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Abstract— This paper examines a short-time estimation problem
of an origin-destination (OD) matrix, where each element is a volume
of vehicle flow between one of the OD pair of zones of a signalised
junction. The estimation is based on the use of traffic measurements
provided by video sensors and on the knowledge of the traffic lights.
This data is subject to redundancy, imprecision and uncertainty. The
main purpose of this paper is to obtain the best estimates of the OD
matrix by modelling the data imperfection, using a two-step method.
First, relationships between the observed data are built in real-time
using High-Level Petri Nets. Due to the imperfection of data the
system obtained is underdetermined and inconsistent. Second, the
fuzzy sets theory is used to model this imperfection and to overcome
the inconsistency of the system.

Keywords— Fuzzy least squares, Fuzzy linear programming,
Fuzzy modelling, Origin-destination matrix

1 Introduction

Knowledge about origins and destinations (OD) of vehicles in
a road network is important in most transport systems. In the
case of a junction, its mathematical representation is OD ma-
trix B, each element bij of which is a proportion of the flow
of vehicles that come from entrance (origin) i and go to exit
(destination) j. Such a proportion is called the OD flow rate.
Since the OD matrix changes in time following the changes in
traffic demand, the estimation period of the OD matrix has
to be as short as possible. In particular, the period should
be equal to a traffic light cycle (duration of green-amber-red
sequence) when we deal with a signalised junction. At IN-
RETS/GRETIA we use such a short-time estimation of the
OD matrix as part of a diagnostic system for signalised junc-
tions [1]. This system compares the impacts of different traf-
fic control strategies expressed in terms of CO2 and pollutant
emissions.

The OD matrix is generally deduced from vehicle counts
made on each entrance and each exit of the junction during
a given time interval. These counts are usually provided by
magnetic loops embedded in the road surfaces and sensitive to
metallic masses. The estimation can be obtained from a con-
servation law of vehicles which is a set of relationships be-
tween exit and entrance flow counts. In general, when loops
are installed on every entrance and exit of the junction, the es-
timation problem is underdetermined. Thus a solution is not

unique and additional information such as a prior OD matrix
is used to choose the OD matrix which corresponds best to
the actual matrix. Some of the existing methods are based on
the information minimisation principle [2], on maximisation
of likelihood [3] or on Bayesian inference [4]. Other meth-
ods propose a recursive estimation of the OD matrix [5, 6].
Furthermore, the estimation problem can be represented as a
constraint optimisation problem [7, 8]. Methods which use
traffic lights are described in [9, 10].

This paper considers the problem of reconstituting the ori-
gins and destinations of vehicle flows crossing a signalised
junction, at each traffic light cycle. OD flow volumes are
estimated using traffic lights and traffic measurements from
video cameras installed at the junction. These measurements,
provided every second, are the vehicle counts made on each
entrance and exit of the junction and the number of vehicles
stopped at each inner section of the junction. The data is sub-
ject to redundancy, uncertainty and inaccuracy. Such an im-
perfection is linked to the reliability of video sensors, mea-
surement conditions, traffic characteristics and drivers’ be-
haviour.

In order to take into account all available information it is
necessary to consider the nature and possible interdependence
of the data. None of the cited methods takes into account the
lake of imprecision of vehicle counts, the possible physical
complexity of the junction and the traffic lights at the same
time. Moreover they cannot be applied to the problem because
the period of estimation is quite short.

The main purpose of this paper is to obtain the best esti-
mates of the OD matrix by modelling the data imperfection,
using a two-stage method. First, a conservation law of vehi-
cles, which is represented by an inconsistent and underdeter-
mined system of equations, is built by High-Level Petri Nets
at each traffic light cycle. Second, the fuzzy sets theory is used
to overcome the inconsistency of the system and to model the
data imperfection. Three different approaches have been anal-
ysed to solve this system of equations: ordinary least squares,
fuzzy least squares and fuzzy linear programming. A numer-
ical study of the proposed methods has been done using the
data collected in a real experimental junction fitted out with
video cameras and a traffic light controller.

