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Semi-classical behaviour of Schr ödinger´s dynamics : revivals of wave packets on hyperbolic trajectory

The aim of this paper is to study the semi-classical behaviour of Schr ödinger´s dynamics for an one-dimensional quantum Hamiltonian with a classical hyperbolic trajectory. As in the regular case (elliptic trajectory), we prove, that for an initial wave packets localized in energy, the dynamics follows the classical motion during short time. This classical motion is periodic and the period T hyp is order of |ln h|. And, for large time, a new period T rev for the quantum dynamics appears : the initial wave packets form again at t = T rev . Moreover for the time t = p q T rev a fractionnal revivals phenomenon of the initial wave packets appears : there is a formation of a finite number of clones of the original wave packet.
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Introduction

Context and motivation

For P h a pseudo-differential operator (here h > 0 is the semi-classical parameter), and for ψ 0 an inital state the quantum dynamics is governed by the famous Schr ödinger equation : ih ∂ψ(t) ∂t = P h ψ(t).

In this paper, we present a detailed study, in the semi-classical regime h → 0, of the behaviour of Schr ödinger's dynamics for an one-dimensional quantum Hamiltonian P h :

D (P h ) ⊂ L 2 (R) → L 2 (R)
with a classical hyperbolic trajectory : the principal symbol p ∈ C ∞ (R 2 , R) of P h has a hyperbolic non-degenerate singularity. Dynamics in the regular case and for elliptic non-degenerate singularity have been the subject of many research in physics [Av-Pe], [LAS], [START_REF] Robinnet | Quantum wave packet revivals[END_REF], [START_REF] Robinnet | Wave packets revivals and quasirevivals in onedimesionnal power law potentials[END_REF], [BKP], [Bl-Ko] and, more recently in mathematics [Co-Ro], [Rob], [START_REF] Paul | Echelles de temps pour l'évolution quantique à petite constante de planck[END_REF], [START_REF] Paul | Reconstruction and non-reconstruction of wave packets[END_REF], [START_REF] Ée | Autour de la dynamique semi-classique de certains systèmes intégrables[END_REF]. The strategy to understand the long times behaviour of dynamics is to use the spectrum of the operator P h . In the regular case, the spectrum of P h is given by the famous Bohr-Sommerfeld rules (see for example [He-Ro], [Ch-VuN], [Col8]) : in first approximation, the spectrum of P h in a compact set is a sequence of real numbers with a gap of size h. The classical trajectories are periodic and supported on elliptic curves.

In the case of hyperbolic singularity we have a non-periodic trajectory supported on a "height" figure (see figure 2). The spectrum near this singularity is more complicated than in the regular case. Y. Colin de Verdière and B. Parisse give an implicit singular Bohr-Sommerfeld rules for hyperbolic singularity ( , and ). This quantization formula is too implicit for using it directly in our motivation. In [START_REF] Ée | Sur le spectre semi-classique d'un système intégrable de dimension 1 autour d'une singularité hyperbolique[END_REF] we have an explicit description of the spectrum for an one-dimesional pesudo-differential operator near a hyperbolic non-degenerate singularity.

Results

With above description, we propose a study of quantum dynamics for large times (≫ |ln h|) . We prove that for a localized initial state, at the begining the dynamics is periodic with a period equal to T hyp = C |ln h| (see corollary 5.12). This period T hyp corresponds to the classical Hamiltonian flow period.

Next for large time scale, a new period T rev of the quantum dynamics appears : this is the revivals phenomenon (like in regular case [Co-Ro], [Rob], [START_REF] Paul | Echelles de temps pour l'évolution quantique à petite constante de planck[END_REF], [START_REF] Paul | Reconstruction and non-reconstruction of wave packets[END_REF], [START_REF] Ée | Autour de la dynamique semi-classique de certains systèmes intégrables[END_REF]). For t = T hyp the packet relocalize in the form of a quantum revival.

We have also the phenomenon of fractional revivals of initial wave packets for time t = p q T rev , with p q ∈ Q : there is a formation of a finite number of clones of the original wave packet ψ 0 with a constant amplitude (see theorems 6.18, 6.19 & 6.20) and differing in the phase plane from the initial wave packet by fractions p q T hyp (see theorem 6.15).

Paper organization

The paper is organized as follows. In section 2 we give some preliminaries about the strategy for analyse the dynamics of a quantum Hamiltonian. In this section we define a simple way to understand the evolution of t → ψ(t) by the autocorrelation function : c(t) := | ψ(t), ψ 0 H | .

In section 3 we describe the hyperbolic singularities mathematical context; we also recall the principal theorem of [START_REF] Ée | Sur le spectre semi-classique d'un système intégrable de dimension 1 autour d'une singularité hyperbolique[END_REF]. This theorem provides the spectrum of the operator P h near the singularity. Section 4 is devoted to define an initial wave packets ψ 0 localized in energy. In part 5 we prove that the quantum dynamics follows the classical motion during short time (see corollary 5.12). This classical motion is periodic and the period T hyp is order of |ln h|. In the last part (part 6) we detail the analysis of revivals phenomenon, see theorem 6.7 for fullrevival theorem and see theorem 6.15 for fractionnal-revivals phenomenon.

Quantum dynamics and autocorrelation function 2.1 The quantum dynamics

For a quantum Hamiltonian P h : D (P h ) ⊂ H → H, H is a Hilbert space, the Schr ödinger dynamics is governed by the Schr ödinger equation :

ih ∂ψ(t) ∂t = P h ψ(t).
With the functional calculus, we can reformulate this equation with the unitary group U(t) = e -i t h P h t∈R

. Indeed, for a initial state ψ 0 ∈ H, the evolution given by :

ψ(t) = U(t)ψ 0 ∈ H.

Return and autocorrelation function

We now introduce a simple tool to understand the behaviour of the vector ψ(t) : a quantum analog or the Poincaré return function.

Definition. The quantum return functions of the operator P h and for an initial state ψ 0 is defined by : r(t) := ψ(t), ψ 0 H ; and the autocorrelation function is defined by :

c(t) := |r(t)| = | ψ(t), ψ 0 H | .
The previous function measures the return on initial state. This function is the overlap of the time dependent quantum state ψ(t) with the initial state ψ 0 . Since the initial state ψ 0 is normalized, the autocorrelation function takes values in the compact set [0, 1]. Then, if we have an orthonormal basis of eigenvectors (e n ) n∈N :

P h e n = λ n (h)e n with λ 1 (h) ≤ λ 2 (h) ≤ • • • ≤ λ n (h)→ + ∞;
we get, for all integer n e -i t h P h e n = e -i t h λ n (h) e n .

So for a initial vector

ψ 0 ∈ D(P h ) ⊂ H, let us denote by (c n ) n∈N = (c n (h)) n∈N the sequence of ℓ 2 (N) given (c n ) n = π (ψ 0 )
, where π is the projector (unitary operator) :

π :    H → ℓ 2 (N) ψ →< ψ, e n > H .
Then, for all t ≥ 0 we have

ψ(t) = U(t)ψ 0 = e -i t h P h ∑ n∈N c n e n = ∑ n∈N c n e -i t h λ n (h) e n .
So, for all t ≥ 0 we obtain

r(t) = ∑ n∈N |c n | 2 e -i t h λ n (h) ; c(t) = ∑ n∈N |c n | 2 e -i t h λ n (h) .

Strategy for study the autocorrelation function

The strategy, performed by the physicists ( [Av-Pe],

[LAS], [Robi1], [Robi2], [BKP], [Bl-Ko]
) is the following :

1. We define a initial vector ψ 0 = ∑ n∈N c n e n localized in the following sense :

the sequence (c n ) n∈N is localized close to a quantum number n 0 (depends on h and a energy level E ∈ R).

2. Next, the idea is to expand by a Taylor formula's the eigenvalues λ n (h) around the energy level E :

λ n (h) = λ n 0 (h) + λ ′ n 0 (h) (n -n 0 ) + λ ′′ n 0 (h) 2 (n -n 0 ) 2 + λ (3) n 0 (h) 6 (n -n 0 ) 3 + • • • (here λ n 0 (h) is the closest eigenvalue to E), hence we get for all t ≥ 0 c(t) = ∑ n∈N |c n | 2 e -it   λ ′ n 0 (h) h (n-n 0 )+ λ ′′ n 0 (h) 2h (n-n 0 ) 2 + λ (3) n 0 (h) 6h (n-n 0 ) 3 +•••   .
3. And, for small values of t, the first approximation of the autocorrelation function c(t) is the function

c 1 (t) := ∑ n∈N |c n | 2 e -it λ ′ n 0 (h) h (n-n 0 ) ;
and for larger values of t, the order 2-approximation is

c 2 (t) := ∑ n∈N |c n | 2 e -it λ ′ n 0 (h) h (n-n 0 )+ λ ′′ n 0 (h) 2h (n-n 0 ) 2 .
In section 5 we study the function t → c 1 (t) and in section 6 we study t → c 2 (t).

