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Abstract—The OD matrix at a signalised junction estimated  period of the OD matrix has to be as short as possible. In
for traffic light cycle represents a crucial information for trans- particular, the period should be equal to a traffic light eycl
portation systems. A new dynamic two-steps method is propesl (4, ration of green-amber-red sequence) when we deal with a

to estimate such an OD matrix. First, a vehicle conservatiomaw is ) . . .
build in a dynamical way for each traffic light cycle using Fuzzy- signalised junction. At INRETS/GRETIA we use such a short-

Timed High-Level Petri Nets (FTHN). It is represented by an  time estimation of the OD matrix as part of a diagnostic syste
under-determinate system of equations whose unknowns ardi¢  for signalised junctions [8]. This system compares the icippa
elements of the OD matrix. Second, a fuzzy linear programmig  of different traffic control strategies expressed in terf€0,

approach is used to solve this system. Since the data used t0 5nq ho||ytant emissions. One of the estimation methodstwhic
estimate the matrix are imprecise, they are represented asugzy . . . .
use traffic lights is described in [9], [10].

numbers. Experimental tests made with real data provided by _ ) o
video cameras installed on a junction show the benefits of usj This paper considers the problem of reconstituting the

an FTHN tool for this problem. _ origins and destinations of vehicle flows crossing a sigedli
_Index Terms—Fuzzy-Timed High-Level Petri Nets, fuzzy sets, jynction, at each traffic light cycle. OD flow volumes are
origin-destination matrix estimation, signalised junction. estimated using traffic lights and traffic measurements from
video cameras installed at the junction. These measursment
. INTRODUCTION provided every second, are the vehicle counts made on each

The origin-destination (OD) matrix, that describes traffic€ntrance and exit of the junction and the number of vehi-
demand at a junction, is a key element of most transporf'es st.opped at each inner section of the junction. The data
systems. Each elemehy; of OD matrix B is a proportion of 1S subjecF to redun.dancy, imprecision gnd unpertalnty.hSuc
the flow of vehicles that come from entrance (origirgnd go ~ Imperfections are linked to the reliability of video sersor
to exit (destination)j. Such a proportion is called tH@D flow ~ Measurement cond|t|0ns,_ traffic charactenstl_cs and dyive
rate. An OD matrix is generally deduced from vehicle countsPehaviour. None of the cited methods takes into account the
made on each entrance and each exit of the junction durin§ck Of precision of vehicle counts, the possible physical
a given time interval. These counts are usually provided byOmPplexity of the junction and the traffic lights at the same
magnetic loops embedded in the road surfaces and sensitii§1e. Moreover they cannot be applied to the problem because
to metallic masses. The estimation can be obtained from Hi€ period of estimation is quite short.
conservation law of vehicles which is a set of relationships The aim of this paper is to obtain the best estimates of
between exit and entrance flow counts. In general, when loop§e OD matrix by modelling the data imperfection, using
are installed on every entrance and exit of the junction, th& two-stage method. First, a conservation law of vehicles,
estimation problem is under-determined. Thus a solutisrots ~ Which is represented by an inconsistent and under-determin
unique and additional information such apror OD matrix ~ System of equations, is built by Fuzzy-Timed High-LevelrPet
is used to choose the OD matrix which corresponds best tblets (FTHN) at each traffic light cycle. Second, the fuzzy
the actual matrix. Some of the existing methods are based difiear programming approach is proposed to overcome the
the information minimisation principle [1], on maximisati ~ inconsistency of the system and to model the data impeofecti
of likelihood [2] or on Bayesian inference [3]. Other metkod In [11] we proposed a similar two-stage method that solves
propose a recursive estimation of the OD matrix [4], [5].the given problem by taking into account the inherent data
Furthermore, the estimation problem can be represented asiraprecision. However, this method, based on the use of High-
constraint optimisation problem [6], [7]. Level Petri Nets (HLPN), does not consider the temporal

The cited methods are well suited for the OD matrix esti-imprecision related to the modelling of OD flows crossing the
mation per quite large period of time=(5 minutes). Since the junction.
changes in traffic demand can be more frequent, the estimatio Numerical tests of two methods has been done using the



data collected in a real experimental signalised junctitiadi

out with video cameras.
The rest of this paper is organised as follows. Section Il i?

describes the experimental site and traffic data collecteit, 0

and states the problem. Section IlI introduces the model of &~ :

segmentation of traffic flows crossing the signalised jumcti :

Estimation method and experimental results are presented i

Section IV. The last section concludes the paper.