The rest of the paper is organised as follows. Section 2
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presents the problem and describes the real data. Sections
3 and 4 introduce the fundamental principles of High-Level
Petri Nets and show how they are applied to model the OD
flows through the experimental site. Section 5 proposes three
methods for OD matrix estimation and the paper concludes by
proposing further lines of research.

2 The problem
The experimental site is an isolated signalised junction of
two double-lane roads situated in the south suburb of Paris
(Fig. 1). The main road B-D which connects the suburbs
to Paris has a high traffic volume, whereas the road A-C
has lower traffic volume. Traffic lights control four incom-
ing links and four inner zones. Note that right-turning ve-
hicles use special lanes and are not taken into account in
this study. Only eight OD flows are statistically significant:
AC, AD, BD, BB, CB, DB, DC, DD.

Eight video cameras are installed at the junction in order to
capture all the entrance and exit links and the inner zones. The
location, height and angle of each camera depend on the ge-
ometry of the junction and are chosen to favour the measure-
ment of space traffic parameters such as queue length on in-
coming links. The camera views are analysed in real time us-
ing image processing techniques developed at INRETS [11].
They provide several measurements every second:

• Xi(τ) vehicle counts measured at the end of an entrance
i at second τ (i = 1, . . . , n),

• Yj(τ) number of vehicles that have passed through the
beginning of the exit j at second τ (j = 1, . . . , m),

• Zk(τ) number of stopped vehicles at inner zone k at sec-
ond τ (k = 1, . . . , p),

where n, m and p are the numbers of entrances, exits and inner
zones respectively. Here, a traffic light cycle is a period of time
between two sequential onsets of the red light on the main road
B-D .

Many phenomena influence the quality measurement of
traffic parameters. Traffic conditions (peak or off-peak peri-
ods) are the reason for many traffic count errors. If the traffic
flow is heavy, the gaps between vehicles are small and it is dif-
ficult to distinguish these gaps on the video images. Thus the
number of vehicles measured is lower than the actual number.

The characteristics of vehicles are also a source of mea-
surement errors. High vehicles passing in front of camera will
hide the smaller vehicles or the whole camera field, i.e. they
will produce a masking effect. Two-wheeled vehicles are only
seldom counted because they are small. The heterogeneous
colours of vehicle roofs also add to the problem of detection.

Meteorological conditions inevitably have an influence on
all types of traffic measurements and the video are blurred:
the wind shakes the posts the cameras are fixed to, the sun’s
rays cause the reflections on the vehicle surfaces and camera
lenses, rain, snow and fog obscure a camera field. Changes
in brightness caused by the position of the sun, clouds and
headlights at night also determine the reliability of the mea-
surements.

Let xi(c) be the flow volume at entrance i during a traffic
light cycle c and yj(c) be the flow volume which entered the
junction during cycle c and leaves it by exit j. OD flow rate

B

C

D

A

Stop signal line

Flow direction
Conventional line
of vehicle counting

Inner zone

Figure 1: The experimental junction

bij is the proportion of the flow of vehicles that come from
entrance i and go to exit j. The problem is to estimate OD
flow rates bij (∀i ∈ [[1, n]], ∀j ∈ [[1, m]]) at the end of each
traffic light cycle c, such that

yj(c) =
n∑

i=1

bij(c)xi(c), (1a)

xi(c)bij(c) ≥ zkij(c) ∀k s.t. δkij = 1, (1b)
m∑

j=1

bij(c) = 1, (1c)

bij(c) ≥ 0, (1d)

where zkij(c) is the number of vehicles which cross the junc-
tion from i to j and stop at inner zone k during cycle c,
δkij = 1 if OD flow from i to j can pass through inner zone
k and is 0 otherwise. For a given cycle c the value of variable
xi(c) can be obtained from instantaneous vehicle counts

xi(c) =
Gi(c)∑
τ=1

Xi(τ),

where Gi(c) is a duration of the green light of cycle c in en-
trance i. The values of yj(c) and zkij(c) cannot be obtained
directly from traffic measurements, because it is impossible to
know the period of time when the vehicle flow x i(c) leaves
the junction or stops at inner zones.

