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Abstract

The aim of this paper is to study the semi-classical behaviour of Schrodinger’s
dynamics for an one-dimensional quantum Hamiltonian with a classical
hyperbolic trajectory. As in the regular case (elliptic trajectory), we prove,
that for an initial wave packets localized in energy, the dynamics follows
the classical motion during short time. This classical motion is periodic
and the period T}, is order of [Inh|. And, for large time, a new period
Tiev for the quantum dynamics appears : the initial wave packets form
again at t = Tye,. Moreover for the time f = %Trev a fractionnal revivals
phenomenon of the initial wave packets appears : there is a formation of a
finite number of clones of the original wave packet.

Schrodinger’s dynamics, revivals of wave packets, semi-classical analysis, hy-
perbolic trajectory, Schrodinger operator with double wells potential.
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1 Introduction

1.1 Context and motivation

For Pj, a pseudo-differential operator (here & > 0 is the semi-classical parame-
ter), and for ¢y an inital state the quantum dynamics is governed by the famous
Schrodinger equation :

ihal’git) — Pyt

In this paper, we present a detailed study, in the semi-classical regime i — 0,
of the behaviour of Schrodinger’s dynamics for an one-dimensional quantum
Hamiltonian

P, : D(P,) C L*(R) — L*(R)

with a classical hyperbolic trajectory : the principal symbol p € C*(R?,R) of
Py, has a hyperbolic non-degenerate singularity.

Dynamics in the regular case and for elliptic non-degenerate singularity
have been the subject of many research in physics [Av-Pe], [LAS], [Robil],
[Robi2], [BKP], [Bl-Ko] and, more recently in mathematics [Co-Rol, [Rob],
[Paul], [Pau2], [Lab2]. The strategy to understand the long times behaviour
of dynamics is to use the spectrum of the operator P. In the regular case, the
spectrum of Py is given by the famous Bohr-Sommerfeld rules (see for example
[He-Ro], [Ch-VuN], [Col8]) : in first approximation, the spectrum of P, in a
compact set is a sequence of real numbers with a gap of size h. The classical
trajectories are periodic and supported on elliptic curves.

In the case of hyperbolic singularity we have a non-periodic trajectory sup-
ported on a “height” figure (see figure 2). The spectrum near this singular-
ity is more complicated than in the regular case. Y. Colin de Verdiere and B.
Parisse give an implicit singular Bohr-Sommerfeld rules for hyperbolic sin-
gularity ([Co-Pal], [Co-Pa2] and [Co-Pa3]). This quantization formula is too
implicit for using it directly in our motivation. In [Lab3] we have an explicit
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description of the spectrum for an one-dimesional pesudo-differential operator
near a hyperbolic non-degenerate singularity.

1.2 Results

With above description, we propose a study of quantum dynamics for large
times (> |Inh|). We prove that for a localized initial state, at the begining the
dynamics is periodic with a period equal to Ty, = C [In}| (see corollary 5.12).
This period Ty, corresponds to the classical Hamiltonian flow period.

Next for large time scale, a new period Ty of the quantum dynamics ap-
pears : this is the revivals phenomenon (like in regular case [Co-Ro], [Rob],
[Paull], [Pau2], [Lab2]). For t = Thyp the packet relocalize in the form of a
quantum revival.

We have also the phenomenon of fractional revivals of initial wave packets
for time t = ng], with g € Q : there is a formation of a finite number of
clones of the original wave packet 1y with a constant amplitude (see theorems
6.18, 6.19 & 6.20) and differing in the phase plane from the initial wave packet
by fractions sThyp (see theorem 6.15).

1.3 Paper organization

The paper is organized as follows. In section 2 we give some preliminaries
about the strategy for analyse the dynamics of a quantum Hamiltonian. In this
section we define a simple way to understand the evolution of t — ¢(t) by the
autocorrelation function :

c(t) == [( (), )3 -

In section 3 we describe the hyperbolic singularities mathematical context; we
also recall the principal theorem of [Lab3]. This theorem provides the spectrum
of the operator Pj, near the singularity. Section 4 is devoted to define an initial
wave packets g localized in energy. In part 5 we prove that the quantum dy-
namics follows the classical motion during short time (see corollary 5.12). This
classical motion is periodic and the period Ty, is order of [In|. In the last part
(part 6) we detail the analysis of revivals phenomenon, see theorem 6.7 for full-
revival theorem and see theorem 6.15 for fractionnal-revivals phenomenon.