3 The context of hyperbolic singularity

Link between spectrum and geometry : semi-classical analysis

For explain the philosophy of semi-classical analysis start by an example : for a real number E > 0; the equation

- h 2 2 ∆ g ϕ = Eϕ
(where ∆ g denotes the Laplace-Beltrami operator on a Riemaniann manifold (M, g)) admits the eigenvectors ϕ k as solution if

- h 2 2 λ k = E.
Hence if h → 0 + then λ k → +∞. So there exists a correspondence between the semi-classical limit (h → 0 + ) and large eigenvalues. The asympotic's of large eigenvalues for the Laplace-Beltrami operator ∆ g on a Riemaniann manifold (M, g), or more generally for a pseudo-differential operator P h , is linked to a symplectic geometry : the phase space geometry. This is the same phenomenon between quantum mechanics (spectrum, operator algebra) and classical mechanics (length of periodic geodesics, symplectic geometry). More precisely, for a pseudo-differential operator P h on L 2 (M) with a principal symbol p ∈ C ∞ (T ⋆ M), there exist a link between the geometry of the foliation p -1 (λ) λ∈R and the spectrum of the operator P h . Indeed, we have the famous result :

(P h -λI d ) u h = O(h ∞ ) then MS(u h ) ⊂ p -1 (λ);
where MS(u h ) ⊂ T ⋆ M denote the microsupport of the function u h ∈ L 2 (M).

Hyperbolic singularity

In dimension one, a point (x 0 , ξ 0 ) ∈ T ⋆ M is a non-degenerate hyperbolic singularity of the symbol function p ∈ C ∞ (T ⋆ M) if and only if :

1. dp(x 0 , ξ 0 ) = 0;
2. the eigenvalues of the Hessian matrix ∇ 2 p(x 0 , ξ 0 ) are pairwise distinct;

3. if, in some local symplectic coordinates (x, ξ) the algebra spanned by ∇ 2 p(x 0 , ξ 0 ) has a basis of the form q = xξ.

Remark 3.1. There exists analogue definition for completely integrable systems, see for example the book of San V ũ Ngo . c [VuN].

The canonical example in dimension 1 is the Schr ödinger operator with double wells potential :

P h = - h 2 2 ∆ + V; we assume V ∈ C ∞ (R), for all x ∈ R, V(x) ≥ C and lim |x|→∞ V(x) = +∞.
Here the principal symbol of P h is the function

p(x, ξ) = ξ 2 2 + V(x).
With the previous hypotheses on the potential V, the operator P h is self-adjoint, the spectrum is a sequence of real numbers (λ n (h)) n≥0 and the eigenvectors (e n ) n≥0 be an orthonormal basis of the Hilbert space L 2 (R) (for example see the survey [Lab1]). We also suppose that the potential V admits exactly one local non-degenerate maximum. Without loss generality, we may suppose

V(0) = 0; V ′ (0) = 0; V ′′ (0) < 0.
Then the foliation associated to the principal symbol p(x, ξ) = ξ 2 /2 + V(x) admits a singular fiber Λ 0 = p -1 (0). 

Spectrum near the singularity

In . Record here this description. We take the presentation from the paper [Lab3] and refer to this paper for more details.

Some notations (see [Lab3])

In ) the equality ε 0 (0) = 0 and ε ′ 0 (0) = 1/ -V ′′ (0). Hence, if we use the Taylor formula on the smooth function ε 0 ; for all E ∈ [-δ, δ] we get

ε(E) = E -V ′′ (0) + O(E 2 ) + +∞ ∑ j=1 ε j (E)h j . So, for λ ∈ [-1, 1]; and h small enough (for have [-h, h] ⊂ [-δ, δ]) we get ε(λh) = λh -V ′′ (0) + O(h 2 ) + +∞ ∑ j=1 ε j (λh)h j .
In the papers 

F h (E) := - θ + (E) + θ -(E) 2 + π 2 + ε(E) h ln(h) + arg Γ 1 2 + i ε(E) h ;
Γ is the Gamma function, and by

G h (E) := θ + (E) -θ -(E) 2 .
On the compact set [-1, 1], let us consider the functions λ → f h (λ) and λ → g h (λ) defined by :

f h (λ) := F h (λh); g h (λ) := G h (λh).
For finish, let us consider the functions λ → Y h (λ) and λ → Z h (λ) defined on the compact set [-1, 1] by

Y h (λ) := f h (λ) -arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) ; Z h (λ) := f h (λ) + arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) .
We have the following result (see [START_REF] Ée | Sur le spectre semi-classique d'un système intégrable de dimension 1 autour d'une singularité hyperbolique[END_REF]) :

Proposition 3.2. For h small enough, the function Y h (resp. Z h ) is a bijection from

[-1, 1] onto Y h ([-1, 1]) (resp. onto Z h ([-1, 1])). Moreover on the compact set [-1, 1] we have Y ′ h (λ) = ln(h) -V ′′ (0) + O(1).
Similary for the function Z h .

Since the functions Y h et Z h are bijectives, we can consider

A h := Y -1 h : Y h ([-1, 1]) → [-1, 1]; B h := Z -1 h : Z h ([-1, 1]) → [-1, 1].
Notation 3.3. Let us denotes :

I h := {k ∈ Z, 2πk ∈ Y h ([-1, 1])} = Y h ([-1, 1]) 2π ∩ Z; J h := {ℓ ∈ Z, 2πℓ ∈ Z h ([-1, 1])} = Z h ([-1, 1]) 2π ∩ Z.

The main theorem

The main theorem of the paper [Lab3] is the the following :

Theorem 3.4. [Lab3]. The semi-classical spectrum of P h in the compact set - √ h, √ h is the disjoint union (α k (h)) k∈I h (β ℓ (h)) ℓ∈J h of two families (α k (h)) k and (β ℓ (h)) ℓ such that α k (h) := hA h (2πk) ∈ R, β ℓ (h) := hB h (2πℓ) ∈ R. The functions A h and B h are C ∞ smooth. The families (α k (h)) k , (β ℓ (h))
ℓ are strictly non-increasing and :

β k+1 (h) < α k (h) < β k (h) < α k-1 (h).
Moreover, the spectral gap is of order O(h/ |ln(h)|); e.g : there exists C, C ′ > 0 such that :

Ch |ln(h)| ≤ |α k+1 (h) -α k (h)| ≤ C ′ h |ln(h)| , Ch |ln(h)| ≤ |β k+1 (h) -β k (h)| ≤ C ′ h |ln(h)| . Corollary 3.5. The number of eigenvalues in the compact set - √ h, √ h is of order |ln(h)| / √ h.
In this paper, for technical reason, we just use the shape of the spectrum

in the compact set [-h, h] ⊂ - √ h, √ h .
More precisely we choose an initial wave packet ψ 0 localized in a compact set of size h. Indeed, the estimates in lemma 5.1 and 6.1 are very difficult to enable in the compact set -√ h, √ h .

Notation 3.6. Let us denote by Θ h the set of index for eigenvalues into the compact set [-h, h]; e.g

Θ h := {n ∈ N, λ n (h) ∈ [-h, h]} .

Some preliminaries

In this section, we define partials autocorrelations functions, next we define an initial vector ψ 0 . And for finish, we introduce the set ∆ ⊂ N, this set is useful for making estimates in sections 5 and 6.

Partials autocorrelations functions

Now, let be a initial vector ψ 0 = ∑ n∈N c n e n , then we have for all t ≥ 0

r(t) = ∑ n∈Θ h |c n | 2 e -i t h λ n (h) + ∑ n∈N-Θ h |c n | 2 e -i t h λ n (h) .
After, we let us consider an initial vector localized near the singularity in a set of size h; hence the second series

∑ n∈N-Θ h |c n | 2 e -i t h λ n (h) will be equal to O 1 ln(h) ∞ .
Next, the idea is to use the families (α k (h)) k and (β ℓ (h)) ℓ from the theorem above : as the eigenvalues of P h in the compact set [-h, h] are distinct; for all index k ∈ I h and ℓ ∈ J h there exists a unique pair

(σ 1 (k), σ 2 (ℓ)) ∈ Θ 2 h such that :    hA h (2πk) = λ σ 1 (k) (h) hB h (2πℓ) = λ σ 2 (ℓ) (h).
So, we can consider the applications :

σ 1 :    I h → Θ h k → σ 1 (k)
and σ 2 :

   J h → Θ h ℓ → σ 2 (ℓ).
Clearly, this applications are injectives; hence I h is isomorphic to σ 1 (I h ) (similary for J h and σ 2 (J h )). Moreover we have

Θ h = σ 1 (I h ) σ 2 (J h ).
So, we get the equality :

r(t) = ∑ k∈σ 1 (I h ) |c k | 2 e -i t h λ k (h) + ∑ ℓ∈σ 2 (J h ) |c ℓ | 2 e -i t h λ ℓ (h) + ∑ n∈N-Θ h |c n | 2 e -i t h λ n (h) = ∑ k∈I h c σ 1 (k) 2 e -itA h (2πk) + ∑ ℓ∈J h c σ 2 (ℓ) 2 e -itB h (2πℓ) + ∑ n∈N-Θ h |c n | 2 e -i t h λ n (h) .
Now, our goal here is to study the series t → a et t → b(t) :

Definition 4.1. Let us consider partial autocorrelation functions :

a(t) := ∑ k∈I h c σ 1 (k) 2 e -itA h (2πk) , b(t) := ∑ ℓ∈J h c σ 2 (ℓ) 2 e -itB h (2πℓ) .

Choice of initial state

Prologue

Let us define an initial vector ψ 0 = ∑ n∈N c n e n localized near the real number hE Remark 4.3. Without loss of generality, we may suppose n 0 and m 0 are unique.

