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Abstract—Knowledge of traffic demand at a junction is crucial
for most transport systems. Generally, it is represented byan
origin-destination (OD) matrix, where each element is a volume
of vehicle flow between one of the OD pair of zones of a junction.
This paper introduces a new method for a short-time estimation
of OD matrices at a signalised junction with a complex structure
and fitted out with video cameras. The estimation is made by
taking into account the traffic lights and by fusion of different
multisensor traffic data, which are subject to imprecision and
uncertainty. The method proceeds in two steps. First, vehicle
conservation law, expressed in terms of undertermined system of
equations, is built dynamically for a short-time period. Second,
four approaches, that overcome the system indeterminationand
model the data imperfection, are proposed to provide the best
and unique estimates of the OD matrix. An experimental study
has been made with data collected at the real signalised junction.

Index Terms—Fuzzy sets, fuzzy modelling, fuzzy linear pro-
gramming, origin-destination matrix estimation.

I. I NTRODUCTION

Information on traffic demand in a road network can be
represented using the origin-destination (OD) matrixB. For a
junction, each elementbij of such a matrix is a proportion of
the flow of vehicles that come from entrance (origin)i and go
to exit (destination)j. The matrix elements are also called the
OD flow rates.

OD matrix estimated for a junction is a fundamental com-
ponent for most of transport systems. Knowledge about traffic
demand at a junction is generally used for traffic planning
purposes, such as building of new links, rearrangement of
turning lanes, change of the capacity of income/outcome links
and of the speed limits, construction of roundabouts. Another
important application of the junction OD matrix is to improve
estimation of traffic demand at a whole road network. Thus, it
is used in such traffic models as the model of vehicle’s route
choices designed for solving the traffic assignment problem.

Whenever a congestion occurs because of accident, meteo-
rological disturbance or road maintenance work, it is important
to assume fast and efficient measures to eliminate it. Therefore,
information on destinations of travellers at a junction helps
to develop and improve the traffic control strategies. The OD
matrix is also employed for traveller information systems and
validation of different traffic models.

Because of temporal variability of the traffic demand, most
of these systems require real-time knowledge about OD matrix.

Therefore, the estimation period of the OD flow rates has to be
as short as possible, like a traffic light cycle (duration of green-
amber-red sequence) at a signalised junction. Such a short-time
estimated OD matrix is a key element of the diagnostic system
for signalised junctions, developed at INRETS/GRETIA [1].
This system compares the impacts of different traffic control
strategies formulated, for instance, in terms of CO2 and
pollutant emissions.

Junction OD matrix is deduced from vehicle counts made
on each income and outcome link of the junction during a
given time interval. These counts are usually provided by
magnetic loops embedded in the road surfaces and sensitive
to metallic masses. Since the loops are installed quite far from
the entrances and exits of a junction, the OD matrix estimation
period should be large enough in order to take into account
the vehicle travel time between an OD pair of sensors and
thus to respect the vehicle conservation law. In the case of a
signalised junction, the travel time across the junction and the
input and output flow volumes during a traffic cycle remain
unknown. Unlike the electromagnetic loops, video sensors are
able to provide the vehicle counts at any point of the junction,
in particular, at the beginning of each entrance and each exit
of the junction, which make possible to estimate an OD matrix
at a short period of time.

The previous research works on OD matrix estimation at
a junction generally yield estimates of the OD flow rates at a
large-time period. Some of these methods are based on the
information minimisation principle [2], on maximisation of
likelihood [3] or on Bayesian inference [4]. Other methods
present the estimation problem as a constraint optimisation
problem [5], [6], [7]. Only a few methods can provide a short-
time estimated OD flow rates, such as a recursive estimation
method [8], [9] and methods based on the use of traffic lights
[10], [11], [12]. However, they can only be applied for simple
two-road-crossing junctions and, respectively, for junctions
with two-phase traffic control strategy. Moreover, none of
the cited methods considers the redundancy, uncertainty and
imprecision of the data.

This paper focuses on the short-time estimation of OD
matrices at a signalised junction with a complex structure and
fitted out with video cameras. In particular, we are interested
in the use of traffic lights and imprecise and uncertain traffic
measurements issued from video cameras. These measure-
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ments, provided every second, are the vehicle counts made
on each entrance and exit of the junction and the number of
vehicles stopped at each inner section of the junction. The
main idea of the proposed method consists in constructing at
each traffic light cycle a set of (fuzzy) relationships between
the sequences of exit and entrance flow counts. A model of
the vehicle flows crossing the junction is built via High-Level
Petri Nets (HLPN) [13]. This model indicates every second a
set of vehicle flows which could be present at the junction,
the beginning and the end of these flows. It makes possible to
draw dynamically a conservation law of vehicles, represented
by an underdetermined system of equations whose unknowns
are the OD flow rates.