2 Quantum dynamics and autocorrelation function

21 The quantum dynamics

For a quantum Hamiltonian P, : D (P,) C H — H, H is a Hilbert space, the
Schrodinger dynamics is governed by the Schrodinger equation :

lhalg—gt) = P,y(t).

With the functional calculus, we can reformulate this equation with the unitary
group U(t) = {e*ii’rxp h}t ] Indeed, for a initial state 19 € H, the evolution
€



given by :
p(t) = U(t)po € K.

2.2 Return and autocorrelation function

We now introduce a simple tool to understand the behaviour of the vector (t)
: a quantum analog or the Poincaré return function.

Definition. The quantum return functions of the operator P, and for an initial
state 1 is defined by :

r(t) = (p(t), o)y

and the autocorrelation function is defined by :

c(t) = [r(t)] = [(p (), Yo) ! -

The previous function measures the return on initial state. This function
is the overlap of the time dependent quantum state (¢) with the initial state
p. Since the initial state iy is normalized, the autocorrelation function takes
values in the compact set [0, 1]. Then, if we have an orthonormal basis of eigen-
vectors (en),cp

Phen - )\n(h)en
with

we get, for all integer n

(e*ii’rxph) en = (e*ii’rx)‘”(h)) en.

So for a initial vector iy € D(P),) C 'H, let us denote by (cu)neN = (¢n(h))neN
the sequence of /2(IN) given (c,)» = 7 (1), where 7 is the projector (unitary

operator) :
H — (2(N)
T

lP —< lP,En >

Then, for all + > 0 we have

P(B) = U(D)ygo = (™) ( )y )

nelN

-t
=) cpe” (Mg,
nelN

So, for all t > 0 we obtain

Z ‘Cn|26—iﬁ/\n(h) )
nelN

r(t) = Y Jea?e i 0; o(t) =
nelN




2.3 Strategy for study the autocorrelation function

The strategy, performed by the physicists ([Av-Pel], [LAS], [Robill, [Robi2],
[BKP], [Bl-Ko]) is the following :

1. We define a initial vector g9 = ) ce, localized in the following sense :
nelN
the sequence (¢, ) en is localized close to a quantum number 1y (depends
on /1 and a energy level E € R).

2. Next, the idea is to expand by a Taylor formula’s the eigenvalues A, (&)
around the energy level E :

A (1) Ao (h)
6

(here Ay, (h) is the closest eigenvalue to E), hence we get for all t > 0

An(h) = Ay (h) + Ay, (R) (n —ng) + (n—mnp)* +

AL () A () 2B
M0 (n—ng)+ —%— (n—n9)* + L= (n—ng)>+--

ct)y=1) |cn|zei [

nelN

3. And, for small values of ¢, the first approximation of the autocorrelation
function c(t) is the function
A ()
Y JenPe it (o)
nelN

c(f) =

and for larger values of ¢, the order 2-approximation is

[ A (h) Afto ()
e
n .

nelN

C2(t) =

In section 5 we study the function t — ¢;(t) and in section 6 we study t —
C2(t).

3 The context of hyperbolic singularity

3.1 Linkbetween spectrum and geometry : semi-classical anal-
ysis
For explain the philosophy of semi-classical analysis start by an example : for
a real number E > 0; the equation
2
—5Agp=Eg

(where Ay denotes the Laplace-Beltrami operator on a Riemaniann manifold
(M, g)) admits the eigenvectors ¢ as solution if

]’12
~S M =E.

(n =)+



Hence if i — 07 then Ay — +o0. So there exists a correspondence between the
semi-classical limit (# — 07) and large eigenvalues.