(where E ∈ [-1, 1]).
The integer n 0 (resp. m 0 ) is the index of the eigenvalues from the family (α k (h)) k (resp. (β ℓ (h)) ℓ ) the closest to the real number hE. As the spectral gap is of order O(h/ |ln(h)|) there exists C > 0 such that :

|hA h (2πn 0 ) -hE| ≤ Ch |ln h| , |hB h (2πm 0 ) -hE| ≤ Ch |ln h| .
So, we get :

Lemma 4.4. As h → 0, we have n 0 ∼ N h and m 0 ∼ M h
where N and M non-null real numbers.

Proof. We give the proof for the integer n 0 . As

|A h (2πn 0 ) -E| ≤ C |ln h| ; e.g. A h (2πn 0 ) = E + O 1 |ln h| , we get 2πn 0 = Y h E + O 1 |ln h| = f h E + O 1 |ln h| -arccos     cos g h E + O 1 |ln h| 1 + exp 2πε hE + O h |ln h| /h     .
By definition :

f h E + O 1 |ln h| = F h hE + O h |ln h| = - θ + (hE + O (h/ |ln(h)|)) + θ -(hE + O (h/ |ln(h)|)) 2 + π 2 + ε (hE + O (h/ |ln(h)|)) h ln(h) + arg Γ 1 2 + i ε (hE + O (h/ |ln(h)|)) h .
Hence, if we multiply 2πn 0 by h we obtain

2πn 0 h = -h θ + (hE + O (h/ |ln(h)|)) + θ -(hE + O (h/ |ln(h)|)) 2 + π 2 h + ε (hE + O (h/ |ln(h)|)) ln(h) + h arg Γ 1 2 + i ε (hE + O (h/ |ln(h)|)) h -h arccos     cos g h E + O 1 |ln h| 1 + exp 2πε hE + O h |ln h| /h     .
Let us evaluate this five terms. As the function

E → - θ + (hE + O (h/ |ln(h)|)) + θ -(hE + O (h/ |ln(h)|)) 2
admit a asymptotic expansion in power of h from -1 to +∞, we have

-h θ + (hE + O (h/ |ln(h)|)) + θ -(hE + O (h/ |ln(h)|)) 2 = O(1); more precisely, for h → 0 -h θ + (hE + O (h/ |ln(h)|)) + θ -(hE + O (h/ |ln(h)|)) 2 → - 1 2 S + -1 (0) + S - -1 (0) = 0.
Next :

ε (hE + O (h/ |ln(h)|)) ln(h) =   hE + O (h/ |ln(h)|) -V ′′ (0) + O(h 2 )   ln(h) → 0.
For finish, as

arg Γ 1 2 + i ε (hE + O (h/ |ln(h)|)) h = O(1) and arccos     cos g h E + O 1 |ln h| 1 + exp 2πε hE + O h |ln h| /h     = O(1);
we get, for h → 0 :

h arg Γ 1 2 + i ε (hE + O (h/ |ln(h)|)) h → 0 and h arccos     cos g h E + O 1 |ln h| 1 + exp 2πε hE + O h |ln h| /h     → 0. Hence, lim h→0 2πn 0 h = - 1 2 S + -1 (0) + S - -1 (0) ;
so we prove the lemma.

First definition (non definitive)

For technical reason, let us introduce the following sequence :

Definition 4.5. Let us consider :

µ n,0 :=    hA h (2πn 0 ) if n ∈ σ 1 (I h ) hB h (2πm 0 ) if n ∈ σ 2 (J h ). 0 if n ∈ N -Θ h .
For n ∈ Θ h = σ 1 (I h ) σ 2 (J h ), the sequence (µ n,0 ) n take only two values :

• the closest eigenvalue from the family (α k (h)) k to the real number hE;

• or the closest eigenvalue from the family (β ℓ (h)) ℓ to the real number hE. Now, we can give the first (non definitive) definition of our initial state.

Definition 4.6. Let us consider the sequence (c n (h)) n∈Z defined by :

c n := c n (h) = K h χ µ n -µ n,0 h α ′ |ln h| γ ′ χ 0 µ n -µ n,0 2h , n ∈ Z
where χ ∈ S(R) , non null, non-negative and even, α ′ and γ ′ are two reals numbers;

χ 0 ∈ D(R) such that χ 0 ≡ 1 on the set ]-1, 1[ and supp(χ 0 ) ⊂ [-1, 1].
We also denote

K h := χ µ n -µ n,0 h α ′ |ln h| γ ′ χ 0 µ n -µ n,0 2h ℓ 2 (N)
.

Let us detail this choice :

1. The term χ µ n -µ n,0 h α ′
|ln h| γ ′ localizes around the energy level hE (for technical reason we localize around the closest eigenvalues to E h . 2. Constants α ′ et γ ′ are coefficients for dilate the function χ.

3. The function χ 0 is a cut-off for eigenvalues out of the compact set [-h, h].

Choice of parameter α ′ and γ ′

The only way to have a localization for initial state larger than the spectral gap, and in the same time, to have a localization in the compact set [-h, h]; e.g to have in the same time :

h |ln h| ≪ h α ′ |ln h| γ ′ ≤ h; is to take α ′ = 1; 0 ≤ γ ′ < 1.
Remark 4.7. The larger choice for h α ′ / |ln h| γ ′ = h/ |ln h| γ ′ is to take γ ′ = 0. Under this assumptions, we can forget the function χ 0 and we get :

Second definition

Definition 4.8. Let us consider the sequence (c n (h)) n∈Z defined by :

c n := K h χ µ n -µ n,0 h |ln h| γ ′ , n ∈ Z
where χ ∈ S(R) , non null, non-negative and even; 0 ≤ γ ′ < 1; and

K h := χ µ n -µ n,0 h |ln h| γ ′ ℓ 2 (N)
. Now, in the partial autocorrelations functions a(t) and b(t) appears the sequences c σ 1 (k) k and c σ 2 (ℓ) ℓ ; for simplicity let us consider the following sequences : Notation 4.9. Let us denote

a n := c σ 1 (n) = K h χ (A h (2πn) -A h (2πn 0 )) |ln h| γ ′ ; b m := c σ 2 (m) = K h χ (B h (2πm) -B h (2πm 0 )) |ln h| γ ′ .

Last definition

By Lagrange's theorem there exists a real number

ζ = ζ(n, h, E) ∈ Y h ([-1, 1]) such that A h (2πn) -A h (2πn 0 ) = A ′ h (ζ)2π(n -n 0 ); since (see proposition 3.2) A ′ h (ζ) = 2π |ln(h)| √ -V ′′ (0) + O(1) ; we get A h (2πn) -A h (2πn 0 ) = 2π(n -n 0 ) -V ′′ (0) |ln h| 1 + O 1 |ln h| .
Definition 4.10. Let us consider the sequence (a n ) n∈Z = (a n (h)) n∈Z defined by :

a n := K h χ n -n 0 |ln h| 1-γ ′ , n ∈ Z
where χ ∈ S(R) , non null, non-negative and even; 0 ≤ γ ′ < 1; and

K h := χ n -n 0 |ln h| 1-γ ′ ℓ 2 (N)
. So, clearly the sequence (a n ) n ∈ ℓ 2 (Z). Now, let us evaluate the constant of normalization K h . Start by the : Lemma 4.11. For a function ϕ ∈ S(R) and ε ∈ ]0, 1]; we have :

∑ ℓ∈Z, |ℓ|≥1 ϕ ℓ ε = O(ε ∞ ).
Proof. The starting point is the following remark : for all function ψ ∈ S(R) and for all ε ∈ ]0, 1] we have

∑ ℓ∈Z, |ℓ|≥1 ψ ℓ ε = O(1).
Indeed, for all ℓ ∈ Z, |ℓ| ≥ 1

ψ ℓ ε ≤ M 1 + ℓ ε 2 = ε 2 M ε 2 + ℓ 2 ≤ M ℓ 2 and since ∑ ℓ∈Z, |ℓ|≥1 M ℓ 2 < +∞.
we conclude.

Next, we apply this to the function ψ(x) := x 2N ϕ(x), where N ∈ N; and we get for all N ≥ 1 :

∑ ℓ∈Z, |ℓ|≥1 ϕ ℓ ε ≤ ε 2N ∑ ℓ∈Z ψ ℓ ε = O(ε 2N ).
So we prove the lemma.

Theorem 4.12. We have

K h = 1 F (χ 2 ) (0) |ln h| 1-γ ′ 2 + O 1 ln(h) ∞ ; so a n ℓ 2 (N) = 1 + O 1 ln(h) ∞ .
Proof. By Poisson formula and the lemma above we get the equality

∑ n∈Z χ 2 n -n 0 |ln h| 1-γ ′ = |ln h| 1-γ ′ ∑ ℓ∈Z F χ 2 -ℓ |ln h| 1-γ ′ = |ln h| 1-γ ′ F χ 2 (0) + O 1 ln(h) ∞ Now, start with the equality ∑ n∈N χ 2 n -n 0 |ln h| 1-γ ′ = ∑ n∈Z χ 2 n -n 0 |ln h| 1-γ ′ - -1 ∑ n=-∞ χ 2 n -n 0 |ln h| 1-γ ′ = |ln h| 1-γ ′ F χ 2 (0) + O 1 ln(h) ∞ - -1 ∑ n=-∞ χ 2 n -n 0 |ln h| 1-γ ′ .
Since the function F χ 2 is even :

-1 ∑ n=-∞ χ 2 n -n 0 |ln h| 1-γ ′ = +∞ ∑ n=1 χ 2 n + n 0 |ln h| 1-γ ′ ≤ B k |ln h| (1-γ ′ )k +∞ ∑ n=1 1 |n + n 0 | k .
And,

B k |ln h| (1-γ ′ )k +∞ ∑ n=1 1 |n + n 0 | k ≤ B k |ln h| (1-γ ′ )k ∞ 0 du (u + n 0 ) k = |ln h| (1-γ ′ )(k-1) B k (k -1) 1 n k-1 0 . Now, since for h → 0 we have n 0 ∼ N h , we get, for h → 0 |ln h| (1-γ ′ )k B k (k -1) 1 n k-1 0 ∼ B k N k-1 (k -1) h k-1 |ln h| (1-γ ′ )k consequently -1 ∑ n=-∞ χ 2 n -n 0 |ln h| 1-γ ′ = O 1 ln(h) ∞ .
So, we proove that

χ n -n 0 |ln h| 1-γ ′ 2 ℓ 2 (N) = |ln h| 1-γ ′ F χ 2 (0) + O 1 ln(h) ∞ ; hence K h = 1 √ F(χ 2 )(0)|ln h| 1-γ ′ 2 + O 1 ln(h) ∞ .
For finish, we have

a n 2 ℓ 2 (N) = K 2 h |ln h| 1-γ ′ F χ 2 (0) + O 1 ln(h) ∞ = 1 + O 1 ln(h) ∞ .