[I. PROBLEM STATEMENT Fig. 2. Camera views

In this paper we address the problem of OD matrix es- )
timation for a signalised junction with a complex structure wheren, m and p are the numbers of entrances, exits and

The experimental site, used for this purpose, is an isolateffiner zones respectively. Here(raffic light cycleis a period

signalised junction of two double-lane roads situated i th of time between two sequential occurrences of the red light

south suburb of Paris (cf Fig. 1). Rodd — D, connecting ©nSet at one of the entries of rodtl— D.
Paris to its south suburb, carries a high traffic volume, vhil !t is worth noting that, generally, the measurements of
road A — C' has a low traffic volume. Four incoming links and [raffic parameters are imprecise and erroneous. In paaticul

four inner zones at the centre of the junction are contrdied e vehicles counts are more imprecise than the measure of
traffic lights. Special links are reserved for the rightring occupation rates of inner zones by stopped vehicles. Such a
vehicles. data imperfectness can be explained by different influgncin

The junction is fitted out with eight video cameras thatfactors. Thus, traffic count errors depend on traffic condsi

capture four incoming and three outcoming links and fourCounterrors are greater during the peak periods when the gap

inner zones (cf Fig. 2). The location, height and angle 01between vehicles are so small that it is difficult to distiisgu
each camera depend on the geometry of the surveyed ZOH%ese gaps on th_e yldeo Images.

and are chosen to favour the measurement of space traffic The characteristics of vehicles are also a source of mea-
parameters, for example, a queue length on incoming linksSurement errors. High vehicles passing in front of cameta wi
The camera views are analysed in real time, using imaggide the smaller vehicles or the whole camera field, i.e. they

processing techniques developed at INRETS [12], in ordeill produce amasking effectTwo-wheeled vehicles are only
to provide several measurements every second. The fol@pwinseldom counte_zd becau_s_e they are sma_ll.
traffic data are used for the OD matrix estimation: Meteorolog|cal condl_t|0ns_|neV|tany influence all typefs 0
. traffic measurements. Video images are blurred when the wind
¢ ,Xi(T) vehicle gounts measured at the end of an entrancghakes the posts the cameras are fixed to, the sun’s rays cause
i atsecondr (i =1,...,n), the reflections on the vehicle surfaces and camera lenses, an
¢ yj(T.) '_‘“mber of ve_hlcles that haye passed through th?/vhen rain, snow and fog obscure a camera field. Changes
beginning of the exiy at second_r U= 1’_' -5, in brightness caused by the position of the sun, clouds and
« Zi(r) number of stopped vehicles at inner zoheat headlights at night also impact the quality of the measurgsme
secondr (k=1,....q), Let z;(c) be the flow volume at entrandeduring a traffic
light cycle ¢ andy;(c) be the flow volume which entered the

Stop signal line junction during cyclec and leaves it by exij. OD flow rate

A ——> Flow direction b;;(c) is the proportion of the flow of vehicles that come from
Conventional line entrancei and go to exitj. The problem is to estimate OD
of vehicle counting flow ratesb;;(c) (Vi € [1,n],Vj € [1,m]) at the end of each
Inner zone traffic light cyclec, such that

yi(e) =Y bi(e)zi(o), (1a)
=1
LL‘l(C)bU (C) > Zkij (C) VEk s.t. 61ﬂ'j = 1, (1b)
> bijle) =1, (1c)
j=1
bij(c) = 0, (1d)
where zy;;(c) is the number of vehicles which cross the

junction fromi to j and stop at inner zong during cycle
¢, 0ri; = 1 if OD flow from 4 to j can pass through inner
Fig. 1. The experimental junction zonek and isO otherwise.