This paper proposes a method to obtain the values of y j(c)
and zkij(c) from Yj(τ) and Zk(τ) respectively and then to es-
timate the OD flow rates. First, a tool for vehicle flow segmen-
tation is built via two High-Level Petri Nets (HLPN). The first
net indicates the set of vehicle flows which may be present in
each zone at any given second. It makes possible to associate
these flows to the measurements taken in the corresponding
zones and provides the beginnings of the flows. The second
net provides the ends of the flows. For a given cycle we thus
know the duration of the presence of the flows in each zone
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Figure 2: High Level Petri Net 1

and can collect the corresponding measurements. A consistent
underdetermined system of equations, whose unknowns are
the OD flow rates, can thus be built dynamically and solved at
each traffic light cycle.

3 Fundamentals of High-Level Petri Nets
A High-Level Petri Net (HLPN) is a graphical and mathemat-
ical tool used to model discrete-event systems [12, 13]. In this
paper, the HLPN is a classical Petri Net [14] complemented
by the notions of time and colour. In graphic representation,
an HLPN is a directed graph composed of two kinds of nodes:
places, drawn by circles, and transitions represented as bars.
The arcs connect either a place to a transition or, inversely, a
transition to a place. A place may be marked by coloured to-
kens endowed with timestamps and characterises the system
state. A transition represent an event that can change the state
of the system modelled. The set of input and output places
of a transition is also interpreted as a set of pre- and post-
conditions of an event. When the event occurs the transition is
enabled and the marking of input and output places changes.
Thereby, the dynamic behaviour of the system is expressed by
means of time-varying marking.

A 7-tuple N = (Σ,P , T ,A, C,W ,F) is a formal represen-
tation of HLPN, where:

• Σ is a finite non-empty colour set,

• P and T are the finite sets of places and transitions re-
spectively, such that P ∩ T = ∅ and P ∪ T 	= ∅,

• A ⊂ (P × T ) ∪ (T × P) is the finite set of arcs,

• C : P → 2Σ is a colour function which associates a set
of colours to a place,

• W : A → 2Σ is an arc function.

• F is a delay associated to an arc.

A token is represented by a triple (p, s, θ), where p ∈ P
is the place marked by the token, s ⊆ C(p) is a colour set
which describes the system state in p, called colour, and θ is
the time at which the token becomes available and the system

state changes, called timestamp. Marking M(p, τ) of place
p ∈ P at time τ is a multiset represented by the pair (S,n)
where S is the set of colours of tokens arrived in p at τ = θ
and n is the vector every element of which is the number of
occurrences of the token’s colour s in set S.

Function W(p, t), corresponding to the arc from output
place p to t, is a multiset of colours that are elements of the set
C(p). The function W(t, p) is defined similarly.

Transition t ∈ T is enabled if M(p, τ) ⊇ W(p, t). It re-
moves W(p, t) tokens from each of its input places p of t and
adds W(t, p) tokens to its output places p with delay F(t, p)
associated to an arc from t to p.

4 Modelling the traffic flows crossing a
signalised junction

In this paper two HLPNs are used to model and segment the
OD flows of vehicles crossing the junction in order to built
the vehicle conservation law in a dynamic way. In the first
net, a place stands for a zone of the experimental junction
(Fig. 2). A token in a place is represented by a colour set
s = (s1, s2, s3), where s1 ∈ {A, B, C, D} is the name of
flow origin, s2 ∈ � is a cycle number and s3 is a set of stop
zones. In addition, it has a timestamp θ. A token in place p
means the possible presence of a flow of origin s1 in the zone
corresponding to p. Some transitions are related to the change
of traffic lights in entrances and inner zones, other transitions
represent the flow departures. An arc function W(t, p) is de-
fined over a set of colours s1 representing the origins of the
flows that pass through this arc. Delay F(t, p) is an average
vehicle travel time between two successive zones of the junc-
tion corresponding to the input and output places of transition
t.