The asympotic’s of large eigenvalues for the Laplace-Beltrami operator Ag
on a Riemaniann manifold (M, g), or more generally for a pseudo-differential
operator Py, is linked to a symplectic geometry : the phase space geometry.
This is the same phenomenon between quantum mechanics (spectrum, opera-
tor algebra) and classical mechanics (length of periodic geodesics, symplectic
geometry). More precisely, for a pseudo-differential operator P, on L?(M) with
a principal symbol p € C* (T*M), there exist a link between the geometry of
the foliation (p~'(A)) rer and the spectrum of the operator Pj,. Indeed, we
have the famous result :

(P — Alg) uy = O(h™)

then
MS(uy) C p~H(A);

where MS(u;) C T*M denote the microsupport of the function uy, € L2(M).

3.2 Hyperbolic singularity

In dimension one, a point (xq,&p) € T*M is a non-degenerate hyperbolic sin-
gularity of the symbol function p € C®(T*M) if and only if :

1. dp(xo,Go) = 0;
2. the eigenvalues of the Hessian matrix V?p(xo, &y) are pairwise distinct;

3. if, in some local symplectic coordinates (x,) the algebra spanned by
V2p(xg, &) has a basis of the form g = x¢.

Remark 3.1. There exists analogue definition for completely integrable systems,
see for example the book of San Vit Ngoc [VuN].

The canonical example in dimension 1 is the Schrodinger operator with double
wells potential :

h?
Py= ——A+V;
h yATV
we assume V € C*(R), forallx € R, V(x) > Cand lim V(x) = +oo. Here

|x|—00

the principal symbol of Py, is the function

2
Pl d) = &+ V().

With the previous hypotheses on the potential V, the operator Py, is self-adjoint,
the spectrum is a sequence of real numbers (A, (h)),~, and the eigenvectors
(en),>o be an orthonormal basis of the Hilbert space L2(RR) (for example see
the survey [Lab1]). We also suppose that the potential V' admits exactly one
local non-degenerate maximum. Without loss generality, we may suppose

V(0) =0; V'(0) = 0; V"'(0) < 0.

Then the foliation associated to the principal symbol p(x,¢&) = &2/2 + V(x)
admits a singular fiber Ag = p~1(0).



Fig. 1. & 2. On figure 1 (left) the potential function V(x). On figure 2 (right) the
associated foliation in the phase plane.

3.3 Spectrum near the singularity

In [Co-Pal], [Co-Pa2] and [Co-Pa3], Y. Colin de Verdiere and B. Parisse gives
an implicit singular Bohr-Sommerfeld rules. An explicit description is given in
[Lab3]. Record here this description. We take the presentation from the paper
[Lab3] and refer to this paper for more details.

3.3.1 Some notations (see [Lab3])

In [Co-Pal], [Co-Pa2], [Co-Pa3] and [Lab3] we have the smooth function E —
¢(E) defined for |E| < J, where ¢ is a real constant and not depends to #; (this
function is linked to a normal form [CLP], [Co-Pal]) defined by

+oo ,
e(E) =) &(E)W
j=0

We have (see [Co-Pal], [Co-Pa2], [Co-Pa3] and [Lab3]) the equality ¢3(0) = 0

and €,(0) = 1/4/—V"(0). Hence, if we use the Taylor formula on the smooth
function ¢ ; for all E € [, J] we get

E oo :
e(E) = ————=+O0(E*) + }_¢;(E)W.
—-Vv"(0) j=1

So, for A € [—1,1]; and h small enough (for have [—h, h| C [—6,J]) we get
Ah 9 2 ;
e(Ah) = ———=+0(1*) + ) _ ej(Ah)I.
In the papers [Co-Pal], [Co-Pa2], [Co-Pa3] and [Lab3] we also use two smooth

functions ST and S :

+o0 .
STT(E)= ) St/ (E)W;
j=0



where the functions are E — Sj*/ ~(E) are C*® smooth. This functions are usu-

ally called singular actions. Let us also denote 6, ,_(E) := S*/~(E)/h. This
functions have a holonomy interpretation. In [Lab3] we consider the functions
E — F,(E) and E — Gy (E) defined on the compact set [—6, d] by :

F,(E) := ——9+(E);9_(E) + g + s(h—E)ln(h) +arg (F (% —|—i£(h—E))) ;

I' is the Gamma function, and by

0.(E)—0_(E)

Gh<E) = >

On the compact set [—1,1], let us consider the functions A — f,(A) and A —
gn(A) defined by :

fu(A) := Fy(Ah); gu(A) := Gp(Ah).

