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† UMR CNRS 6599 Heudiasyc, BP 20529, 60205 Compiègne cedex, France
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Abstract—The OD matrix at a signalised junction estimated
for traffic light cycle represents a crucial information for trans-
portation systems. A new dynamic two-steps method is proposed
to estimate such an OD matrix. First, a vehicle conservationlaw is
build in a dynamical way for each traffic light cycle using Fuzzy-
Timed High-Level Petri Nets (FTHN). It is represented by an
under-determinate system of equations whose unknowns are the
elements of the OD matrix. Second, a fuzzy linear programming
approach is used to solve this system. Since the data used to
estimate the matrix are imprecise, they are represented as fuzzy
numbers. Experimental tests made with real data provided by
video cameras installed on a junction show the benefits of using
an FTHN tool for this problem.

Index Terms—Fuzzy-Timed High-Level Petri Nets, fuzzy sets,
origin-destination matrix estimation, signalised junction.

I. I NTRODUCTION

The origin-destination (OD) matrix, that describes traffic
demand at a junction, is a key element of most transport
systems. Each elementbij of OD matrixB is a proportion of
the flow of vehicles that come from entrance (origin)i and go
to exit (destination)j. Such a proportion is called theOD flow
rate. An OD matrix is generally deduced from vehicle counts
made on each entrance and each exit of the junction during
a given time interval. These counts are usually provided by
magnetic loops embedded in the road surfaces and sensitive
to metallic masses. The estimation can be obtained from a
conservation law of vehicles which is a set of relationships
between exit and entrance flow counts. In general, when loops
are installed on every entrance and exit of the junction, the
estimation problem is under-determined. Thus a solution isnot
unique and additional information such as aprior OD matrix
is used to choose the OD matrix which corresponds best to
the actual matrix. Some of the existing methods are based on
the information minimisation principle [1], on maximisation
of likelihood [2] or on Bayesian inference [3]. Other methods
propose a recursive estimation of the OD matrix [4], [5].
Furthermore, the estimation problem can be represented as a
constraint optimisation problem [6], [7].

The cited methods are well suited for the OD matrix esti-
mation per quite large period of time (≈15 minutes). Since the
changes in traffic demand can be more frequent, the estimation

period of the OD matrix has to be as short as possible. In
particular, the period should be equal to a traffic light cycle
(duration of green-amber-red sequence) when we deal with a
signalised junction. At INRETS/GRETIA we use such a short-
time estimation of the OD matrix as part of a diagnostic system
for signalised junctions [8]. This system compares the impacts
of different traffic control strategies expressed in terms of CO2

and pollutant emissions. One of the estimation methods which
use traffic lights is described in [9], [10].

This paper considers the problem of reconstituting the
origins and destinations of vehicle flows crossing a signalised
junction, at each traffic light cycle. OD flow volumes are
estimated using traffic lights and traffic measurements from
video cameras installed at the junction. These measurements,
provided every second, are the vehicle counts made on each
entrance and exit of the junction and the number of vehi-
cles stopped at each inner section of the junction. The data
is subject to redundancy, imprecision and uncertainty. Such
imperfections are linked to the reliability of video sensors,
measurement conditions, traffic characteristics and drivers’
behaviour. None of the cited methods takes into account the
lack of precision of vehicle counts, the possible physical
complexity of the junction and the traffic lights at the same
time. Moreover they cannot be applied to the problem because
the period of estimation is quite short.

The aim of this paper is to obtain the best estimates of
the OD matrix by modelling the data imperfection, using
a two-stage method. First, a conservation law of vehicles,
which is represented by an inconsistent and under-determined
system of equations, is built by Fuzzy-Timed High-Level Petri
Nets (FTHN) at each traffic light cycle. Second, the fuzzy
linear programming approach is proposed to overcome the
inconsistency of the system and to model the data imperfection.