Four different approaches, that overcome the inconsistency
of the system and model data imperfections, are proposed to
estimate the OD flow rates: ordinary least squares and linear
programming (LP) methods based on the use of historical
knowledge about the OD flow rates, LP and fuzzy LP methods
based on a modelling of the imprecision of the data using,
respectively, intervals or fuzzy numbers. An experimental
study of the proposed methods has been made with the real
data collected in an experimental site equipped with video
cameras and traffic light controller. These tests demonstrated
that the presented dynamic method yields accurate results.

The rest of the paper is organised as follows. Section 2 de-
scribes the real data. Section 3 briefly introduces the modelof
OD flows crossing the junction and states the problem. Section
4 and 5 proposes four methods for OD matrix estimation and
shows the results. The last section concludes the paper and
proposes the further lines of research.

II. DATA DESCRIPTION

The experimental site is an isolated signalised junction
of two double-lane roads situated in the south suburb of
Paris (cf Fig. 1). The main road B-D which connects the
suburbs to Paris has a high traffic volume, whereas the road
A-C has a lower traffic volume. Traffic lights control four
incoming links and four inner zones. Note that right-turning
vehicles use special lanes and are not taken into account in
this study. Only eight OD flows are statistically significant:
(AC, AD), (BD, BB), (CB), (DB, DC, DD).

Eight video cameras are installed at the junction in order to
capture all the entrance and exit links and the inner zones.
The location, height and angle of each camera depend on
the geometry of the junction and are chosen to favour the
measurement of space traffic parameters such as queue length
on incoming links. The camera views are analysed in real time
using image processing techniques developed at INRETS [14].
They provide several measurements every second:

• Xi(τ) vehicle counts measured at the end of an entrance
i at secondτ (i = 1, . . . , n),

• Yj(τ) number of vehicles that have passed through the
beginning of the exitj at secondτ (j = 1, . . . , m),

• Zk(τ) number of stopped vehicles at inner zonek at
secondτ (k = 1, . . . , p),

where n, m and p are the numbers of entrances, exits and
inner zones respectively. Here, atraffic light cycleis a period
of time between two sequential onsets of the red light on the
entrance “B”.

The temporal series can be represented graphically. Figure2
presents an example of measurements of the vehicle flow
arrived from the entrance “A” and crossing some successive
zones toward exits “C” and “D”. Here vertical lines (solid
and stippled) indicate the onsets of the red and green light
respectively. The grey squares point out the vehicles counts
at the corresponding entrance and exits. The white squares
represent the number of vehicles stopped at inner zones. It
can be seen that the volumes of incoming and exit flows are
equal, that is to say4/5 of vehicles arrived from the entrance
“A” have leaved the junction by exit “C” and1/5 by exit “D”.
Actually, one vehicle from OD flow “AD” has stopped twice
in the inner zones “1” and “2” because of the red light in
zone “2”. The Figure 2 demonstrates that the measurements
are captured in inner zones with a delay with regard to the
actual traffic situation.

It is worth noting that generally the vehicle counts are
imprecise and erroneous so that the vehicle conservation law
is not respected. The vehicles counts are more imprecise than
the measure of occupation rates of inner zones by stopped
vehicles.

The low quality of the measurement of traffic parameters
is due to many phenomena. Traffic conditions (peak or off-
peak periods) are the reason for many traffic count errors. If
the traffic flow is heavy, the gaps between vehicles are small
and it is difficult to distinguish these gaps on the video images.
Thus the number of vehicles measured is lower than the actual
number.

The characteristics of vehicles are also a source of mea-
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Fig. 1. The experimental junction

SMC 2009



0 5 10 15 20 25 30 35 40 45

08:30 08:35 08:40 08:45 08:50 08:55 09:00 09:05 09:10 09:15

09:08:30 - 09:09:15

Exit “D” Y D(τ)

Inner zone “2” Z 2(τ)

Exit “C” Y C(τ)

Inner zone “1” Z 1(τ)

Entrance “A” XA(τ)

Time τ , [s]

0

0

0

0

0

1

1

1

1

1

2

2

2

Fig. 2. Graphical representation of OD vehicle flows “AC” and“AD”.

surement errors. High vehicles passing in front of camera will
hide the smaller vehicles or the whole camera field, i.e. they
will produce amasking effect. Two-wheeled vehicles are only
seldom counted because they are small. The heterogeneous
colours of vehicle roofs also add to the problem of detection.