C



For a given cyclec the value of variabler;(c) can be me e Traffic light signal

obtained from instantaneous vehicle counts  Transition MR
Gi(c) T Are (Origin name,
cycle number,
'ri (C) = Z XZ (T)7 (2) stop zones, _
=1 U‘—O 5 fuzzy timestamp)
where G;(c) is a duration of the green light of cycle g
in entrancei. However, a considerable number of vehicles, "
approaching to the junction with a high speed, enter the
junction during some short periodR; at the beginning of
the red light. Thus, to calculate a correct value of entrance C Q C |
flow volume z;(c), it is necessary to specify the duration of 0
ARZ' (VZ = [[1, n]])
The values ofy;(c) andz;;(c) cannot be obtained directly

from traffic measurements, because it is impossible to know

exactly the period of time during which the vehicle flow Fig. 3. The Fuzzy-Timed High-Level Petri Net for traffic flowsossing the
z;(c) leaves the junction or stops at inner zones. Moreovesignalised junction

depending on the traffic control strategy and the flow volume,

an OD flow may be divided on several platoons that don'tchange of this state, as well as a place marking change, can be
leave the junction at the same period of time. For example, gvolved when one or more events, represented by transition

flow coming from entranc€’ to the exitB is often separated occur. Thereby, a dynamic behaviour of system is expressed
in two platoons: the first one crosses the junction and dbesnpy means of time-varying marking.

stop at inner zones, whereas the second one has to stop at 4-than 8-tuple N = (X, P, 7, A,C,W, F,1I) is considered in
inner zone when its traffic |Ight switches to red and will exit this paper as a formal representation of FTHN, where:

the junction later. « X is a finite non-empty colour set,

In order to obtain the values gf(c) andzyi;(c) fromY;(r) | p and T are the finite sets of places and transitions
and Z;(7) respectively, we propose to model a segmentation respectively, such tha® N7 = ¢ andP U 7T # 0
of OD flows on platoons via two Fuzzy-Timed High-Level | 4 ~ (P x 7—’) U (T x P) is the finite set of arcs:

Petri Nets. The first net provides the beginning and the end of | . p _, 95 is a colour functionwhich associates a set
each platoon composing an OD flow, whereas the second net ¢ ~olours to a place,

gives the end of this OD flow. For a given cycle we thus know | 11, . 1 _, 9% is anarc function

the possible duration of the presence of OD platoons at each | r s delay associated to an arc,

junction zone and can collect the corresponding measursmen | 17 is a set of fuzzy timestamps(d) : © — [0, 1],
during the same period. Therefore it is possible to put into O is a time scale.

a one-to-one correspondence the flows crossing the junction : .
zones and the measErements taken at this zonesg.] Consquuentl A token is represented by a trip(g, s, 7(0)), wherep € P

. : ) IS the place marked by the token,C C(p) is a colour set
a vehicle conservation law, represented by a consistergrund __ . . .
Bhlch describes the system statepincalledcolour, and = ()

determined system of equations whose unknowns are the O|s the degree of possibility that the token arrives at theela

rilg\rllvt rca;((:alse, can be build dynamically and solved at each traﬁl%nd the system state changes at téimealledfuzzy timestamp

Marking M(p, ) of placep € P at time 7 is a multiset

1. TRAFEIC ELOW SEGMENTATION USINGETHNS represented by the paif, n) whereS is the set of colours of
tokens arrived irp at = # andn is the vector every element
A. Fundamentals of FTHNs of which is the number of occurrences of the token’s colour
Fuzzy-Timed High-Level Petri net (FTHN) is mathematical in set.S.

and graphical tool used to model discrete-event dynamic Function W(p,t), corresponding to the arc from output

systems [13]. In difference of a Petri net [14] and a High-placep to t, is a multiset of colours that are elements of the

Level (or Coloured) Petri net [15], [16], an FTHN considers asetC(p). The functionW(¢,p) is defined similarly.

temporal evolution of a system state and temporal impr&gisi The set of input and output places of a transition is also

related to a system state change. Thus an FTHN is a Petnterpreted as a set of pre- and post-conditions of an event (

net endowed with notions of time and colour and with someand p-). Transitiont € 7 is enabledif M(-p,7) 2 W(-p,t),

concepts of fuzzy set theory. Its graphical representaton i.e. precondition-p is fulfilled. If postconditionp- satisfies

a directed graph composed of two types of nod#acesp, M(p-,7) 2 W(t,p-), the enabled transitiofires it removes

drawn by circles, andransitionst, represented by bars. A W(-p,t) tokens from each of its input places of ¢ and adds

directional arc links solely a pair of nodes of differentégp W(t,p-) tokens to its output places- with delay F (¢, p-)

A system state is described by plagerking M(p) which  associated to an arc fromto p-.