In [11] we proposed a similar two-stage method that solves
the given problem by taking into account the inherent data
imprecision. However, this method, based on the use of High-
Level Petri Nets (HLPN), does not consider the temporal
imprecision related to the modelling of OD flows crossing the
junction.

Numerical tests of two methods has been done using the
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data collected in a real experimental signalised junction fitted
out with video cameras.

The rest of this paper is organised as follows. Section II
describes the experimental site and traffic data collected on it,
and states the problem. Section III introduces the model of
segmentation of traffic flows crossing the signalised junction.
Estimation method and experimental results are presented in
Section IV. The last section concludes the paper.

II. PROBLEM STATEMENT

In this paper we address the problem of OD matrix es-
timation for a signalised junction with a complex structure.
The experimental site, used for this purpose, is an isolated
signalised junction of two double-lane roads situated in the
south suburb of Paris (cf Fig. 1). RoadB − D, connecting
Paris to its south suburb, carries a high traffic volume, while
roadA−C has a low traffic volume. Four incoming links and
four inner zones at the centre of the junction are controlledby
traffic lights. Special links are reserved for the right-turning
vehicles.

The junction is fitted out with eight video cameras that
capture four incoming and three outcoming links and four
inner zones (cf Fig. 2). The location, height and angle of
each camera depend on the geometry of the surveyed zone
and are chosen to favour the measurement of space traffic
parameters, for example, a queue length on incoming links.
The camera views are analysed in real time, using image
processing techniques developed at INRETS [12], in order
to provide several measurements every second. The following
traffic data are used for the OD matrix estimation:

• Xi(τ) vehicle counts measured at the end of an entrance
i at secondτ (i = 1, . . . , n),

• Yj(τ) number of vehicles that have passed through the
beginning of the exitj at secondτ (j = 1, . . . , m),

• Zk(τ) number of stopped vehicles at inner zonek at
secondτ (k = 1, . . . , q),
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Fig. 1. The experimental junction

Fig. 2. Camera views

where n, m and p are the numbers of entrances, exits and
inner zones respectively. Here, atraffic light cycleis a period
of time between two sequential occurrences of the red light
onset at one of the entries of roadB − D.

It is worth noting that, generally, the measurements of
traffic parameters are imprecise and erroneous. In particular,
the vehicles counts are more imprecise than the measure of
occupation rates of inner zones by stopped vehicles. Such a
data imperfectness can be explained by different influencing
factors. Thus, traffic count errors depend on traffic conditions.
Count errors are greater during the peak periods when the gaps
between vehicles are so small that it is difficult to distinguish
these gaps on the video images.

The characteristics of vehicles are also a source of mea-
surement errors. High vehicles passing in front of camera will
hide the smaller vehicles or the whole camera field, i.e. they
will produce amasking effect. Two-wheeled vehicles are only
seldom counted because they are small.

Meteorological conditions inevitably influence all types of
traffic measurements. Video images are blurred when the wind
shakes the posts the cameras are fixed to, the sun’s rays cause
the reflections on the vehicle surfaces and camera lenses, and
when rain, snow and fog obscure a camera field. Changes
in brightness caused by the position of the sun, clouds and
headlights at night also impact the quality of the measurements.

Let xi(c) be the flow volume at entrancei during a traffic
light cycle c andyj(c) be the flow volume which entered the
junction during cyclec and leaves it by exitj. OD flow rate
bij(c) is the proportion of the flow of vehicles that come from
entrancei and go to exitj. The problem is to estimate OD
flow ratesbij(c) (∀i ∈ [[1, n]], ∀j ∈ [[1, m]]) at the end of each
traffic light cyclec, such that

yj(c) =

n
∑

i=1

bij(c)xi(c), (1a)

xi(c)bij(c) ≥ zkij(c) ∀k s.t. δkij = 1, (1b)
m

∑

j=1

bij(c) = 1, (1c)

bij(c) ≥ 0, (1d)

where zkij(c) is the number of vehicles which cross the
junction from i to j and stop at inner zonek during cycle
c, δkij = 1 if OD flow from i to j can pass through inner
zonek and is0 otherwise.