The set ∆

Definition 4.13. Let us define the sets of integers ∆ = ∆(h, E) and Γ = Γ(h, E) by :

∆ := n ∈ N, |n -n 0 | ≤ |ln(h)| γ ⊂ N and Γ := N -∆
where γ is a real number such that γ < 1 and γ + γ ′ > 1.

Remark 4.14. Since γ < 1, we have |ln(h)| γ < |ln(h)| , hence for h → 0 we have

Card (I h ) ∼ |ln(h)| .
So, for h small enough we obtain ∆ ⊂ I h . On the other hand, since γ + γ ′ > 1 we have |ln(h)| 1-γ ′ ≪ |ln(h)| γ ; this mean that the set ∆ is larger than the localization of initial state.

Lemma 4.15. We have

∑ n∈Γ |a n | 2 = O 1 ln(h) ∞ .
Proof. The starting point is the following inequality :

∑ n∈Γ |a n | 2 ≤ ∑ n∈Z, |n-n 0 |>h δ-1 |a n | 2 .
Next, with the same argument as in the lemma 4.11, we show that for all integer

N ≥ 1 ∑ n∈Z n -n 0 h δ ′ -1 2N |a n | 2 = O(1).
Without loss generality, we may suppose that n 0 = 0. Next we write :

∑ n∈Z, |n|>h δ-1 |a n | 2 = h 2N(δ ′ -1) ∑ n∈Z, |n|>h δ-1 |a n | 2 n h δ ′ -1 2N 1 n 2N ≤ h 2N(δ ′ -1) h 2N(δ-1) ∑ n∈Z |a n | 2 n h δ ′ -1 2N = O h 2N(δ ′ -δ) . Since δ ′ > δ, we obtain ∑ n∈Γ |a n | 2 = O(h ∞ ).
5 Order 1 approximation : hyperbolic period

Introduction

The aim of this section is to study the series :

a : t → ∑ n∈N |a n | 2 e -itA h (2πn) .
Unfortunately this function is too difficult to understand. So, in this section we use an approximation of t → a(t), the tricks is explained in section 2.3. Here, by a Taylor's formula we get :

a(t) = ∑ n∈N |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )+A ′′ h (ζ)2π 2 (n-n 0 ) 2 ) where ζ = ζ(n, h, E) ∈ Y h ([-1, 1]).
Next, we need the following lemma.

Lemma 5.1. Uniformly, on the compact set [-1, 1] we have :

λ → A ′′ h • Y h (λ) = O 1 ln(h) 3 .
Proof. Derivatives formulas gives for all x ∈ Y h ([-1, 1]) , the equality

A ′′ h (x) = -Y ′′ h • A h (x) Y ′ h • A h 3 (x) ; hence, for λ ∈ [-1, 1] A ′′ h • Y h (λ) = -Y ′′ h (λ) Y ′ h 3 (λ) . First, for all λ ∈ [-1, 1] Y ′′ h (λ) = -h 2 θ ′′ + (λh) + θ ′′ -(λh) 2 + hε ′′ (λh) ln(h) + ∂ 2 ∂λ 2 arg Γ 1 2 + i ε(λh) h - ∂ 2 ∂λ 2 arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) .
And, for all λ ∈ [-1, 1] we have

-h 2 θ ′′ + (λh) + θ ′ -(λh) 2 = O(h) and hε ′′ (λh) ln(h) = O(h ln(h)).
Next, we study the term

∂ 2 ∂λ 2 arg Γ 1 2 + i ε(λh) h : for all λ ∈ [-1, 1] we have : ∂ ∂λ arg Γ 1 2 + i ε(λh) h = ∂ ∂λ Im ln Γ 1 2 + i ε(λh) h = Im ∂ ∂λ ln Γ 1 2 + i ε(λh) h = Im   Γ ′ 1 2 + i ε(λh) h iε ′ (λh) Γ 1 2 + i ε(λh) h   = ε ′ (λh)Re   Γ ′ 1 2 + i ε(λh) h Γ 1 2 + i ε(λh) h   = ε ′ (λh)Re Ψ 1 2 + i ε(λh) h ; hence, for all λ ∈ [-1, 1] ∂ 2 ∂λ 2 arg Γ 1 2 + i ε(λh) h = ∂ ∂λ ε ′ (λh)Re Ψ 1 2 + i ε(λh) h = hε ′′ (λh)Re Ψ 1 2 + i ε(λh) h -ε ′ (λh) 2 Im Ψ (1) 1 2 + i ε(λh) h , wher Ψ (1) is the first-derivative of di-Gamma function (Ψ(z) := Γ ′ (z) Γ(z) , see [Ab- St]). Hence the function λ → ∂ ∂λ ε ′ (λh)Re Ψ 1 2 + i ε(λh) h is equal to O(1) on the compact set [-1, 1].
For finish, we estimate the term :

λ → ∂ 2 ∂λ 2 arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) ; for all λ ∈ [-1, 1] we obtain ∂ 2 ∂λ 2 arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) = N h (λ) D h (λ)
where N h (λ) is a polynomial (with coefficients does not depends on h) in the variables :

cos (g h (λ)) , sin (g h (λ)) , ∂ ∂λ (g h (λ)) , ∂ 2 ∂λ 2 (g h (λ)) ∂ ∂λ (ε(λh)/h) , ∂ 2 ∂λ 2 (ε(λh)/h) , exp (2πε(λh)/h) . Hence λ → N h (λ) = O(1) on the compact set [-1, 1] . Next we have D h (λ) = (1 + exp (2πε(λh)/h)) 2 1 + exp (2πε(λh)/h) -cos 2 (g h (λ)) 3 2 ;
since the function λ → exp (2πε(λh)/h) > 0 is equal to O(1) on the compact set [-1, 1] , we see easily that on the compact set [-1, 1] we have

λ → 1 D h (λ) = O(1). Next, on the set [-1, 1] λ → ∂ 2 ∂λ 2 arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) = O(1).
Then on the compact set [-1, 1] we obtain that λ → Y ′′ h (λ) = O(1). For finish, since, uniformly on the compact set [-1, 1] we have the equality

Y ′ h (λ) = ln(h) -V ′′ (0) + O(1); we deduce that λ → A ′′ h • Y h (λ) = O 1 ln(h) 3 on [-1, 1].

Definition of a first order approximation time scale

We have the following approximation result :

Proposition 5.2. Let α a real number such that α < 3 -2γ. Then, uniformly for all t ∈ 0, |ln(h)| α we have :

a(t) = ∑ n∈N |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )) + O |ln(h)| α+2γ-3 .
Proof. Let us introduce the difference ε(t) := ε(t, h) defined by :

ε(t) := ∑ n∈N |a n | 2 e -itA h (2πn) -∑ n∈N |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )) .
Taylor-Lagrange's formula give the existence of a real number

ζ = ζ(n, h, E) ∈ Y h ([-1, 1]) such that A h (2πn) = A h (2πn 0 ) + A ′ h (2πn 0 )2π(n -n 0 ) + A ′′ h (ζ)2π 2 (n -n 0 ) 2 ;
hence for all t ≥ 0 we get

ε(t) = ∑ n∈N |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )+A ′′ h (ζ)2π 2 (n-n 0 ) 2 ) -∑ n∈N |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )) = ∑ n∈N |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )) e -itA ′′ h (ζ)2π 2 (n-n 0 ) 2 -1 .
With the sets Γ,∆ and by triangular inequality, we obtain for all t ≥ 0

ε(t) ≤ ∑ n∈∆ |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )) e -itA ′′ h (ζ)2π 2 (n-n 0 ) 2 -1 + ∑ n∈Γ |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )) e -itA ′′ h (ζ)2π 2 (n-n 0 ) 2 -1 . (1) 
First, look at the term the right part of the inequality above, for all t ≥ 0 we have

∑ n∈Γ |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )) e -itA ′′ h (ζ)2π 2 (n-n 0 ) 2 -1 ≤ 2 ∑ n∈Γ |a n | 2 = O 1 ln(h) ∞
by the lemma 4.15. Now look at the left term of the inequality above. With the lemma 5.1: for all integer n ∈ ∆ and for all real number t ∈ 0, |ln(h)| α we have

tA ′′ h (ζ)2π 2 (n -n 0 ) 2 ≤ M |ln(h)| α+2γ-3
where M > 0. Consequently, for all integer n ∈ ∆ and for all t ∈ 0, |ln(h

)| α we have e -itA ′′ h (ζ)2π 2 (n-n 0 ) 2 -1 = O |ln(h)| α+2γ-3 ; hence for all t ∈ 0, |ln(h)| α ∑ n∈∆ |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )) e -itA ′′ h (ζ)2π 2 (n-n 0 ) 2 -1 ≤ O |ln(h)| α+2γ-3 ∑ n∈∆ |a n | 2 ≤ O |ln(h)| α+2γ-3 ∑ n∈N |a n | 2 = O |ln(h)| α+2γ-3 .
So, for all t ∈ 0, |ln(h)| α we get finally

ε(t) = O |ln(h)| α+2γ-3 .
We conclude that, the principal term of the partial autocorrelation a(t) in the time-scale 0, |ln(h)| α is: Definition 5.3. The principal term of the partial autocorrelation a(t) is defined by :

a 1 : t → ∑ n∈N |a n | 2 e -it(A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )) .
We also define the function a 1 by

a 1 : t → ∑ n∈N |a n | 2 e -itA ′ h (2πn 0 )2π(n-n 0 ) .
Hence a 1 (t) = e -itA h (2πn 0 ) a 1 (t). Now, we study this serie in details.