is a collection of colouredokenswith fuzzy timestamps. A Note that many research works have contributed to a

where



development of different frameworks of FTHN. For example,follows:

in [17] a marking of a place is a fuzzy set, in [18]7anorm, Gi(c)+AR:
associated to a transitian represents a level of evidence that ic) = Z X, (T)mi(r) Vi=[1,n] 3)
t is enabled. A complete overview of fuzzy-timed Petri nets is = ’

proposed in [19]. . . .
If the place, associated to entrangds marked, transitior,

corresponding to the same zone, becomes enabled and fires by
B. Structure of the FTHNs for vehicle flows crossing thetransmitting the token to the output placestof
junction 2) Modelling of traffic flow presence at the inner zones
. ] ) of the junction: The transition associated with inner zohe

In order to construct in a dynamical way a vehicle con-is enapled if its input placep contains at least one token
servation law, we propose to build a model composed Ofjyring the green traffic light or the clearance time. The &b
two FTHNSs. The topologies of these nets are the same andansition fires, i.e. transmits the token downstream atingr
represent the junction structure, but the meanings of ngh Wi(t,p) and F(t,p). When the traffic light is red, out of
elements and functions associated to them are different.  jearance period Ry, tokens are stacked at plageand the

In the first net, a pair, place and transition, are associated name of inner zoné is added to colour set; of each token
each zone of the experimental junction (Fig. 3). For en&anc in k. If the marking doesn’t change during some peritd,
and inner zones, a transition represents a change of traffige value ofmax{ 2 (7)}vrear, is associated to a set of flows
lights, whereas for exits, it stands for the departure of & flo possibly present itk (5).
from the junction. A place indicates the presence of the flow After the traffic light corresponding to zonk switches
at the corresponding junction zone by means of marking.  again to green, the stopped vehicle platoon lefts this zone

A token in placep is represented by a triplgp, s, 7(6)),  during periodAgG, proportional to volume of platoon. Thus
wheres = (s1,s2,s3) is a colour setcontaining the name the place, related té, emits the stacked tokens endowed with
of flow origin s1 € {A, B,C, D}, a cycle numbes2 € N fuzzy timestampsr(7) = 1 — A7/AGy, whereAr is a green
and a set of stop zones3, andn(f) € [0,1] is the degree light duration andAG, is a period at the beginning of the
of possibility that the token is present in plapeat time §,  green light whenZ(7) # 0 . These tokens are shifted to
called fuzzy timestampTherefore, a token in place means the exit placep with predefined delay~ (¢, p). According to
the possible presence of a flow of origil in the zone hypothesis FIFO (“first in, first out”), none of upperstream
corresponding to. If 7(0) = 1, the flow is certainly presentin flows can distance the platoon leaving inner zandt means
a zone, ifr(#) = 0 the flow is absentr(§) takes value from that duringAG;, placep emitting the staked tokens cannot be
interval |0, 1[ at the beginning of the red light when some marked by upperstream tokens, i.e. its input transitionstdo
vehicles could cross a stop line. fire. Note that if Z,(7) = 0 during periodRx(c) and the

Two types of function are associated to an arc from tranupperstream flows are not the same that the flows composing
sition ¢ to its output placeg-. First, weightfunctionW(t,p-)  stopped platoon, time intervalG;, is reduced to 1 sec.
is defined over a set of coloursl representing the origins 3) Modelling of traffic flow presence at the exits of the
of the flows that can pass through this arc. Secalwlay junction: The transition related to the exjt of junction is
function F(t,p-) is an average vehicle travel time betweenenabled and fires when each of its input plagesontains

two corresponding successive zones of the junction. at least one token. When the marking idoes not change
The rules for changing colours of tokens, enabling and firingduring certain period of time\r, each measure of exit flow
transitions and marking places are defined as follows. volume overAr is bound to the set of entrance flows present

at exit zone. A marking change of place indicates a change of
a composition of flows present atand, for a given cycle;,
gsegments each exit flow;(c) into L; vehicle platoons, such
that

1) Modelling of a traffic flow presence at the entries of the
junction: During green lightg;(c¢) the traffic flow is certainly
present at entranceand the corresponding place is marke
by one token with colous = (s1, s2,s3), s3 = ), and with
fuzzy timestampr(7) = 1, every second € G;(c). Since the o) = (o Vie . Lie 4
incoming flow may enter the junction at the beginning of the () Z Vi) 1, L; (), “)