For a given cyclec the value of variablexi(c) can be
obtained from instantaneous vehicle counts

xi(c) =

Gi(c)
∑

τ=1

Xi(τ), (2)

where Gi(c) is a duration of the green light of cyclec
in entrancei. However, a considerable number of vehicles,
approaching to the junction with a high speed, enter the
junction during some short period∆Ri at the beginning of
the red light. Thus, to calculate a correct value of entrance
flow volume xi(c), it is necessary to specify the duration of
∆Ri (∀i = [[1, n]]).

The values ofyj(c) andzkij(c) cannot be obtained directly
from traffic measurements, because it is impossible to know
exactly the period of time during which the vehicle flow
xi(c) leaves the junction or stops at inner zones. Moreover,
depending on the traffic control strategy and the flow volume,
an OD flow may be divided on several platoons that don’t
leave the junction at the same period of time. For example, a
flow coming from entranceC to the exitB is often separated
in two platoons: the first one crosses the junction and doesn’t
stop at inner zones, whereas the second one has to stop at 4-th
inner zone when its traffic light switches to red and will exit
the junction later.

In order to obtain the values ofyj(c) andzkij(c) fromYj(τ)
andZk(τ) respectively, we propose to model a segmentation
of OD flows on platoons via two Fuzzy-Timed High-Level
Petri Nets. The first net provides the beginning and the end of
each platoon composing an OD flow, whereas the second net
gives the end of this OD flow. For a given cycle we thus know
the possible duration of the presence of OD platoons at each
junction zone and can collect the corresponding measurements
during the same period. Therefore it is possible to put into
a one-to-one correspondence the flows crossing the junction
zones and the measurements taken at this zones. Consequently,
a vehicle conservation law, represented by a consistent under-
determined system of equations whose unknowns are the OD
flow rates, can be build dynamically and solved at each traffic
light cycle.

III. T RAFFIC FLOW SEGMENTATION USINGFTHNS

A. Fundamentals of FTHNs

Fuzzy-Timed High-Level Petri net (FTHN) is mathematical
and graphical tool used to model discrete-event dynamic
systems [13]. In difference of a Petri net [14] and a High-
Level (or Coloured) Petri net [15], [16], an FTHN considers a
temporal evolution of a system state and temporal imprecision
related to a system state change. Thus an FTHN is a Petri
net endowed with notions of time and colour and with some
concepts of fuzzy set theory. Its graphical representationis
a directed graph composed of two types of nodes:placesp,
drawn by circles, andtransitions t, represented by bars. A
directional arc links solely a pair of nodes of different types.
A system state is described by placemarking M(p) which
is a collection of colouredtokenswith fuzzy timestamps. A
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Fig. 3. The Fuzzy-Timed High-Level Petri Net for traffic flowscrossing the
signalised junction

change of this state, as well as a place marking change, can be
involved when one or more events, represented by transitions,
occur. Thereby, a dynamic behaviour of system is expressed
by means of time-varying marking.

An 8-tupleN = (Σ,P , T ,A, C,W ,F , Π) is considered in
this paper as a formal representation of FTHN, where:

• Σ is a finite non-empty colour set,
• P and T are the finite sets of places and transitions

respectively, such thatP ∩ T = ∅ andP ∪ T 6= ∅,
• A ⊂ (P × T ) ∪ (T × P) is the finite set of arcs,
• C : P → 2Σ is a colour functionwhich associates a set

of colours to a place,
• W : A → 2Σ is anarc function,
• F is a delay associated to an arc,
• Π is a set of fuzzy timestampsπ(θ) : Θ → [0, 1], where

Θ is a time scale.