The rules for changing colours of tokens, enabling transi-
tions and marking places are defined as follows. During the
green light at entrance i of the junction, the corresponding
place is marked by one token with colour s = (s1, s2, s3),
s3 = ∅, every second. Transition t associated to entrance i
becomes enabled and the token is transmitted to output places
of t. The transition associated with an inner traffic light is en-
abled if its input place contains at least one token and the cor-
responding traffic light is green. The enabled transition trans-
mits the token downstream according to W(t, p) and F(t, p).
If the light in inner zone k is red, tokens are stacked in the
corresponding place. Their colours are changed by adding the
name of inner zone k to the colour set s3. At the beginning of
the green light these tokens are shifted to the exit place p with
predefined delay F(t, p). The transition related to the exit of
junction is enabled when each of its input places contains at
least one token.

Marking M(p, τ) of place p characterizes a set of entrance
flows that can be present at time τ in a junction zone corre-
sponding to p. When the marking of p does not change during
certain period of time ∆τ , all measurements taken at the cor-
responding zone during ∆τ are associated to the set of flows.
Thus, for a given cycle c, each exit flow yj(c) can be seg-
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mented into Lj vehicle platoons, such that

yl
j(c) =

∑
τ∈∆τl(c)

Yj(τ) ∀l ∈ [[1, Lj(c)]],

zl
kij(c) = max

τ∈Rk(c)
Zk(τ)δkij

∀l ∈ [[1, Lj(c)]],
∀i ∈ M(p, ∆τl),
∀k s.t. δkij = 1,

where ∆τl(c) is a period of time during which platoon l has
left the junction, z l

kij(c) is a maximum number of vehicles that
belong to platoon l and have stopped at inner zone k, R k(c)
is a duration of red light in inner zone k, δkij indicates if zone
k is situated between OD pair of zones (i, j), M(p, ∆τl) is a
marking of place p ∈ P corresponding to exit j. The number
of platoons Lj(c) depends on the number of entrances of the
junction, and on traffic volume and traffic light command.

Note that the first occurrence of token (p, {s1, s2, s3}, θ)
denotes that the beginning of the flow with origin s1 crosses
the zone corresponding to place p. The ends of the flows are
provided by the second HLPN, which has the identical topol-
ogy and the same representation of places and transitions as
the first HLPN. However, the meaning of the tokens is differ-
ent. A token stands for the end of a flow and is represented
by a set of two colours without a timestamp: the name of flow
origin s1 ∈ {A, B, C, D} and a cycle number s2 ∈ �.

The onsets of the beginning and the end of a flow in place p
allow us to determine the duration of the flow presence in zone
related to p. Thus we can collect the measurements made in
this zone and, at each cycle c, can built the following set of
equations

yl
j =

∑
i∈M(pj ,∆τl)

bl
ijxi ∀j ∈ [[1, m]], ∀l ∈ [[1, Lj]], (2a)

xib
l
ij ≥ zl

kij

∀j ∈ [[1, m]], ∀l ∈ [[1, Lj]],
∀i ∈ M(pj , ∆τl),
∀k s.t. δkij = 1,

, (2b)

∑
j,l

bl
ij = 1 ∀i ∈ [[1, n]], (2c)

bl
ij ≥ 0

∀j ∈ [[1, m]], ∀l ∈ [[1, Lj]],
i ∈ M(pj, ∆τl),

(2d)

where the cycle c has been omitted to simplify the notations.
Let J and K be the numbers of constraints (2a) and (2b)

respectively, and I be the number of unknowns b l
ij , such that

J =
m∑

j=1

jLj ,

K =
m∑

j=1

Lj∑
l=1

∑
i∈M(pj ,τl)

p∑
k=1

δkij ,

I =
m∑

j=1

Lj∑
l=1

∑
i∈M(pj ,τl)

i.