Periodicity of the principal term

Clearly, the function t → |a 1 (t)| is 1/A ′ h (2πn 0 )-periodic, so the approximation a 1 defines an important characteristic time scale : Definition 5.4. Let us define the hyperbolic period T hyp = T hyp (h, E) by

T hyp := 1 A ′ h (2πn 0 ) . Note that, sinceA ′ h (ζ) = 2π/ |ln(h)| √ -V ′′ (0) 
+ O(1) ; hence for h → 0 we have

T hyp ∼ K |ln(h)| ;
where K > 0 (not depends on h).

Geometric interpretation of the period

The period T hyp correspond to the period of the classical flow. The term |ln(h)| is the signature of the hyperbolic singularity : indeed, the term |ln(h)| cor- respond to the period of the classical flow with a initial point on the disc

D(O, √ h) := (x, ξ) ∈ R 2 , x 2 + ξ 2 = √ h . Theorem 5.5. [Lab3]. Let us consider the point m h = √ h, 0 ∈ T * R.
Then the Hamiltonian's flow associated to the function p and with initial point m h is periodic and the period τ h verify, for h → 0, the following equivalent : 

Comparison between hyperbolic period and the time scale 0, |ln(h)| α

Since γ < 1, we have 1 < 3 -2γ; hence there exist a real number α such that α ∈ ]1, 3 -2γ[. Consequently, we get

|ln(h)| < |ln(h)| α < |ln(h)| 3-2γ .
So, we can make a "good choice" for α : for h small enough we have :

0, T hyp ⊂ 0, |ln(h)| α .

Behaviour of autocorrelation function on a hyperbolic period

Now, let us study in details the function a 1 (t) on the period 0, T hyp . Start by a technical proposition :

Proposition 5.7. For all t ≥ 0, we have the equality :

∑ n∈Z |a n | 2 e -it2π(n-n 0 ) 1 T hy p = 1 F (χ 2 ) (0) ∑ ℓ∈Z F χ 2 -|ln h| 1-γ ′ ℓ + t T hyp .
Proof. Let us consider the function Ω t defined by

Ω t :      R → C x → |a x | 2 e -it2π(x-n 0 ) 1 T hy p
where t ∈ R is a parameter, and let us recall a x is defined by

a x = 1 F (χ 2 ) (0) |ln h| 1-γ ′ 2 χ x -n 0 |ln h| 1-γ ′ ; thus ∑ n∈Z |a n | 2 e -it2π(n-n 0 ) 1 T hy p = ∑ n∈Z Ω t (n). So clearly, the function Ω t ∈ S(R), then the Fourier transform F (Ω t ) is equal, for all ζ ∈ R, to F (Ω t ) (ζ) = 1 F (χ 2 ) (0) |ln h| 1-γ ′ e it2πn 0 1 T hy p F χ 2 x -n 0 |ln h| 1-γ ′ e -it2πx 1 T hy p (ζ). = 1 F (χ 2 ) (0) e -2iπn 0 ζ F χ 2 -|ln h| 1-γ ′ ζ + t T hyp .
With the Poisson formula we get

∑ n∈Z Ω t (n) = ∑ ℓ∈Z F (Ω t ) (ℓ) = 1 F (χ 2 ) (0) ∑ ℓ∈Z F χ 2 -|ln h| 1-γ ′ ℓ + t T hyp .
So, now, our goal is to study the behaviour of the serie : Remark 5.9. Without loss of generality, we may suppose ℓ(t) is unique. On the other hand, for all integer ℓ ∈ Z such that ℓ = ℓ(t) we get :

t → 1 F (χ 2 ) (0) ∑ ℓ∈Z F χ 2 -|ln h| 1-γ ′ ℓ + t T hyp . Since the function F χ 2 ∈ S(
ℓ + t T hyp ≥ 1 2 .
Lemma 5.10. For a function ϕ ∈ S(R) and ε ∈ ]0, 1] then, uniformly for u ∈ R we have :

∑ ℓ∈Z, |ℓ+u|≥ 1 2 ϕ ℓ + u ε = O(ε ∞ ).
Proof. We see easily that, uniformly for u ∈ R we have

∑ ℓ∈Z, |ℓ+u|≥ 1 2 ϕ ℓ + u ε = O(1).
Indeed, since ε ∈ ]0, 1], without loss of generality, we may suppose u ∈ [-1, 1].

And since for all u ∈ [-1, 1] we have

ϕ ℓ + u ε ≤ M 1 + (ℓ+u) 2 ε 2 = ε 2 M ε 2 + (ℓ + u) 2 ≤ M (ℓ + u) 2 = M |ℓ 2 -2 |ℓ|| ; and we conclude. Next, ∑ ℓ∈Z, |ℓ+u|≥ 1 2 ϕ ℓ + u ε = ∑ ℓ∈Z, |ℓ+u|≥ 1 2 ℓ + u ε 2N ϕ ℓ + u ε ε 2N (ℓ + u) 2N ≤ ε 2N 4 N ∑ ℓ∈Z ℓ + u ε 2N ϕ ℓ + u ε .
To conclude the proof, we apply that to the function ψ(x) := x 2N ϕ(x).

Theorem 5.11. Uniformly for t ≥ 0 we have :

∑ n∈N |a n | 2 e -it2π(n-n 0 ) T hy p = 1 F (χ 2 ) (0) F χ 2 -|ln h| 1-γ ′ d t, T hyp Z + O 1 ln(h) ∞ .
Proof. Since the proposition 5.7 and with the lemma above we get for all t ≥ 0

∑ n∈Z |a n | 2 e -it2π(n-n 0 ) t T hy p = 1 F (χ 2 ) (0) ∑ ℓ∈Z F χ 2 -|ln h| 1-γ ′ ℓ + t T hyp = 1 F (χ 2 ) (0) F χ 2 -|ln h| 1-γ ′ d t, T hyp Z + O 1 ln(h) ∞ . Next, for all t ≥ 0 ∑ n∈N |a n | 2 e -it2π(n-n 0 ) 1 T hy p = ∑ n∈Z |a n | 2 e -it2π(n-n 0 ) 1 T hy p - -1 ∑ n=-∞ |a n | 2 e -it2π(n-n 0 ) 1 T hy p ; = 1 F (χ 2 ) (0) ∑ ℓ∈Z F χ 2 -|ln h| 1-γ ′ ℓ + t T hyp - -1 ∑ n=-∞ |a n | 2 e -it2π(n-n 0 ) 1 T hy p .
Hence, by triangular inequality, we have for all t ≥ 0

∑ n∈N |a n | 2 e -it2π(n-n 0 ) 1 T hy p - 1 F (χ 2 ) (0) F χ 2 -|ln h| 1-γ ′ d t, T hyp Z ≤ ∑ ℓ =ℓ(t) 1 F (χ 2 ) (0) F χ 2 -|ln h| 1-γ ′ ℓ + t T hyp + +∞ ∑ n=1 |a -n | 2 .
Since, for all t ≥ 0, we have 1

F (χ 2 ) (0) ∑ ℓ =ℓ(t) F χ 2 -|ln h| 1-γ ′ ℓ + t T hyp = O 1 ln(h) ∞ ; and +∞ ∑ n=1 |a -n | 2 = O 1 ln(h) ∞ .
So we prove the theorem. Now, we can formulate the main result of the section 5 : Corollary 5.12. We have :

(i) for t such that t ∈ T hyp Z we get

∑ n∈N |a n | 2 e -it 2π(n-n 0 ) T hy p = 1.
(ii) For all ε > 0 such that ε < 1γ ′ , and for t such that d t, T hyp Z >

|ln h| γ ′ -1+ε ; we get ∑ n∈N |a n | 2 e -it 2π(n-n 0 ) T hy p = O 1 ln(h) ∞ .
Proof. The first point is clear. For the second : if

-|ln h| 1-γ ′ ℓ(t) + tA ′ h (2πn 0 ) > |ln h| ε
thus, we have :

F χ 2 -|ln h| 1-γ ′ ℓ(t) + tA ′ h (2πn 0 ) ≤ B k 1 + |ln h| ε k ≤ B k |ln h| -εk .
for all integer k ≥ 1; so we prove the second point.