Meteorological conditions inevitably have an influence on
all types of traffic measurements and the video are blurred:
the wind shakes the posts the cameras are fixed to, the
sun’s rays cause the reflections on the vehicle surfaces and
camera lenses, rain, snow and fog obscure a camera field.
Changes in brightness caused by the position of the sun, clouds
and headlights at night also determine the reliability of the
measurements.

III. PROBLEM STATEMENT

Let xi(c) be the flow volume at entrancei during a traffic
light cycle c andyj(c) be the flow volume which entered the
junction during cyclec and leaves it by exitj. OD flow rate
bij(c) is the proportion of the flow of vehicles that come from
entrancei and go to exitj. The problem is to estimate OD
flow ratesbij(c) (∀i ∈ [[1, n]], ∀j ∈ [[1, m]]) at the end of each
traffic light cyclec, such that

yj(c) =

n
∑

i=1

bij(c)xi(c), (1a)

xi(c)bij(c) ≥ zkij(c) ∀k s.t. δkij = 1, (1b)
m

∑

j=1

bij(c) = 1, (1c)

bij(c) ≥ 0, (1d)

where zkij(c) is the number of vehicles which cross the
junction from i to j and stop at inner zonek during cyclec,
δkij = 1 if OD flow from i to j can pass through inner zone
k and is0 otherwise. For a given cyclec the value of variable
xi(c) can be obtained from instantaneous vehicle counts

xi(c) =

Gi(c)
∑

τ=1

Xi(τ),

where Gi(c) is a duration of the green light of cyclec in
entrancei. The values ofyj(c) andzkij(c) cannot be obtained
directly from traffic measurements, because it is impossible to
know the period of time during which the vehicle flowxi(c)
leaves the junction or stops at inner zones.

In order to obtain the values ofyj(c) andzkij(c) fromYj(τ)
andZk(τ) respectively, we have proposed a dynamical model
of vehicle flows crossing the junction using High-Level Petri
Nets [13]. This model provides the onsets of the beginnings
and the ends of the flows. For a given cyclec we thus know
the possible duration of the presence of the flows in each
zone and can collect the corresponding measurements during
the same period. Therefore it is possible to put into a one-
to-one correspondence the flows crossing the junction zones
and the measurements taken at this zones. Consequently, at
each cyclec, we can build dynamically a vehicle conservation
law, represented by the following system of equations whose
unknowns are the OD flow rates:

y = X1b, (2)

such that

X2b ≥ z, (3a)

Ib = 111, (3b)

b ≥ 0, (3c)

wherey and z are vectors composed ofJ and K elements
respectively,b is a vector containing theI unknownsbij , X1

is anJ × I matrix rearranged so that (2) is equal to (1a),X2

is anK × I matrix built so that (3a) is equivalent to (1b),I is
an indicatorn× I matrix organised in such a way that (3b) is
equal to (1c) and111 is an identityn-vector. Note that for the
clarity of notation the cyclec has been omitted.

The number of unknownsI depends on the junction struc-
ture and on the number of platoons that compose an OD flow.
Depending on the traffic control strategy and the flow volume,
an OD flow can leave the junction as a single platoon or
as several platoons. The number of equationsJ depends on
the number of exits and, in the same manner, on the control
strategy. SinceI ≥ J (in this paperI ≈ 10), the system of
equations (2) is underdetermined.

In order to overcome the problem of the system indeter-
mination and to guarantee the uniqueness of the solution it is
necessary to use some additional information about the values
of the OD flow rates. In this paper, for choosing a solution
among a solution set, we propose to use the mean value of
the OD flow rates estimated during a time period preceding
the estimation, calledsliding mean value. Moreover, to model
the uncertainty and imprecision of the real data, we suggest
to introduce slack variables and to represent the values ofb,
X1, X2, y andz, first, by intervals, and, second, by triangular
fuzzy numbers.

In fine, four methods are proposed in this paper. To estimate
the crisp unknownsb when the elements of model (2) and of
constraint (3c) are crisp, we apply the ordinary least squares
(LS) and the linear programming (CLP) methods using the
sliding mean value ofb. Linear programming (ILP) and fuzzy
linear programming (FLP) approaches are formulated for the
cases where these elements are represented by intervals and
fuzzy numbers respectively. We introduce in the sequel the
four methods and show their results on our application.
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IV. OD FLOW RATES ESTIMATION

A. Least squares method with crisp variables and coefficients
(CLS)

The estimation problem of OD flow ratesb can be consid-
ered as an estimation of coefficients of the regression model
equivalent to the relationship (2). Let the input and output
variablesX1,X2,y, z and the coefficientsb be non-negative
crisp numbers. A first approach to estimateb is to use a
least squares method. A sliding mean valuesb = {bl}l=1,...,8,
available for eight OD pairs which are described in Section
II, are used to provide a unique solution. To insure the
existence of feasible solutions, we introduce slack variables,
e1,j (∀j = 1, . . . , J) and e1,k (∀k = 1, . . . , K), and we
propose to solve the following problem:

min
b∗,b,ξ,µ,η



‖ b∗ − b ‖2 +γ1

J
∑

j=1

e1,j+

+γ2

J
∑

j=1

e2,j + γ3

K
∑

k=1

e3,k



 (4)

s.t.






