Since in general I ≥ J (in this paper I ≈ 10), the obtained
system of equations (2a) is underdetermined.

5 OD matrix estimation
The estimation problem of OD flow rates bl

ij from the rela-
tionship (2a) can be viewed as an estimation of coefficients of

the regression model

y = X1b, (3)

where y is a vector composed of J output variables y l
j , b is a

vector containing the I unknowns b l
ij , X1 is an J × I matrix

rearranged in such a way that (2a) corresponds to (3).
The elements of model (3) must satisfy the constraints:

X2b ≥ z, (4a)
Ib = �, (4b)
b ≥ 0, (4c)

where z is a vector composed of K variables z l
ijk , X2 is an

K×I matrix built so that (2b) is equal to (4a), I is an indicator
n×I matrix organised in such a manner that (4b) is equivalent
to (2c) and � is an identity n-vector.

Considering b to be an m-vector of crisp elements, three
situations are studied in this section of the paper:

A) values of X1, X2, y and z are crisp

B) values of X1, X2, y and z are fuzzy

C) values of X1, X2, y and z are crisp, relationships (3) and
(4a) are fuzzy, where the strict mathematical relations
are replaced by fuzzy equivalents ≤∼ and ≥∼ that are read
“essentially smaller or equal to” and “essentially greater
than or equal to”.

In the first case, we use the least squares method to es-
timate the crisp regression coefficients b. The fuzzy least
squares (FLS) model based on commonly used Diamond ρ 2-
metric [15] has been applied to the second situation. For the
last case, we formulate a fuzzy linear programming problem
(FLP) following the approach proposed by Zimmernann [16].
We present in the sequel the three methods and their results on
our application.

5.1 Least squares method
Let the input and output variables X1 and y of the regression
model (3) be non-negative crisp numbers. The unknown coef-
ficients b of the model and the elements of X2 and z are also
considered to be crisp. A first approach to estimate b is to use
a least squares method. To insure the existence of feasible so-
lutions, we introduce slack variables, ei (∀i = 1, . . . , K), and
we propose to solve the following problem:

min
b,e

‖ y − X1b ‖2 +
K∑

i=1

ei (5)

subject to 
X2b + e ≥ z,
Ib = �,
b ≥ 0,
e ≥ 0.

(6)

5.2 Fuzzy least squares method
To take into account model errors and the inherent impreci-
sion of data measurements, we choose to represent the input
and output variables of the regression model (3) by triangu-
lar fuzzy numbers X̃1 = (X1,X

m
1 ,X1), ỹ = (y,ym,y) and
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Figure 3: Empirical distributions of error counts for the en-
trances of the junction

z̃ = (z, zm, z), where [a, a] is the support and am is the mode
of fuzzy number ã. The form of fuzzy numbers X̃1 was de-
rived from empirical distributions of the error counts as shown
in Fig. 3. In most cases, counts of vehicles at the entrances are
smaller than the true value of X1. The fuzzy number X̃2 is
determined similarly to X̃1. Since there is no available his-
tograms of error counts for y and z, the fuzzy numbers ỹ and
z̃ are supposed to be symmetrical with the spreads chosen ex-
perimentally. Note that X1 ,X2,y, z ∈ �

+ because of the
nature of the data.

According to the fuzzy least squares (FLS) method pro-
posed by Diamond [15, 17] and supposing the unknown co-
efficients b to be crisp, the following minimisation problem is
written:

min
b

(
‖ y − X1b ‖2 + ‖ ym − Xm

1 b ‖2 +

+ ‖ y − X1b ‖2
)

(7)

subject to  X2b ≥ z,
Ib = �,
b ≥ 0.

(8)

Note that the first constraint in (8) is the least conservative
translation of the strong relation (4a).