6 Second order approximation : revival period

Introduction

In this this section, we use a second order approximation of the function t → a(t), indeed by a Taylor's formula we have for all t ≥ 0

a(t) = ∑ n∈N |a n | 2 e -it A h (2πn 0 )+A ′ h (2πn 0 )2π(n-n 0 )+A ′′ h (2πn 0 )2π 2 (n-n 0 ) 2 +A (3) h (ζ) (2π) 3 6 (n-n 0 ) 3 where ζ = ζ(n, h, E).
We need the :

Lemma 6.1. Uniformly, on the compact set [-1, 1] we have λ → A (3) h • Y h (λ) = O 1 ln(h) 4 .
Proof. With the derivatives formulas, we have for all

x ∈ Y h ([-1, 1]) A (3) h (x) = -Y (3) h • A h (x) Y ′ h • A h 4 (x) + 3 Y ′′ h • A h 2 (x) Y ′ h • A h 5 (x) ; hence, for all λ ∈ [-1, 1] we get A (3) h • Y h (λ) = -Y (3) h (λ) Y ′ h 4 (λ) + 3 Y ′′ h 2 (λ) Y ′ h 5 (λ) .
First, let us estimate the function λ → Y

(3)

h (λ). For all λ ∈ [-1, 1] we have Y (3) h (λ) = -h 3 θ (3) + (λh) + θ (3) -(λh) 2 + h 2 ε (3) (λh) ln(h) + ∂ 3 ∂λ 3 arg Γ 1 2 + i ε(λh) h - ∂ 3 ∂λ 3 arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) . Uniformly, on the compact set [-1, 1] we have λ → -h 3 θ (3) + (λh) + θ (3) -(λh) 2 = O(h 2 ) and λ → h 2 ε (3) (λh) ln(h) = O(h 2 ln(h)).
Next, let us estimate the function

λ → ∂ 3 ∂λ 3 arg Γ 1 2 + i ε(λh) h : for all λ ∈ [-1, 1] ∂ 3 ∂λ 3 arg Γ 1 2 + i ε(λh) h = ∂ ∂λ hε ′′ (λh)Re Ψ 1 2 + i ε(λh) h -ε ′ (λh) 2 Im Ψ (1) 1 2 + i ε(λh) h = h 2 ε (3) (λh)Re Ψ 1 2 + i ε(λh) h + hε ′′ (λh) ∂ ∂λ Re Ψ 1 2 + i ε(λh) h -2hε ′ (λh)ε ′′ (λh)Im Ψ (1) 1 2 + i ε(λh) h -ε ′ (λh) 2 ∂ ∂λ Im Ψ (1) 1 2 + i ε(λh) h = h 2 ε (3) (λh)Re Ψ 1 2 + i ε(λh) h -3hε ′′ (λh)ε ′ (λh)Im Ψ (1) 1 2 + i ε(λh) h + ε ′ (λh) 3 Re Ψ (2) 1 2 + i ε(λh) h ; thus, the function λ → ∂ 3 ∂λ 3 arg Γ 1 2 + i ε(λh) h is equal to a O(1) on the compact set [-1,1]. Now, for finish, let us estimate the function λ → ∂ 3 ∂λ 3 arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) ;
with the notations introduced in the proof of lemma 5.1, for all λ ∈ [-1, 1] we have

∂ 3 ∂λ 3 arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) = ∂ ∂λ N h D h = N ′ h (λ)D h (λ) -N h (λ)D ′ h (λ) D 2 h (λ)
; we have seen into the proof of lemma 5.1, that, on the compact set

[-1, 1] λ → 1 D 2 h (λ) = O(1).
By the same argument as into the prof of lemma 5.1, we show that λ

→ N ′ h (λ)D h (λ) - N h (λ)D ′ h (λ) is to equal to a O(1) on the compact set [-1, 1]. Consequently for all λ ∈ [-1, 1] the function λ → ∂ 3 ∂λ 3 arccos cos (g h (λ)) 1 + exp (2πε(λh)/h) is to equal to a O(1) on the compact set [-1, 1]. Thus, on [-1, 1] we have λ → Y (3) h (λ) = O(1).
Since, we have, uniformly, on the compact set [-1, 1] the equality

Y ′ h (λ) = ln(h) -V ′′ (0) + O(1),
we deduce, that the function λ → -Y

(3)

h (λ) Y ′ h 4 (λ) = O 1 ln(h) 4 on the compact set [-1, 1].
In the proof of lemma 5.1 we have seen, that, on the compact set [-1, 1] :

λ → Y ′′ h (λ) = O 1 ln(h) 3 ; hence, on the compact set [-1, 1], we get λ → Y ′′ h 2 (λ) Y ′ h 5 (λ) = O 1 ln(h) 5 ; thus λ → A (3) h • Y h (λ) = -Y (3) h (λ) Y ′ h 4 (λ) + 3 Y ′′ h 2 (λ) Y ′ h 5 (λ) is equal to a O 1 ln(h) 4 on the set [-1, 1] . Notation 6.2. Let us denote by Q 2 (X) = Q 2 (h, n 0 , X) the polynomial of R 2 [X]
defined by :

Q 2 (X) := A h (2πn 0 ) + A ′ h (2πn 0 )2π(X -n 0 ) + A ′′ h (2πn 0 )2π 2 (X -n 0 ) 2 .

Definition of a new time scale

Proposition 6.3. Let β be a real number such that β < 4 -3γ. Then, uniformly for all t ∈ 0, |ln(h)| β we have :

a(t) = ∑ n∈N |a n | 2 e -itQ 2 (n) + O |ln(h)| β+3γ-4 .
Proof. Let us introduce the difference ε(t) := ε(t, h) defined by :

ε(t) := a(t) -∑ n∈N |a n | 2 e -itQ 2 (n) .
Taylor-Lagrange's formula gives the existence of a real number

ζ = ζ(n, h, E) ∈ Y h ([-1, 1]) such that : A h (2πn) = A h (2πn 0 ) + A ′ h (2πn 0 )2π(n -n 0 ) +A ′′ h (2πn 0 )2π 2 (n -n 0 ) 2 + A (3) h (ζ) (2π) 3 6 (n -n 0 ) 3 ;
hence, for all t ≥ 0 we get

ε(t) = ∑ n∈N |a n | 2 e -it Q 2 (n)+A (3) h (ζ) (2π) 3 6 (n-n 0 ) 3 -∑ n∈N |a n | 2 e -itQ 2 (n) = ∑ n∈N |a n | 2 e -itQ 2 (n) e -itA (3) h (ζ) (2π) 3 6 (n-n 0 ) 3 -1 .
With the sets Γ, ∆ and by triangular inequality, we obtain for all t ≥ 0

ε(t) ≤ ∑ n∈∆ |a n | 2 e -itQ 2 (n) e -itA (3) h (ζ) (2π) 3 6 (n-n 0 ) 3 -1 + ∑ n∈Γ |a n | 2 e -itQ 2 (n) e -itA (3) h (ζ) (2π) 3 6 (n-n 0 ) 3 -1 . Since : ∑ n∈Γ |a n | 2 e -itQ 2 (n) e -itA (3) h (ζ) (2π) 3 6 (n-n 0 ) 3 -1 ≤ 2 ∑ n∈Γ |a n | 2 = O 1 ln(h) ∞
by the lemma 4.15.

On the other hand, with the lemma 6.1: for all integer n ∈ ∆ and for all real number t ∈ 0, |ln(h

)| β tA (3) h (ζ) (2π) 3 6 (n -n 0 ) 3 ≤ M |ln(h)| β+3γ-4
where M > 0. Thus, for all integer n ∈ ∆ and for all real number t ∈ 0, |ln(h)| β we have

e -itA (3) h (ζ) (2π) 3 6 (n-n 0 ) 3 -1 = O |ln(h)| β+3γ-4
hence for all t ∈ 0, |ln(h)| β we get

∑ n∈∆ |a n | 2 e -itQ 2 (n) e -itA (3) h (ζ) (2π) 3 6 (n-n 0 ) 3 -1 ≤ O |ln(h)| β+3γ-4 ∑ n∈∆ |a n | 2 ≤ O |ln(h)| β+3γ-4 ∑ n∈N |a n | 2 = O |ln(h)| β+3γ-4 .
So, for all t ∈ 0, |ln(h)| β we get finally

ε(t) = O |ln(h)| β+3γ-4 .
Definition 6.4. Let us define the second order approximation of the partial autocorrelation a(t) by :

a 2 : t → ∑ n∈N |a n | 2 e -itQ 2 (n) .
And we also define the function

a 2 : t → ∑ n∈N |a n | 2 e -it(A ′ h (2πn 0 )2π(n-n 0 )+A ′′ h (2πn 0 )2π 2 (n-n 0 ) 2 ) .
Thus, we get a 2 (t) = e -itA h (2πn 0 ) a 2 (t)

and, we have also

|a 2 (t)| = | a 2 (t)| = ∑ n∈N |a n | 2 e -it(A ′ h (2πn 0 )2π(n-n 0 )+A ′′ h (2πn 0 )2π 2 (n-n 0 ) 2 ) .

Full revival theorem

Let us start by some notations.