A token is represented by a triple(p, s, π(θ)), wherep ∈ P
is the place marked by the token,s ⊆ C(p) is a colour set
which describes the system state inp, calledcolour, andπ(θ)
is the degree of possibility that the token arrives at the place
and the system state changes at timeθ, calledfuzzy timestamp.
Marking M(p, τ) of place p ∈ P at time τ is a multiset
represented by the pair(S,n) whereS is the set of colours of
tokens arrived inp at τ = θ andn is the vector every element
of which is the number of occurrences of the token’s colours
in setS.

Function W(p, t), corresponding to the arc from output
placep to t, is a multiset of colours that are elements of the
setC(p). The functionW(t, p) is defined similarly.

The set of input and output places of a transition is also
interpreted as a set of pre- and post-conditions of an event (·p
andp·). Transitiont ∈ T is enabledif M(·p, τ) ⊇ W(·p, t),
i.e. precondition·p is fulfilled. If postconditionp· satisfies
M(p·, τ) ⊇ W(t, p·), the enabled transitionfires: it removes
W(·p, t) tokens from each of its input places·p of t and adds
W(t, p·) tokens to its output placesp· with delay F(t, p·)
associated to an arc fromt to p·.

Note that many research works have contributed to a



development of different frameworks of FTHN. For example,
in [17] a marking of a place is a fuzzy set, in [18] aT -norm,
associated to a transitiont, represents a level of evidence that
t is enabled. A complete overview of fuzzy-timed Petri nets is
proposed in [19].

B. Structure of the FTHNs for vehicle flows crossing the
junction

In order to construct in a dynamical way a vehicle con-
servation law, we propose to build a model composed of
two FTHNs. The topologies of these nets are the same and
represent the junction structure, but the meanings of net
elements and functions associated to them are different.

In the first net, a pair, place and transition, are associatedto
each zone of the experimental junction (Fig. 3). For entrances
and inner zones, a transition represents a change of traffic
lights, whereas for exits, it stands for the departure of a flow
from the junction. A place indicates the presence of the flow
at the corresponding junction zone by means of marking.

A token in placep is represented by a triple(p, s, π(θ)),
where s = (s1, s2, s3) is a colour set containing the name
of flow origin s1 ∈ {A, B, C, D}, a cycle numbers2 ∈ N

and a set of stop zoness3, and π(θ) ∈ [0, 1] is the degree
of possibility that the token is present in placep at time θ,
called fuzzy timestamp. Therefore, a token in placep means
the possible presence of a flow of origins1 in the zone
corresponding top. If π(θ) = 1, the flow is certainly present in
a zone, ifπ(θ) = 0 the flow is absent.π(θ) takes value from
interval ]0, 1[ at the beginning of the red light when some
vehicles could cross a stop line.

Two types of function are associated to an arc from tran-
sition t to its output placesp·. First, weight functionW(t, p·)
is defined over a set of colourss1 representing the origins
of the flows that can pass through this arc. Second,delay
function F(t, p·) is an average vehicle travel time between
two corresponding successive zones of the junction.

The rules for changing colours of tokens, enabling and firing
transitions and marking places are defined as follows.

1) Modelling of a traffic flow presence at the entries of the
junction: During green lightGi(c) the traffic flow is certainly
present at entrancei and the corresponding place is marked
by one token with colours = (s1, s2, s3), s3 = ∅, and with
fuzzy timestampπ(τ) = 1, every secondτ ∈ Gi(c). Since the
incoming flow may enter the junction at the beginning of the
red light,∆Ri, the place is marked by a token with timestamp
π(τ) = 1 − ∆τ/∆Ri, where∆τ is a red light duration and
∆Ri is a clearance time, equal to 2 sec. for the experimental
junction.