TEAT(C
red light, AR, the place is marked by a token with timestamp can( Vel L
w(1) = 1— A7/AR,;, whereAr is a red light duration and . _ Z (P Vi < E\/i( J (i)]]’) (5)
AR, is a clearance time, equal to 2 sec. for the experimental ¢ () RS K(T)kig Vi € M(p, An),

junction. VEk S.t. 0y = 1,

In order to model the temporal imprecision when calculatingwhere A7;(¢) is a period of time during which platodnhas
entrance flow volume (2), we suggest to consider instantaneo left the junction,z,iij(c) is a maximum number of vehicles that
vehicle countsX;(r) at entrancei as fuzzy setsY;(r) =  belong to platoori and have stopped at inner zohgeR(c)
{(Xi(7),mi(7)), Xi(T) € R}, wherem;(7) is a membership is a red light duration in inner zonke (AR ¢ Ri(c)), Okij
function. A scalar cardinality of fuzzy sef’i(T) (V7 € ¢) is indicates if zong is situated between OD pair of zon@sj),

a total flow volume at entranceduring cyclec estimated as M (p, A7) is a marking of place» corresponding to exij.



The second FTHN, providing the ends of the flows, has thef the problem : the system under-determination, appearing
same meanings for places and transitions as the first FTHNvhen I > J, and the system inconsistency that comes from
A token stands for the end of a flow and is represented by ¢he inequality} ., zi(c) # Z;.":l y;(c). In order to model the
set of two colours without timestamp: the name of flow origininherent data imprecision we suggest to consider the elesmen
sl € {A,B,C,D} and a cycle numbes2 € N. of the constraints (7a-7b) as triangular fuzzy numbers. The

The onsets of the beginning and the end of a flow in placesystem under-determination can be overcame by applying the
p allow us to determine the duration of the flow presence irfuzzy linear programming problem as it is described below.
zone related tp. Thus we can collect the measurements made Let X1,X2,y,z andb be trlangular fuzzy numbers repre-
in this zone and, at each cycle can built the following set sented as tripléa = (a—,a™,a™). The form of fuzzy numbers
of equations X, was inferred from empirical distributions of the error
counts as shown in Fig. 4. The fuzzy numbBer is determined

11 . -
= inbijwij vj e [L,m], Vi€ [1, L], (6a) similarly to X;. In most cases, the counts of vehicles at
i€EM(p;j,AT) the entrances are smaller than the true valueXef Since
Vi e [1,m],Vie[1, L,], there is no available histograms of error counts §orand
aiblml > 2, Vi€ M(pj, An), (6b) 2z, fuzzy numbersy and z are supposed to be symmetrical
VEk s.t. 0 =1, with the spreads chosen experimentally. One of the way for
Zﬂﬁjbﬁj —1 Vie[ln], (6¢) interpreting th(_e equality of two fuzzy numbeé&isand b (c_f
Y [20]) is to considef A C *B (Va € [0, 1]), where the notation
’ ) ‘ “A = {z|pa(xr) > a} stands for thex-cut of fuzzy number
bﬁj >0 vy € [1,m], Vi € [1, L], (6d)  a. In the same manner we defiie> b as a least conservative

1€ M(plj,ATl),

where the cycle: has been omitted to simplify the notations.

inequalitysup(“A) > inf(*B), Va € [0, 1].
Following an interval regression approach proposed by

Let J and K be the numbers of constraints (6a) and (6b)Inuiguchi [21] and supposing the unknown OD flow rates

respectively, and be the number of unknowris ., such that

m q
J=>jL Z(s,ﬂ-j,

j=11=1ieM(p;,m)

A matrix form of relationships (6a-6d) can be written as :

y =X br', (7a)
Xobr! >z, (7b)
Ibr' =1, (7¢)

b >0, (7d)

wherey andz are vectors composed of and K elements
respectivelyb is a vector containing thé unknownsb;;, w is
a vector composed af eIement&r”, X, is anJ x I matrix
rearranged so that (7a) is equal to (I8}, is an K x I matrix
built so that (7b) is equivalent to (1hl,is an indicatom x I

to be triangular fuzzy numbers of the forth—, b™, b™"), we
propose to estimate the following minimisation problem :