Definition 6.5. Let us define the revival time T rev = T rev (h, E) by :

T rev := 1 πA ′′ h (2πn 0 ) and we also denote the integer N h = N(h) defined by :

N h := E T rev T hyp ∈ N.
Hence, there exists an unique real number Θ h ∈ [0, 1[ such that :

T rev T hyp = N h + Θ h .
Proposition 6.6. If we suppose that

lim h→0 Y ′′ h • A h (2πn 0 ) = K where K = 0 is a constant, then T rev = |ln(h)| 3 K -V ′′ (0) 3 2 + O(1).
Proof. Since

T rev = - Y ′ h • A h 3 (2πn 0 ) π Y ′′ h • A h (2πn 0 ) ; if we suppose that lim h→0 Y ′′ h • A h (2πn 0 ) = K;
then we deduce

T rev = -ln(h) 3 K -V ′′ (0) 3 2 + O(1).
The full revival theorem is the following : Theorem 6.7. With the previous notations we have : (i) if Θ h = 0; then for all t ≥ 0 :

a 2 (t + N h T hyp ) = a 2 (t + T rev ) = a 2 (t); (ii) if Θ h ∈]0, 1[, then for all t ≥ 0 a 2 (t + N h T hyp ) = a 2 (t) + O 1 ln(h) 2-2γ ;
in particular, we have

a 2 (t + N h T hyp ) = |a 2 (t)| + O 1 ln(h) 2-2γ . Proof. For all t ≥ 0 a 2 (t + N h T hyp ) = ∑ n∈N |a n | 2 e -2iπ t+N h T hy p T hy p (n-n 0 ) e -2iπ (t+Trev-T hy p Θ h ) Trev (n-n 0 ) 2 = ∑ n∈N |a n | 2 e -2iπ t T hy p (n-n 0 ) e -2iπ (t-T hy p Θ h ) Trev (n-n 0 ) 2 .
If we suppose that Θ h = 0; then for all t ≥ 0 a 2 (t + N h T hyp ) = a 2 (t).

Suppose that Θ h ∈]0, 1[, then for all t ∈ R + a 2 (t + N h T hyp ) -a 2 (t) = ∑ n∈N |a n | 2 e -2iπ t T hy p (n-n 0 ) e -2iπ (t-T hy p Θ h ) Trev (n-n 0 ) 2 -∑ n∈N |a n | 2 e -2iπ t T hy p (n-n 0 ) e -2iπ t Trev (n-n 0 ) 2 = ∑ n∈N |a n | 2 e -2iπ t T hy p (n-n 0 ) e -2iπ t Trev (n-n 0 ) 2 e 2iπΘ h T hy p Trev (n-n 0 ) 2 -1 ≤ ∑ n∈∆ |a n | 2 e -2iπ t T hy p (n-n 0 ) e -2iπ t Trev (n-n 0 ) 2 e 2iπΘ h T hy p Trev (n-n 0 ) 2 -1 + ∑ n∈Γ |a n | 2 e -2iπ t T hy p (n-n 0 ) e -2iπ t Trev (n-n 0 ) 2 e 2iπΘ h T hy p Trev (n-n 0 ) 2 -1 .
For all integer n ∈ ∆ we have (nn 0 ) 2 ≤ |ln(h)| 2γ , hence, for h → 0, we get, for all integer n ∈ ∆ e 2iπΘ h T hy p

Trev (n-n 0 ) 2 = 1 + O |ln(h)| 2γ-2 .
Thus, for all t ≥ 0

∑ n∈∆ |a n | 2 e -2iπ t T hy p (n-n 0 ) e -2iπ t Trev (n-n 0 ) 2 e 2iπΘ h T hy p Trev (n-n 0 ) 2 -1 ≤ O |ln(h)| 2γ-2 ∑ n∈∆ |a n | 2 ≤ O |ln(h)| 2γ-2 ∑ n∈N |a n | 2 = O |ln(h)| 2γ-2 .
On the other hand, we have

∑ n∈Γ |a n | 2 e -2iπ t T hy p (n-n 0 ) e -2iπ t Trev (n-n 0 ) 2 e 2iπΘ h T hy p Trev (n-n 0 ) 2 -1 ≤ ∑ n∈Γ 2 |a n | 2 = O 1 ln(h) ∞ .
Remark 6.8. For h → 0, we have

N h T hyp T rev = T rev -Θ h T hyp T rev = 1 - Θ h T hyp T rev → 1
thus, for h → 0 we have also

N h T hyp ∼ T rev .
The previous theorem show that the function t → a 2 (t), is, modulo O |ln(h)| 2γ-2 , periodic, with a period equivalent ( for h → 0) to T rev . This is the full revival phenomenon.

Fractional revivals theorem

The aim of this section is to study the dynamics for time close to p q T rev , where p q ∈ Q.

Preliminaries

Notation 6.9. For all (p, q) ∈ Z × N * let us consider the sequence (σ h (p, q)) defined by :

(σ h (p, q)) n := e -2iπ p q (n-n 0 ) 2 , n ∈ Z.
The periodicity of this sequence is caracterised by the following easy proposition. Proposition 6.10. For all (p, q) ∈ Z × N * , the sequence (σ h (p, q)) n is ℓ-periodic if and only if the integer ℓ satisfy the equation : ∀m ∈ Z, 2pℓ q m + pℓ 2 q ≡ 0 (mod 1). Now, we solve this equation.

Proposition 6.11. Suppose p ∧ q = 1, then the set E of solutions ℓ such that :

∀m ∈ Z, 2pℓ q m + pℓ 2 q ≡ 0 (mod 1)
is caracterised by : (i) if q is odd then E = {qZ} ;

(ii) si q even and q 2 odd then E = {qZ} ; (iii) si q even et q 2 even then E = q 2 Z . Proof. Let us start by a remark : to be a multiple of q is always a necessary condition to be a solution. Now, let us study sufficient conditions. We have

ℓ ∈ E ⇔ ∀m ∈ Z, 2pℓ q m + pℓ 2 q ≡ 0 (mod 1)
⇔ ∀m ∈ Z, q|(2pℓm + pℓ 2 ); and, since p ∧ q = 1, by Gauss lemma we have ℓ ∈ E ⇔ ∀m ∈ Z, q|(2ℓm + ℓ 2 ).

Let ℓ an integer solution of E ; then if we take m = 0 we see that q|ℓ 2 , hence there exist α ∈ Z such that ℓ 2 = αq. On the other hand, since for all m ∈ Z we have q|(2ℓm + ℓ 2 ) we deduce that for all m ∈ Z, there exists β m ∈ Z such that 2ℓm + ℓ 2 = β m q. Thus, since ℓ 2 = αq, we get for all m ∈ Z the equality 2ℓm + αq = β m q. In particular, with m = 1 we deduce that : 2ℓ = (β 1α)q.

• If q is odd : then a β 1α is even; thus ℓ = (β 1α) 2 ∈Z q, and q|ℓ, thus

E = {qZ}. •If q is even : then ℓ = (β 1 -α) q 2 ; thus q 2 |ℓ. If we write ℓ = k q 2 with k ∈ Z, then ∀m ∈ Z, 2pℓ q m + pℓ 2 q = kpm + pk 2 q 4 . Thus ∀m ∈ Z, kpm + pk 2 q 4 ∈ Z ⇔ pk 2 q ∈ 4Z.
And, since p is odd, finaly we get, with ℓ

= k q 2 : ∀m ∈ Z, 2pℓ q m + pℓ 2 q ∈ Z ⇔ k 2 q ∈ 4Z.
Then, we have two cases :

• if q 2 is odd : then k 2 q ∈ 4Z ⇔ k 2 is even, equivalent to k even, hence ℓ = k q 2 is a multiple of q, hence E = {qZ}. • If q 2 is even : then q = 4q ′ where q ′ ∈ Z * , hence for all k ∈ Z; k 2 q = k 2 4q ′ ∈ 4Z , thus E = q 2 Z . For a period ℓ ∈ Z, let us defined the set of sequences ℓ-periodic with a scalar product. Definition 6.12. For a integer ℓ∈ Z * ; let us denote by S ℓ (Z) set of sequences ℓ-periodic :

S ℓ (Z) := u n ∈ C Z ; ∀n ∈ Z, u n+ℓ = u n .
So we have the : Proposition 6.13. The application

, S ℓ :          S ℓ (Z) 2 → C (u, v) → u, v S ℓ := 1 |ℓ| |ℓ|-1 ∑ k=0 u k v k
is a Hermitean product on the space S ℓ (Z) .

Proof. The proof is elementary. Proposition 6.14. Let us consider φ k n := e -2iπkn ℓ where (k, n) ∈ Z 2 ; then the family φ k n n∈Z k=0...ℓ-1 is an orthonormal basis of the space vector S ℓ (Z).

Proof. For ℓ > 0, the family φ k n n∈Z k=0...ℓ-1 is clearly a familly of ℓ vectors of S ℓ (Z). Next, for all pair (p, q) ∈ {0...ℓ -1} 2 we have

φ p , φ q S ℓ = 1 ℓ ℓ-1 ∑ k=0 φ p k φ q k = 1 ℓ ℓ-1 ∑ k=0 e 2iπ(q-p) ℓ k = δ p,q . So φ k n n∈Z k=0...ℓ-1
is a orthonormal basis of the space vector S ℓ (Z).

