which are slowly varying with respect to 
the beam steering and observation angles, since we assume 
that the radiating elements have dimensions comparable to the 
wavelength.  Thus, the evaluation of 2

Uσ  can be performed on 
a very coarse grid of observation directions and subsequently 
interpolated and added to the rapidly varying terms on a fine 
angular grid.  This makes the computational cost of obtaining 

2
Uσ  via (4) negligible in comparison with that of evaluating 

the vector field RP via (2).  The latter computation will be 
accelerated by the algorithm described below. 

III. MULTILEVEL ARRAY DECOMPOSITION ALGORITHM 
The bandlimitedness property of the RPs, discussed in the 

previous section is employed here to formulate an efficient 
algorithm based on a multilevel array decomposition (MAD).  
The MAD algorithm starts by constructing a multi-level 
hierarchy of sub-arrays via a recursive decomposition of each 
sub-array into M smaller sub-arrays, Fig. 1.  The smallest sub-
array (highest level) consists of a single element, whose RP is 
a-priori known or computed over a sparse grid of observation 
directions.  The lowest level sub-array is the entire array. Let 

{ }1, 2,G N= …  denote the set of the array element indexes, 

and ( )l
nG  be the set of indexes corresponding to the nth sub-

array at decomposition level l, where 0,1,l L= … , 
1, 2, ln M= … , lM  is the number of sub-arrays at level l 

( 0 1M =  at level 0, M at level 1, …) and L is the number of 
decomposition levels.  Furthermore, at a given level, each sub-
array ("parent") gives rise to M sub-arrays ("children") of a 
higher level, whose sets of indexes satisfy ( 1) ( )l l

m n nG G− = ∪  
where ( ) ( )lP n m= , i.e., the nth sub-array on level l is a child 
of the mth parent sub-array at level l-1.  Next, assuming that 
all sub-arrays at level l are similar in size, their corresponding 
circumscribing sphere radii are ( ) / 2/l l

aan
R R M=  

with (0) ( )

1
L

aa an
R N R R= = , where ( )L

an
R  is approximately the 

single element circumscribing sphere, see Fig. 1.  The nth sub-
array at level l is also characterized by a reference point ( )l

nr  

which is the center of its circumscribing sphere.  Next, the 
array RP of Eq. (1) is rearranged to be evaluated by a 
recursive application of  

 ( ) ( 1) ( ) ( 1)
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ˆ[ ( - )+ ]( -1) ( )
0 0

: ( )

ˆ ˆ ˆ ˆ( ) ( )
l l l l

n m n m

l

j kl l
m n

n P n m

, , e φ φ− −⋅ −

=

= ∑ r r rU r r U r r  (5) 

where ( ) njL
n n nA e δφ=U u , (0)

1U = U , and ( ) ( )
0̂ ( - )l l

n ankφ = − ⋅r r r .  
The calculation begins with elemental patterns 

( ) njL
n n nA e δφ=U u  at level l L=  and proceeds in the descending 

order , 1, ,1l L L= − …  until the whole pattern (0)
1U = U  is 

obtained.  Note that for the mean RP computation the starting 
point is 

2 / 2( ) nL
n n nA e φσ−=U u  while the remainder of the 

algorithm is unchanged. 
A numerically efficient evaluation of RPs using Eq. (5) is 
achieved by noting that the numbers of angular points for the 
calculation of the RP of a sub-array at level l are dictated by 
its electrical size ( )

n

l
akR .  Thus, the observation and steering 

grids of the lth level are sparser by a factor of M compared to 
those of level l-1.  An efficient transition from level l to level 
l-1, therefore, involves an interpolation and aggregation of 
contributions from sparser to denser angular grids.  For regular 
arrays, a convenient hierarchy is set with 4M = , i.e., the 
increase in the number of grid points between the levels is 
achieved by doubling the number of points along each of the 
angular dimensions, 0 0, , ,θ ϕ θ ϕ , by introducing a new 
direction between every two existing ones.  Finally, for the 
calculation of the computational complexity, we shall be 
interested in fast RP evaluation of U  over 1 4D≤ ≤  angular 
dimensions (out of the four angular coordinates).  Thus, 
calculating ( -1)l

mU  using Eq. (2) over the grid of level l-1 
requires the evaluation of lM  sub-array contributions given 
on the sparser lth grid.  The resulting asymptotic complexity 
estimates for evaluating Eq. (2) for large array sizes are 
presented in Table I.   