5.3 Fuzzy linear programming approach
Another approach to estimate the OD flow rates is to model
the constraints (3) and (4a) by fuzzy sets. Assuming that the
values of X1, X2, y and z are strict numbers, we consider the
estimation problem of b that satisfies:

X1b ≥∼ y − X1b ≥∼ −y, (9a)
X2b ≥∼ z, (9b)
Ib = �, (9c)
b ≥ 0, (9d)

where the sign ≥∼ means that we accept a small violation of the
strict relation ≥ in a sense that is described below..

Denoting
H = (−X1,X1,−X2)	,

h = (−y,y,−z)	,

we write (9a)-(9b) as
Hb ≤∼ h (10)

Each row i of (10) is assumed to be a fuzzy set with a mem-
bership function µi(b):

µi(b) =


1 Hib ≤ hi

1 − Hib−hi

ξi
hi < Hib ≤ hi + ξi

0 Hib > hi + ξi

(11)

where each ξi > 0 is a given constant reflecting an acceptable
degree of constraint violation, i = 1, . . . , 2J +K . Here µ i(b)
is defined as the degree to which b satisfies the relationship i.

With respect to Bellman-Zadeh decision-making rule for
fuzzy sets [18], the membership function of the fuzzy deci-
sion set B̃ is defined as follows

µB̃(b) = min
i

(µi(b)) = min
i

(
1 − Hib− hi

ξi

)
,

∀i = 1, . . . , 2J + K. (12)

According to the symmetric FLP method proposed by Zim-
mermann [16, 19], the crisp optimal solution can be given by

max
b≥0,Ib=�

µB̃(b) (13)

which can be obtained by solving the following problem of
linear programming:

max
λ,b

λ (14)

subject to
λ < 1 − Hib−hi

ξi
∀i = 1, . . . , 2J + K,

Ib = �,
b ≥ 0.

(15)

5.4 Results
These methods have been tested using the raw data collected
at the experimental junction. The estimation is made on 25
consecutive traffic light cycles, equivalent to 30 minutes. In
addition, the actual values of OD flow rates b∗i (∀i = 1, . . . , 8),
derived manually from video images, are available for all cy-
cles.

Since the measure of the number of stopped vehicles is
more accurate than the measure of exit flow volume, the fol-
lowing parameters of the FLS method where chosen: ym −
y = y − ym = 3, zm − z = z − zm = 2. The acceptable
degree of constraint violation ξi (∀i = 1, . . . , 2J +K) in FLP
method has been fixed to 5 for constraints (9a) and to 3 for
constraints (9b).

The estimation error has been calculated for the OD flow
rates (Fig. 4): E = bX∗ −b∗X∗, where X∗ is a vector of ac-
tual vehicle counts at the entrances of the experimental junc-
tion. The best results are obtained with the FLS method for
which the median error is almost zero for all OD flows. The
results of the least squares method are less accurate than those
of the FLS method. Surprisingly, the FLP method, although it
seems to be a more natural fuzzy translation of the crisp ini-
tial problem, does not provide very good results. Note that the
estimation error E of all methods is higher, if the flow volume
is lower, like for the OD flows “AD” and “BB”.
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Figure 4: Estimation errors for 8 OD flow rates

6 Conclusion and future lines of research
In this paper we have proposed a new short-time estimation
method of the OD matrix for a signalised junction. We have
built a model of the segmentation of traffic flows crossing the
junction in order to draw up a vehicle conservation law, rep-
resented by a underdetermined system of equations, for each
traffic light cycle. The model, made using High-Level Petri
Nets, is based on the use of traffic lights.

Real traffic measurements collected at the real experimental
junction are used to estimate the OD flow rates. The experi-
mental comparison shows that a small gain is obtained when
the data imprecision and uncertainty is taken into account us-
ing a fuzzy modelling. Among the two proposed fuzzy ap-
proaches, the fuzzy least squares yields the most accurate re-
sults. In spite of the important imprecision of the real data, the
first results are very encouraging to continue the research on
improvement of the estimation accuracy.

The main future line of research is to fuzzify the token
timestamps of the first HLPN in order to model the tempo-
ral imprecision of data measurements. The application of our
method should be also extended to a sequence of junctions.
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