The main theorem

Theorem 6.15. For all (p, q) ∈ Z × N * such that p ∧ q = 1; there exists a family of ℓ complex numbers b k (ℓ)

k∈{0...ℓ-1}
where the integer ℓ ∈ Z is solution of :

∀m ∈ Z, 2pℓ q m + pl 2 q ≡ 0 [1];
such that for all t ∈ 0, |ln(h)| α we get :

a 2 t + p q N h T hyp = ℓ-1 ∑ k=0 b k (ℓ) a 1 t + T hyp k ℓ + p q N h + O |ln(h)| α+2γ-3
The numbers b k (ℓ) are called fractionnals coefficients; and for all k ∈ {0..

.ℓ -1} b k (ℓ) = e -2iπkn 0 ℓ b k (ℓ) where b k (ℓ) = b k (h, ℓ) = σ h (p, q), φ k S ℓ = 1 ℓ ℓ-1 ∑ n=0 e -2iπ p q (n-n 0 ) 2 e -2iπkn ℓ .
Moreover, if we suppose T rev T hy p ∈ Q, then we have

a 2 t + p q T rev = ℓ-1 ∑ k=0 b k (l) a 1 t + T hyp k ℓ + p q N h .
Proof. Let us denote the integer n := nn 0 ; and let us consider ℓ ∈ Z a solution of the equation E . So, we have for all t ≥ 0 

a 2 t + p q N h T cl = ∑ n∈N |a n | 2 e -2iπ
n 2 = e -2iπ p q (n-n 0 ) 2 = ℓ-1 ∑ k=0 σ h (p, q), φ k S ℓ φ k n = ℓ-1 ∑ k=0 b k (ℓ)e -2iπ k ℓ n .
Thus, for all t ≥ 0

a 2 t + p q N h T hyp = ∑ n∈N |a n | 2 e -2iπ t T hy p n e -2iπ t Trev n 2 e -2iπ p q nN h ℓ-1 ∑ k=0 b k (ℓ)e -2iπ k ℓ n e 2iπ p q Θ h T hy p Trev n 2 = ∑ n∈N ℓ-1 ∑ k=0 b k (ℓ) |a n | 2 e -2iπ t T hy p n e -2iπ t Trev n 2 e -2iπ p q nN h e -2iπ k ℓ n e 2iπ p q Θ h T hy p Trev n 2 .
For all t ≥ 0 we have Hence Trev n 2 . For all n ∈ ∆ and for all t ∈ 0, |ln(h)| α there exist a constant C > 0 such that

a 1 t + T hyp k ℓ + p q N h = ∑ n∈N |a n | 2 e -2iπ t T hy p n e -2iπ k ℓ n e -2iπ p q N h n thus, ℓ-1 ∑ k=0 b k (ℓ) a 1 t + T hyp k ℓ + p q N h = ℓ-1 ∑ k=0 e -2iπkn 0 ℓ b k (ℓ) ∑ n∈N |a n | 2 e -2iπ t
a 2 t + p q N h T hyp - ℓ-1 ∑ k=0 b k (ℓ) a 1 t + T hyp k ℓ + p q N h = ∑ n∈N ℓ-1 ∑ k=0 |a n | 2 b k (ℓ)e
t + Θ h T hyp p q (n -n 0 ) 2 T rev ≤ C |ln(h)| 2γ-3+α + |ln(h)| 2γ-2 ≤ 2C |ln(h)| 2γ-2 .
Hence, there exist A > 0 such that for all t ∈ 0, |ln(h)| α For finish, the case where t = 0 and T rev T hy p ∈ Q is clear.

Corollary 6.16. We have the equality :

ℓ-1 ∑ k=0 |b k (ℓ)| 2 = 1.
Proof. Since b k (ℓ) = σ h (p, q), φ k 

∑ k=0 |b k (ℓ)| 2 = σ h (p, q) 2 S ℓ = 1.
Now, let us examine the case p q = 1 and the case p q = 1 2 .

Corollary 6.17. With the same notation as in the theorem 6. and if N h is even, then :

a 2 t + N h T hyp 2 = a 1 t + T hyp 2 + O |ln(h)| α+2γ-3 .
Proof. In the case (i) : p = 1, q = ℓ = 1; thus by the previous theorem we get, for all t ∈ [0, |ln(h)| α ] :

a 2 t + p q N h T hyp = b 0 (1) a 1 t + T hyp N h + O |ln(h)| α+2γ-3 = b 0 (1) a 1 (t) + O |ln(h)| α+2γ-3
and b 0 (1) = 1 1 e -2iπn 2 0 = 1, thus b 0 (1) = 1.

Next, for the case (ii) : p = 1, q = ℓ = 2 , then

a 2 t + p q N h T hyp = b 0 (2) a 1 t + T hyp N h 2 + b 1 (2) a 1 t + T hyp 1 2 + N h 2 + O |ln(h)| α+2γ-3 .
We have

b 0 (2) = 1 2 e -2iπ 1 2 n 2 0 + 1 2 e -2iπ 1 2 (1-n 0 ) 2 = 0 thus b 0 (2) = 0.
And

b 1 (2) = 1 2 e -2iπ 1 2 n 2 0 e 2iπ0 2 + 1 2 e -2iπ 1 2 (1-n 0 ) 2 e 2iπ 2
= 1 2 e -iπn 0 2 + (-1)e -iπ(n 0 -1) 2 = (-1) n 0 then b 1 (2) = e -iπn 0 (-1) n 0 = 1.

Explicit values of modulus for revivals coefficients

About the coefficients b k (ℓ) we just know that :

ℓ-1 ∑ k=0 b k (ℓ) 2 = 1.
But we can say more. We can calculate b k (ℓ) = |b k (ℓ)| for all k. From the proposition 6.11 we consider two cases : the case ℓ = q and the case ℓ = q 2 .

Case ℓ = q

If the integer q is odd we have : Theorem 6.18. [START_REF] Ée | Autour de la dynamique semi-classique de certains systèmes intégrables[END_REF]. For all integers p and q, such that p ∧ q = 1 and q odd, then for all k ∈ {0...q -1} we get :

|b k (q)| 2 = 1 q .
And in the case q even : Theorem 6.19. [START_REF] Ée | Autour de la dynamique semi-classique de certains systèmes intégrables[END_REF]. For all integers p and q, such that p ∧ q = 1 and q even, then for all k ∈ {0...q -1} we get :

I f q 2 is even, then : |b k (q)| 2 =    2 q i f k is even 0 else. I f q 2 is odd, then : |b k (q)| 2 =    0 i f k is even 2 q else.
6.5.2 Case ℓ = q 2 It is the case q ∈ 4Z.

Theorem 6.20. [START_REF] Ée | Autour de la dynamique semi-classique de certains systèmes intégrables[END_REF]. For all integers p and q, such that p ∧ q = 1 and q ∈ 4Z * ; for all k ∈ 0... q 2 -1 we have b k q 2 2 = 2 q .

Comparison between time scale approximation, hyperbolic period and revivals periods

Since γ < 1 we have 1 < 3 -2γ, thus there exist α such that α ∈ ]1, 3 -2γ[; hence : |ln(h)| < |ln(h)| α < |ln(h)| 3-2γ .

Fig. 1 .

 1 Fig. 1. & 2. On figure 1 (left) the potential function V(x). On figure 2 (right) the associated foliation in the phase plane.

  [Co-Pa1], [Co-Pa2] and [Co-Pa3], Y. Colin de Verdière and B. Parisse gives an implicit singular Bohr-Sommerfeld rules. An explicit description is given in [Lab3]

  and [Lab3] we have the smooth function E → ε(E) defined for |E| ≤ δ, where δ is a real constant and not depends to h; (this function is linked to a normal form [CLP]We have (see [Co-Pa1], [Co-Pa2], [Co-Pa3] and [Lab3]

  [START_REF] Ée | Sur le spectre semi-classique d'un système intégrable de dimension 1 autour d'une singularité hyperbolique[END_REF] we also use two smooth functions S + and S -:S +/-(E) = +∞ ∑ j=0 S

Definition 4. 2 .

 2 Let us consider the quantum integers n 0 = n 0 (h, E) and m 0 = m 0 (h, E) defined by n 0 := arg min n∈I h |hA h (2πn) -hE| and m 0 := arg min m∈I h |hB h (2πm) -hE| .

  K = 0 and not depend on h. Remark 5.6. See also the paper [DB-Ro] for a similar result.

≤

  A |ln(h)| 2γ-2 ∑ n∈∆ |a n | 2 ≤ A |ln(h)| 2γ-2 +∞ ∑ n=0 |a n | 2 .

  vector S ℓ (Z), by Pythagorean equality we get ℓ-1

  R), it's clear that the only index ℓ ∈ Z such that

	ℓ + t T hy p	is close to zero are important. More precisely :
		ℓ(t) +	t T hyp	= d t, T

Definition 5.8. For all t ∈ R, let us define ℓ(t) = ℓ(t, h, E) the closest integer to the real number -t/T hyp ; e.g : hyp Z ; where d(., .) denote the Euclidiean distance on R.

  15, we have(i) for all t ∈ 0, |ln(h)| α a 2 (t + N h T hyp ) = a 1 (t) + O |ln(h)| α+2γ-3 ;(ii) for all t ∈ 0, |ln(h)| α

	a 2 t +	N h T hyp 2	= a 1 t +	N h + 1 2	T hyp + O |ln(h)| α+2γ-3 ;
	in particular, if N h is odd, then :	
		a 2 t +	N h T hyp 2	= a 1 (t) + O |ln(h)| α+2γ-3

So we can choose α such that : for h small enough :

Next, with γ < 1 3 we get 3 < 4 -3γ and there exist

so, for h small enough we have :

[0, T rev ] ⊂ 0, |ln(h)| β .