For finish, let us consider the functions A — ) (A) and A — Zj(A) defined on
the compact set [—1,1] by

B . cos (gn(M)) )
Vu(A) == fr(A) ccos < V1+exp (Zns(/\h)/h)> '

B cos (g,(A))
Z,(A) == fu(A) +arccos ( V1 +exp (2me(Ah) /h) ) '

We have the following result (see [Lab3]) :

Proposition 3.2. For h small enough, the function Y, (resp. Z;,) is a bijection from
[—1,1] onto Y}, ([—1,1]) (resp. onto Zj, ([—1,1])). Moreover on the compact set
[—1, 1] we have

Vi) =

Similary for the function Zj,.

Since the functions )}, et Zj, are bijectives, we can consider
A= Vi M(1-1,1]) = [-1,1]

By:=2Z"1": 2, ([-1,1]) = [-1,1].

Notation 3.3. Let us denotes :

Iy:={keZ 2rnk e Y, ([-1,1])} = w N7,
=tz ot e z, (1)) = 2 g



3.3.2 The main theorem
The main theorem of the paper [Lab3] is the the following :

Theorem 3.4. [Lab3]. The semi-classical spectrum of P, in the compact set
{—\/ﬁ, \/ﬂ is the disjoint union

(e (M))iex, LI (Be(h)) ey,

of two families (a (1)), and (B¢(h)), such that ay(h) := hA,(27k) € R, B(h) :=
hBj,(2rtf) € R. The functions Aj;, and B, are C* smooth. The families (a(h)),,
(Be(h)), are strictly non-increasing and :

Brr1(h) < ax(h) < Br(h) < ag_1(h).

Moreover, the spectral gap is of order O(h/ |In(h)|); e.g : there exists C,C’ > 0
such that:
Ch C'h Ch C'h

\ln(h)| < |Dck+1(h) _D‘k(h)| < |h‘1(h)‘, |1n(h)\ < |:Bk+1(h) _:Bk(h)‘ < \ln(h)|

Corollary 3.5. The number of eigenvalues in the compact set {—\/ﬁ, \/ﬂ is of order
in(h)| / V.

In this paper, for technical reason, we just use the shape of the spectrum
in the compact set [—h, h| C {—\/E, \/ﬂ . More precisely we choose an initial
wave packet 1y localized in a compact set of size h. Indeed, the estimates in
lemma 5.1 and 6.1 are very difficult to enable in the compact set {— VI, \/ﬂ .

Notation 3.6. Let us denote by ®j, the set of index for eigenvalues into the com-
pactset [—h, h]; e.g

Oy :={n €N, Ay(h) € [=h,h]}.

4 Some preliminaries

In this section, we define partials autocorrelations functions, next we define an
initial vector ¢y. And for finish, we introduce the set A C N, this set is useful
for making estimates in sections 5 and 6.

4.1 Partials autocorrelations functions

Now, let be a initial vector ¢y = 2 cney, , then we have forallt > 0
nelN

r(t) = Y Jeae it 4 Y o, Periin(®),
ne®, nelN—-0,

After, we let us consider an initial vector localized near the singularity in a set
of size h; hence the second series

Z |Cn‘2€7ii)tn(h)
HGJN*@h



will be equal to O ‘W‘ . Next, the idea is to use the families (a(h));, and

(Be(h)), from the theorem above : as the eigenvalues of Py in the compact set
[—h, h] are distinct; for all index k € I, and ¢ € Jj, there exists a unique pair
(01(k), 02(¢)) € O such that :

{ hAL(27k) = Ag, (k) (1)
hBh(ZT(é) = /\Vz(f)(h)‘

So, we can consider the applications :

I, — O, Jh — Oy
o1 and oy :

kl—)O’](k) 6!—)0’2(5)