In order to model the temporal imprecision when calculating
entrance flow volume (2), we suggest to consider instantaneous
vehicle countsXi(τ) at entrancei as fuzzy setsX̃i(τ) =
{(Xi(τ), πi(τ)),Xi(τ) ∈ R}, whereπi(τ) is a membership
function. A scalar cardinality of fuzzy set̃Xi(τ) (∀τ ∈ c) is
a total flow volume at entrancei during cyclec estimated as

follows:

xi(c) =

Gi(c)+∆Ri
∑

τ=1

Xi(τ)πi(τ) ∀i = [[1, n]] (3)

If the place, associated to entrancei, is marked, transitiont,
corresponding to the same zone, becomes enabled and fires by
transmitting the token to the output places oft.

2) Modelling of traffic flow presence at the inner zones
of the junction: The transition associated with inner zonek
is enabled if its input place·p contains at least one token
during the green traffic light or the clearance time. The enabled
transition fires, i.e. transmits the token downstream according
to W(t, p) and F(t, p). When the traffic light is red, out of
clearance period∆Rk, tokens are stacked at place·p and the
name of inner zonek is added to colour sets3 of each token
in k. If the marking doesn’t change during some period∆τ ,
the value ofmax{Zk(τ)}∀τ∈∆τ , is associated to a set of flows
possibly present ink (5).

After the traffic light corresponding to zonek switches
again to green, the stopped vehicle platoon lefts this zone
during period∆Gk proportional to volume of platoon. Thus
the place, related tok, emits the stacked tokens endowed with
fuzzy timestampsπ(τ) = 1 −∆τ/∆Gk, where∆τ is a green
light duration and∆Gk is a period at the beginning of the
green light whenZk(τ) 6= 0 . These tokens are shifted to
the exit placep with predefined delayF(t, p). According to
hypothesis FIFO (“first in, first out”), none of upperstream
flows can distance the platoon leaving inner zonek. It means
that during∆Gk placep emitting the staked tokens cannot be
marked by upperstream tokens, i.e. its input transitions don’t
fire. Note that ifZk(τ) = 0 during periodRk(c) and the
upperstream flows are not the same that the flows composing
stopped platoon, time interval∆Gk is reduced to 1 sec.

3) Modelling of traffic flow presence at the exits of the
junction: The transition related to the exitj of junction is
enabled and fires when each of its input placesp contains
at least one token. When the marking ofp does not change
during certain period of time∆τ , each measure of exit flow
volume over∆τ is bound to the set of entrance flows present
at exit zone. A marking change of place indicates a change of
a composition of flows present atp and, for a given cyclec,
segments each exit flowyj(c) into Lj vehicle platoons, such
that

yl
j(c) =

∑

τ∈∆τl(c)

Yj(τ) ∀l ∈ [[1, Lj(c)]], (4)

zl
kij(c) = max

τ∈Rk(c)
Zk(τ)δkij

∀l ∈ [[1, Lj(c)]],
∀i ∈ M(p, ∆τl),
∀k s.t. δkij = 1,

(5)

where∆τl(c) is a period of time during which platoonl has
left the junction,zl

kij(c) is a maximum number of vehicles that
belong to platoonl and have stopped at inner zonek, Rk(c)
is a red light duration in inner zonek (∆Rk /∈ Rk(c)), δkij

indicates if zonek is situated between OD pair of zones(i, j),
M(p, ∆τl) is a marking of placep corresponding to exitj.



The second FTHN, providing the ends of the flows, has the
same meanings for places and transitions as the first FTHN.
A token stands for the end of a flow and is represented by a
set of two colours without timestamp: the name of flow origin
s1 ∈ {A, B, C, D} and a cycle numbers2 ∈ N.