Ab = b∗,
Ib∗ = 111,
X1b = y + e1 − e2,
X2b + e3 ≥ z,
b ≥ 0,
e1 ≥ 0, e2 ≥ 0, e3 ≥ 0,

(5)

where γ1, γ2 and γ3 are given weight coefficients,b∗ is
the vector of the eight OD flow rates, considered in Section
II, andA is a matrix rearranged in such a way thatAb = b∗.

B. Linear programming problem with crisp variables and
coefficients (CLP)

A linear programming approach can be applied to estimate
the crisp elements of the regression model (2). Using the same
notations, we can build the following minimisation problem:

min
b∗,b,e1,e2,e3,e4,e5



γ1

J
∑

j=1

e1,j + γ2

J
∑

j=1

e2,j+

+γ3

K
∑

k=1

e3,k + γ4

I
∑

i=1

e4,i + γ5

I
∑

i=1

e5,i

)

(6)

s.t.






































X1b = y + e1 − e2,
X2b + e3 ≥ z,
Ab = b∗,

b∗ = b + e4 − e5,
Ib = 111,
b ≥ 0,
e1 ≥ 0, e2 ≥ 0, e3 ≥ 0, e4 ≥ 0, e5 ≥ 0,

(7)

whereγ1, γ2, γ3, γ4 andγ5 are given weight coefficients and
e4,i, e5,i (∀i = 1, . . . , I) are slack variables.

C. Linear programming problem with variables and coeffi-
cients represented as intervals (ILP)

In order to take into account the inherent imprecision of
the data, we choose to represent the elements of the model
(2) and constraint (3a) by intervals, denoted asa = [a−, a+].
The values ofX−

1
andX+

1
(X−

2
andX+

2
) was inferred from

empirical distributions of the error counts (cf Fig. 3). In most
cases, counts of vehicles at the entrances are smaller than the
true value ofX1 (X2). Here, the equation (2) is interpreted
as X1b ⊆ y and inequality constraint (3a) as the least con-
servative inequalityX+

2
b+ ≥ z−. Since there is no available

histograms of error counts fory andz, intervals[y−,y+] and
[z−, z+] was constructed by adding to the known values of
y andz the symmetrical spreads chosen experimentally. With
respect to constraints (2)-(3c), we propose to estimateb such
that b− ≤ b ≤ b+ and the width of intervals[b−,b+] tend
toward zero. Considering that all variables and coefficients
of the regression model are non-negative, the minimisation
problem is written as follows:

min
b,b+,b−,e1,e2,e3





I
∑

i=1

(

b+
i
− b−

i

)

+ γ1

J
∑

j=1

e1,j+

+γ2

J
∑

j=1

e2,j + γ3

K
∑

k=1

e3,k



 (8)

s.t.






























X−
1
b− ≤ y− + e1,

X+
1
b+ + e2 ≥ y+,

X+
2
b+ + e3 ≥ z−,

Ib = 111,
0 ≤ b− ≤ b ≤ b+ ≤ 1,
e1 ≥ 0, e2 ≥ 0, e3 ≥ 0,

(9)

whereγ1, γ2 andγ3 are given weight coefficients.

D. Linear programming problem with fuzyy variables and
coefficients (FLP)

Let X̃1, X̃2, ỹ, z̃ andb̃ be triangular fuzzy numbers repre-
sented as triplẽa = (a−,am,a+). The form of fuzzy numbers
X̃1 was derived from empirical distributions of the error counts
as shown in Fig. 3. The fuzzy number̃X2 is determined
similarly to X̃1. Because of the lack of histograms of error
counts fory and z, fuzzy numbers̃y and z̃ are supposed to
be symmetrical with the spreads chosen experimentally.

One of the way for interpreting the equality of two fuzzy
numbersã and b̃ (cf [15]) is to considerαA ⊆ αB (∀α ∈
[0, 1]), where the notationαA = {x|µA(x) ≥ α} stands for
the α-cut of fuzzy number̃a. In the same manner we define
ã ≥ b̃ as αA ≥ αB, ∀α ∈ [0, 1].