Clearly, this applications are injectives; hence Ij, is isomorphic to oy (Ij,) (simi-
lary for Jj, and 0»(J;,)). Moreover we have

O, = o1 (Iy) |_|o2(Jn)-

So, we get the equality :

()= Y lelPe TN 4 N e et
ke (L) tear(Jp)

+ 2 ‘Cn|237i7t’/\n(h)
nelN—-0,

2 . 2 .
= 1 [en| e+ L e[| e O
kel ey,

bOE et
ne]N—@h

Now;, our goal here is to study the series t — aett — b(t):
Definition 4.1. Let us consider partial autocorrelation functions :
2. 2.
a(t) — Z ’thl(k)‘ e—zt.Ah(an), b(t) — Z ’Caz(f)’ e—ltBh(ZTCf)‘
ke, Le]y
4.2 Choice of initial state
421 Prologue
Let us define an initial vector ¢y = Z cney localized near the real number hE
nelN
(where E € [—1,1]).

Definition 4.2. Let us consider the quantum integers ny = ng(h, E) and my =
mo(h, E) defined by

ng := argmin |h Ay, (2tn) — hE| and mg := arg min |hB),(27tm) — hE|.
nely, mely,

10



Remark 4.3. Without loss of generality, we may suppose 1 and m are unique.

The integer n( (resp. my) is the index of the eigenvalues from the family
(ar(h)); (resp. (Be(h)),) the closest to the real number hE. As the spectral gap
is of order O(h/ |In(h)|) there exists C > 0 such that :

Ch Ch
— < — < —.
|hAy(27tng) — hE| < Yk |hBj,(2tmgy) — hE| < o]

So, we get :

Lemma4.4. Ash — 0, we have

N M
nowﬁandmowﬁ

where N and M non-null real numbers.

Proof. We give the proof for the integer ny. As

C
_ < .
|Ap(27tng) — E| < YL
e.g.
1
Ah(ZTCI’lo) = E +O (T) P
we get

1

=fi <E+O (W)) — arccos \/1

By definition :
1 h
(240 () ) = (0 ()

_ 0 (RE+ O/ |In()])) +6_ (RE+O (/ [In())))
2

7T
2
e(hE+ O (h/ |In(h 1 .e(hE+O((h/|In(h
LB RO D) 1y g (1. £ HE £O G/ I

Hence, if we multiply 27t by i we obtain

6 (hE+ O (h/ [In(h)|)) + 60— (hE+ O (h/ |In(h)|))

2rtngh = —h >

+Zhe (RE+0 (1/ |In(1)])) In(h) + harg (r <% L e(hE+0 (Z/ 1n(h)|))>)

cos (g1 (E+0 ()
\/1 +exp (27re (hE+0 () ) /1)

11

—h arccos




Let us evaluate this five terms. As the function

64 (HE+ O (/ [In()])) + 6 (hE + O (/ [In()]))
2

admit a asymptotic expansion in power of /1 from —1 to 40, we have

64 (hE+ O (h/ [In(h)|)) + 60— (hE+ O (h/ |In(h)|))
2

E —

—h

=0(1);
more precisely, for h — 0

0+ (hE4+O (h/ |In(h)|)) +6_ (hE+ O (h/ |In(h)|))

—h
2

— =3 (5%4(0) +57,(0)) #0.
Next :

hE+ 0 (h/ |In(h)))
~V"(0)

e (hE+O (h/ [In(h)|))In(h) = +0(h?)

In(h) — 0.

For finish, as

a (1 (4 4 £OEOU )Y _ o

and

(ool )
1+ exp (27e (RE+0 (L) ) /1)

arccos

we get, forh — 0

harg (F (% +is(hE+O(h/ 1n(h)|)))) -0

7
and
parccos | (o (Ero(@n))) )
\/1 +exp (27r¢ (hE+0 (7)) /1)
Hence,
lim 27010k = —% (87,(0) +52,(0)) ;
so we prove the lemma. O

4.2.2 First definition (non definitive)
For technical reason, let us introduce the following sequence :

Definition 4.5. Let us consider :

hAy(2rtng) if n € o1(1p)
Unpo = hBh(ZT[I’HO) ifn e 0’2(Jh).
0ifneN-©,.