The onsets of the beginning and the end of a flow in place
p allow us to determine the duration of the flow presence in
zone related top. Thus we can collect the measurements made
in this zone and, at each cyclec, can built the following set
of equations

yl
j =

∑

i∈M(pj ,∆τl)

xib
l
ijπ

l
ij ∀j ∈ [[1, m]], ∀l ∈ [[1, Lj]], (6a)

xib
l
ijπ

l
ij ≥ zl

kij

∀j ∈ [[1, m]], ∀l ∈ [[1, Lj]],
∀i ∈ M(pj, ∆τl),
∀k s.t. δkij = 1,

(6b)

∑

j,l

πl
ijb

l
ij = 1 ∀i ∈ [[1, n]], (6c)

bl
ij ≥ 0

∀j ∈ [[1, m]], ∀l ∈ [[1, Lj]],
i ∈ M(pj, ∆τl),

(6d)

where the cyclec has been omitted to simplify the notations.
Let J and K be the numbers of constraints (6a) and (6b)

respectively, andI be the number of unknownsbl
ij , such that

J =

m
∑

j=1

jLj , K =

m
∑

j=1

Lj
∑

l=1

∑

i∈M(pj ,τl)

q
∑

k=1

δkij ,

I =

m
∑

j=1

Lj
∑

l=1

∑

i∈M(pj ,τl)

i.

A matrix form of relationships (6a-6d) can be written as :

y = X1bπππ⊤, (7a)

X2bπππ⊤ ≥ z, (7b)

Ibπππ⊤ = 111, (7c)

b ≥ 0, (7d)

wherey and z are vectors composed ofJ and K elements
respectively,b is a vector containing theI unknownsbij , πππ is
a vector composed ofI elementsπl

ij , X1 is anJ × I matrix
rearranged so that (7a) is equal to (1a),X2 is anK×I matrix
built so that (7b) is equivalent to (1b),I is an indicatorn× I
matrix organised in such a way that (7c) is equal to (1c) and
111 is an identityn-vector. Note that for the clarity of notation,
the cyclec has been omitted.

The number of unknownsI depends on the junction struc-
ture and on the number of platoons that compose an OD flow.
The number of equationsJ depends on the number of exits
and, in the same manner, the number of platoons. SinceI ≥ J
(in this paperI ≈ 15), the system of equations (7a) is under-
determined.

IV. OD FLOW RATES ESTIMATION

Before estimating the OD flow rates from (7a) with respect
to constraints (7b-7d), it is necessary to consider two aspects

of the problem : the system under-determination, appearing
when I > J , and the system inconsistency that comes from
the inequality

∑n

i=1 xi(c) 6=
∑m

j=1 yj(c). In order to model the
inherent data imprecision we suggest to consider the elements
of the constraints (7a-7b) as triangular fuzzy numbers. The
system under-determination can be overcame by applying the
fuzzy linear programming problem as it is described below.

Let X̃1, X̃2, ỹ, z̃ andb̃ be triangular fuzzy numbers repre-
sented as triplẽa = (a−,am,a+). The form of fuzzy numbers
X̃1 was inferred from empirical distributions of the error
counts as shown in Fig. 4. The fuzzy numberX̃2 is determined
similarly to X̃1. In most cases, the counts of vehicles at
the entrances are smaller than the true value ofX1. Since
there is no available histograms of error counts fory and
z, fuzzy numbers̃y and z̃ are supposed to be symmetrical
with the spreads chosen experimentally. One of the way for
interpreting the equality of two fuzzy numbers̃a and b̃ (cf
[20]) is to considerαA ⊆ αB (∀α ∈ [0, 1]), where the notation
αA = {x|µA(x) ≥ α} stands for theα-cut of fuzzy number
ã. In the same manner we defineã ≥ b̃ as a least conservative
inequalitysup(αA) ≥ inf(αB), ∀α ∈ [0, 1].

Following an interval regression approach proposed by
Inuiguchi [21] and supposing the unknown OD flow ratesb̃

to be triangular fuzzy numbers of the form(b−,bm,b+), we
propose to estimate the following minimisation problem :

min
bm,b+,b−,e1,e2,e3





N
∑

α=1

I
∑

i=1

(

αb+
i − αb−

i

)

+ γ1

∑

j

e1,j+

+γ2

∑

j

e2,j + γ3

∑

k

e3,k



 (8)

s.t.






