TABLE I.  COMPUTATIONAL COMPLEXITY FOR VARIOUS PROBLEM 
DIMENSIONALITIES 

 

 

 

 

 

 

The reduced complexity of the multilevel domain 
decomposition approach [5] and, in particular, the MAD 
algorithm [6] have been verified by extensive numerical 
studies.  An example of array conformal to a conical surface 
will be presented in the following section. 
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IV. NUMERICAL EXAMPLE 
As an example, we consider an array conformal to a conical 

surface, as shown in Fig. 2, based on the case study presented 
in [9], with array parameters in Tables I and II of this 
reference.  The cone half angle is / 6β π= .  The full array is 
composed of 256 linear arrays, aligned along the cone 
generatrix, equally spaced as a function of the azimuth angle 
ϕ  varying from 0 to 2π .  The number of elements on each of 
these linear arrays is 32. For a given beam position, 44 vertical 
linear arrays are active out of 256, and only active elements are 
shown in Fig. 2.  The inter-element distance in "vertical" linear 
arrays is 0.72λ , and the inter-element arc length along 
horizontal ring arrays ranges from 0.51λ  to 0.78λ , from the 
shortest ring array to the longest one.  

The radiating elements are half wavelength dipoles with 
their axis along the generatrix of the cone.  The cone is 
supposed to be perfectly reflecting, and the dipoles are placed 

/ 4λ  above the cone surface.  In the following, we use the 
closed form expression of ideal half wavelength dipole pattern 
in front of a plane reflector for the fields radiated by individual 
elements, neglecting coupling effects. 

The radius of the smallest sphere circumscribing the active 
array is 19.35λ .  With a number of decomposition levels 

4L =  in the multilevel algorithm, the radius of the smallest 
sphere circumscribing the smallest subdomains is 0.68λ .  The 
patterns of these subdomains are computed for 16( ) 24( )θ ϕ×  
directions.  After successive interpolations and aggregations, 
we obtain the radiated patterns for 256( ) 384( )θ ϕ×  directions.   

The 3D patterns presented in Figs. 3 and 4 are obtained 
with the symmetrically tapered excitation amplitudes given in 
[9, Table II], and with excitation phase designed to steer the 
main beam to the direction normal to the cone surface at the 
center of the array.  Figs. 3a and 4a present (on a dB scale) co-
polarized and cross-polarized patterns, respectively, for the 
array with perfect excitation coefficients.  Corresponding 
patterns obtained by Monte Carlo simulations of arrays with 
random excitation coefficients are shown in Figs. 3b and 4b.  
We assume that the amplitude and phase variances for all of 
the excitation coefficients are the same, namely, 

2 2, 0.01, 0.01
n nAn φσ σ∀ = = .  In this case, the power radiation 

patterns have been averaged for 100 realizations of the random 
variables.  By comparing the resulting patterns of the perfect 
array to those of the array with perturbed excitation 
coefficients, one can observe a significant increase in the 
sidelobe levels.  On the other hand, as expected, the main lobe 
is hardly affected by the excitation errors. 

 

 

 

Figure 2.  Example of an array conformal to a conical surface. 

 
(a) 

 
(b) 

Figure 3.  Co-polarized radiation patterns of conical array (a) with perfect 
excitation and (b) with excitation errors. 



 
(a) 

 
(b) 

Figure 4.  Cross-polarized radiation patterns of conical array (a) with perfect 
excitation and (b) with excitation errors.  

V. CONCLUSION 
The statistical characterization of the radiation patterns of 

beam steering conformal antenna arrays using the multilevel 
array decomposition (MAD) approach has been proposed.  The 
numerical efficacy of the MAD algorithm facilitates brute-
force Monte Carlo type simulations or evaluation of statistical 
properties of RP based on those of the excitation coefficients.  
This algorithm is based on a multilevel hierarchical 
decomposition of the array into smaller sub-arrays.  At the 
finest level of decomposition, the radiation patterns of single 
element arrays are computed over a sparse grid of directions.  
The algorithm comprises interpolations and aggregations of 
sub-array RP contributions that are repeated until obtaining the 
radiation pattern of the whole array.  This algorithm attains a 
computational complexity which is substantially lower than 
that of the traditional direct computation. 
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