According to (2)-(3c) and supposing the unknown OD
flow rates b̃ to be triangular fuzzy numbers of the form
(b−,bm,b+), we propose to solve the previous problem (ILP)
for eachα-cut. For this reason a new constraint is introduced:

[αib−, αib+] ⊆ [αj b−, αjb+],
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where i < j, ∀i, j ∈ [[1, N ]], and N is the finite number of
α-cuts. The following fuzzy linear programming is written:

min
bm,b+,b−,e1,e2,e3





N
∑

α=1

I
∑

i=1

(

αb+
i − αb−

i

)

+ γ1

∑

j

e1,j+

+γ2

∑

j

e2,j + γ3

∑

k

e3,k



 (10)

s.t.






































αX−
1

αb− ≤ αy− + e1,
αX+

1
αb+ + e2 ≥ αy+,

αX+
2

αb+ + e3 ≥ αz−,
0 ≤ αib− ≤ bm ≤ αib+ ≤ 1, ∀i ∈ [[1, N ]]
αib− ≤ αjb− ≤ αjb+ ≤ αib+, i < j,∀i, j ∈ [[1, N ]],
Ibm = 111,
e1 ≥ 0, e2 ≥ 0, e3 ≥ 0,

(11)
whereγ1, γ2 andγ3 are given weight coefficients and the

α-cuts of the fuzzy numbers̃X1, X̃2, ỹ and z̃ are calculated
as follows:

αX−
1 = α(Xm

1 − X−
1 ) + X−

1 , αX+
1 = α(Xm

1 − X+
1 ) + X+

1 ,
αX+

2 = α(Xm
2 − X+

2 ) + X+
2 , αy− = α(ym − y−) + y−,

αy+ = α(ym − y+) + y+, αz− = α(zm − z−) + z−.

V. EXPERIMENTAL RESULTS

These methods have been tested using real data collected at
the experimental junction during 30-minutes period with peak
traffic conditions. The estimation is made on 25 consecutive
traffic light cycles. The actual values of OD flow ratesβi (∀i =
1, . . . , 8), calculated manually from video images, are available
for all cycles.

The width of intervalsy andz of the ILP method and the
support width of fuzzy numbers̃y and z̃ of the FLP method
were experimentally fixed to2. The weight coefficients in all
models has been fixed as follows:γ1 = 0.1, γ2 = 0.1, γ3 =
0.2, γ4 = γ5 = 1.

The estimation error has been calculated for the OD flow
rates (Fig. 4):E = b̂X∗−βX∗, whereX∗ is a vector of actual
vehicle counts at the entrances of the experimental junction, b̂
is a vector of estimated OD flow rates. ForFLP method we
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Fig. 3. Empirical distributions of error counts for the entrances of the junction
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Fig. 4. Estimation errors (in number of vehicles) for 8 OD flowrates for the
25 cycles

consider̂b = bm. The best results are obtained withCLP and
FLP methods for which the median error is about zero for all
OD flows. The prediction of the exit flows withILP method is
less accurate than those of theFLP method (cf Fig. 5). Note
that the estimation errorE of all methods is higher, if the flow
volume is lower, like for the OD flows “AD” and “BB”.
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VI. CONCLUSION

A new short-time estimation method of the OD matrix
for a signalised junction have been proposed in this paper.
The method is founded on the construction of a conservation
law of vehicles at each traffic light cycle, represented by the
underdetermined system of equations. This system is obtained
in a dynamical way from the model of traffic flows built using
the High-Level Petri Nets (HLPN) [13]. Real data collected
at the experimental signalised junction fitted out with video
cameras are used to estimate the OD flow rates.

Four approaches have been proposed to estimate the OD
matrix. The inherent imprecision of the data was modelled
in three different ways: by introducing slack variables, by
representing the data by intervals and by triangular fuzzy
numbers. An additional historical knowledge about the values
of the OD flow rates is used in two of the proposed approaches
to guarantee the uniqueness of the solution.

The best results were obtained with two linear programming
approaches, one of which is based on the use of the sliding
mean value of the OD flow rates and the second is founded
on fuzzy modelling of the data. The latest method is applied
if the lack of precision of traffic measurements is important.
However, this method does not guarantee the uniqueness of
the solution.

Our future lines of research will be centred, first, on the
improvement of the FLP method in order to provide the best
and unique estimation of the OD flow rates and, second,
on the modelling of the temporal uncertainty of the data by
introducing the notion of a fuzzy token in the HLPN model.
The application of our method should be also extended to a
sequence of junctions.
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