αX−
1

αb−πππ⊤ ≤ αy− + e1,
αX+

1
αb+πππ⊤ + e2 ≥ αy+,

αX+
2

αb+πππ⊤ + e3 ≥ αz−,
0 ≤ αib− ≤ bm ≤ αib+ ≤ 1, ∀i ∈ [[1, N ]]
αib− ≤ αjb− ≤ αj b+ ≤ αib+, i < j,∀i, j ∈ [[1, N ]],
Ibmπππ⊤ = 111,
e1 ≥ 0, e2 ≥ 0, e3 ≥ 0,

(9)
whereN is a finite number ofα-cuts,γ1, γ2 andγ3 are given
weight coefficients,e1, e2, e3 are the slack variables and the
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Fig. 4. Empirical distributions of error counts for the entrances of the junction
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Fig. 5. Count errors (invehicles) of FLP method using an HLPN (left) and
an FTHN (right)

α-cuts of fuzzy numbers̃X1, X̃2, ỹ and z̃ are calculated as
follows:

αX−
1 = α(Xm

1 − X−
1 ) + X−

1 , αX+
1 = α(Xm

1 − X+
1 ) + X+

1 ,
αX+

2 = α(Xm
2 − X+

2 ) + X+
2 , αy− = α(ym − y−) + y−,

αy+ = α(ym − y+) + y+, αz− = α(zm − z−) + z−.

Note that the fifth constraints of (9) shows that[αib−, αib+] ⊆
[αjb−, αj b+], wherei < j, ∀i, j ∈ [[1, N ]].

The method have been tested using real data collected at
the experimental junction during 25 consecutive traffic light
cycles (≈ 30 minutes) with peak traffic conditions. The actual
values of OD flow ratesβββ = {βi}i=1,...,8, calculated manually
from video images, are available for all cycles. The tests are
made using two nets HLPN and FTHN, where the HLPN is
a configuration of FTHN with∆Ri = 0, ∀i ∈ [[1, 8]], and
∆Gk = 0, ∀k ∈ [[1, 4]].

The support width of fuzzy numbers̃y and z̃ were experi-
mentally fixed to2. The weight coefficients has been fixed as
follows: γ1 = 0.1, γ2 = 0.1, γ3 = 0.2.

The estimation error has been calculated for the OD flow
rates (Fig. 5):E = b̂X∗−βββX∗, whereX∗ is a vector of actual
vehicle counts at the entrances of the experimental junction,
b̂ is a vector of estimated OD flow rates. A significant gain
is obtained when the temporal imprecision is modelled. Thus
the best results are achieved using an FTHN for which the
range ofE and the absolute values of three quartiles ofE
are lower for most of OD flows. Whatever the configuration
of Petri net, the estimation errorE is higher when the flow
volume is lower, like for the OD flows “AD” and “BB”.

V. CONCLUSION

A new short-time estimation method of the OD matrix for
a signalised junction have been proposed in this paper. The
method is founded on the construction of a conservation law
of vehicles at each traffic light cycle, represented by the under-
determined system of equations. This system is obtained in
a dynamical way from the model of traffic flows built using
two Fuzzy-Timed High-Level Petri Nets (FTHN). Real data
collected at the experimental signalised junction fitted out with
video cameras are used to estimate the OD flow rates. FTHNs
model a temporal imprecision of the data.

Fuzzy linear programming approach have been proposed
to estimate the OD matrix. The inherent imprecision of the
data was modelled by representing the data by triangular fuzzy

numbers. The tests are made for two different configuration
of FTHN such that one takes and second does not take into
account the temporal imprecision of data. The best results were
obtained in the second case.

Our future lines of research will be centred on the improve-
ment of the FLP method in order to provide the best and unique
estimation of the OD flow rates. The application of our method
should be also extended to a sequence of junctions.
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