N
i b — b ;
bm,b+,{311’17r<1917e2,e3 ; ; ( ? ) +mn Z 1,5+
+72 Z €2+ 73 Z €3,k (8)
J k

S.t.

axfabfﬂ.T S ayf 4 e1,

axirab-f-,n.'l' +ey > ay+’

aX;-ab-f-,n.T +e3 > %%~

0<%b- <b™<%bt <1, Vie][l,N]

*p~ < %p- < %bt <%bt g <3, Vi,j € [[1,]\7]],

bz =1,

e; > 0,ex >0,e3 >0,

)

where N is a finite number ofv-cuts,~1, 72 and~s are given
weight coefficientse;, ea, eg are the slack variables and the

matrix organised in such a way that (7c) is equal to (1c) and

1 is an identityn-vector. Note that for the clarity of notation,

the cyclec has been omitted.

Entrance "A" Entrance "B" Entrance "C" Entrance "D"

ture and on the number of platoons that compose an OD flov ” . 10 h
The number of equationg depends on the number of exits W e ST s e s % o s % o s
and, in the same manner, the number of platoons. Sinee/ ©

(in this paperl = 15), the system of equations (7a) is under- 2o o - %
determined. £ w0 ® ‘h

IV. OD FLOW RATES ESTIMATION % oz s %o s w1 % o s % o s o

The number of unknowns depends on the junction struc- £" I N N w

Before estimating the OD flow rates from (7a) with respect
to constraints (7b-7d), it is necessary to consider two @spe Fig. 4. Empirical distributions of error counts for the emtces of the junction
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(2]

(3]

a-cuts of fuzzy number&X;,X,,y andz are calculated as
follows:

Xy = aXP - X))+ X7, XT =aX7 - XT) + X
XS —aXp-X)+X§, °y —aly"-y )+y, W
oyt =a(y™—y")+yt, %z =a(@"-z")+z"

(5]
Note that the fifth constraints of (9) shows tfffatb—, “b*] C

[“b~,*b"], wherei < j, Vi, j € [1, N].

The method have been tested using real data collected a[?]
the experimental junction during 25 consecutive traffidiig
cycles & 30 minutes) with peak traffic conditions. The actual [7]
values of OD flow rate@ = {3, }i=1.... s, calculated manually
from video images, are available for all cycles. The tests ar [8]
made using two nets HLPN and FTHN, where the HLPN is
a configuration of FTHN withAR; = 0, Vi € [1,8], and
AG, =0, Vk € [1,4].

The support width of fuzzy numbegs andz were experi-
mentally fixed to2. The weight coefficients has been fixed as
follows: v = 0.1, 72 = 0.1, v3 = 0.2. [10]

The estimation error has been calculated for the OD flow
rates (Fig. 5)E = bX*—BX*, whereX* is a vector of actual 11
vehicle counts at the entrances of the experimental jumctio
b is a vector of estimated OD flow rates. A significant gain
is obtained when the temporal imprecision is modelled. Thug,
the best results are achieved using an FTHN for which the
range of £ and the absolute values of three quartilesfof [13]
are lower for most of OD flows. Whatever the configuration
of Petri net, the estimation errdf is higher when the flow
volume is lower, like for the OD flows “AD” and “BB”.

El

[14]

V. CONCLUSION [15]
A new short-time estimation method of the OD matrix for
a signalised junction have been proposed in this paper. Theg
method is founded on the construction of a conservation law
of vehicles at each traffic light cycle, represented by theetn
determined system of equations. This system is obtained in
a dynamical way from the model of traffic flows built using
two Fuzzy-Timed High-Level Petri Nets (FTHN). Real data (18
collected at the experimental signalised junction fittetivaith [19]
video cameras are used to estimate the OD flow rates. FTHNs
model a temporal imprecision of the data. 20
Fuzzy linear programming approach have been proposegi)
to estimate the OD matrix. The inherent imprecision of the
data was modelled by representing the data by triangulayfuz

numbers. The tests are made for two different configuration
of FTHN such that one takes and second does not take into
T (B account the temporal imprecision of data. The best resdte w
obtained in the second case.

Our future lines of research will be centred on the improve-
ment of the FLP method in order to provide the best and unique
i estimation of the OD flow rates. The application of our method
should be also extended to a sequence of junctions.
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