12



Forn € @, = 01(I;) [102(J),), the sequence (y,,0),, take only two values :

e the closest eigenvalue from the family (ay(h)), to the real number hE;

e or the closest eigenvalue from the family (S/(h)), to the real number hE.
Now, we can give the first (non definitive) definition of our initial state.

Definition 4.6. Let us consider the sequence (¢, (1)), defined by :

lnh|7/> X0 (M) ,nEZ

2h

Cp = Cn(h) = Khx <.“n ;ﬂ/]’tnxo

where x € S(R) , non null, non-negative and even, «’ and 7/ are two reals
numbers; xo € D(R) such that xo = 1 on the set |—1,1[ and supp(xo) C

[—1,1]. We also denote
Inh 7/ Hn — V”/O
nh| >X0 <72h

(e
1. The term x (% |lr1h|7/) localizes around the energy level hE (for

h“, ZZ(JN) '

Let us detail this choice :

technical reason we localize around the closest eigenvalues to Ej,.
2. Constants a’ et 9/ are coefficients for dilate the function .

3. The function xj is a cut-off for eigenvalues out of the compact set [—h, h].

4.2.3 Choice of parameter «’ and 7/

The only way to have a localization for initial state larger than the spectral gap,
and in the same time, to have a localization in the compact set [—h,h); e.g to

have in the same time : )

_h oM
Ikl = jInp" ~

7

is to take
d=10<9 <1

Remark 4.7. The larger choice for he'/ |1nh\'y/ =h/ \lnh\y/ is to take 7/ = 0.

Under this assumptions, we can forget the function x( and we get :

4.2.4 Second definition

Definition 4.8. Let us consider the sequence (¢, (h)),,c5 defined by :

cn = Kyx (W |1nh'y/) ,nEZ

where x € S(R), non null, non-negative and even; 0 < 7o/ < 1; and

K= e (e )

h

2(N)

13



Now, in the partial autocorrelations functions a(f) and b(t) appears the

sequences (cal(k))kand (caz( g))[; for simplicity let us consider the following
sequences : ’

Notation 4.9. Let us denote

0 1= Coyn) = Kt ((Ay(270m) = Ay (270n0) [Inh| ) ;
b = Cap(m) = Knx ((Bh(Zmn) — By(2mmp)) \lnh|7/) :

4.2.5 Last definition

By Lagrange’s theorem there exists a real number { = {(n,h,E) € V), ([—1,1])
such that
Ap(27tn) — Ay(2rng) = A} (0)27t(n — no);

since (see proposition 3.2)

An(8) = oy /

we get

Ay (27tn) — Ay (27tn) = 2721 — 1)/ V" (0) (

1
inf] ”O’unm D '

Definition 4.10. Let us consider the sequence (a,),.7 = (an(h)),cz defined
by :
n—np
ap =Kyx| ——— |, nez
' ( mhw)
where x € S(R), non null, non-negative and even; 0 < 7/ < 1; and

n—np
Ky= x| —1=
H <lnh”>

So, clearly the sequence (a,), € ¢*(Z). Now, let us evaluate the constant of
normalization Kj,. Start by the :

2(N)

Lemma 4.11. For a function ¢ € S(R) and e € ]0,1]; we have :

(-0

Proof. The starting point is the following remark : for all function ¢ € S(R)
and for all ¢ € ]0,1] we have
14
(o)) o0

X
14

ez, |t)>1

ez, |t|>1



Indeed, foralll € Z, |[¢] > 1

and since

leZ,|t|>1

we conclude.
Next, we apply this to the function ¢(x) := x*Ng(x), where N € IN; and

we get forall N > 1:
(£)|-oe.

(95

leZ, |t|>1 leZ

So we prove the lemma. O
Theorem 4.12. We have

1 1

K]’l - 1—n/ +O 1n(h)°° ’

SO

=1+0 !

lan]l 2y =1+ NOCk

Proof. By Poisson formula and the lemma above we get the equality

(258t o

nez leZ

= |n k' [g (x*) @ +o0

1r1(1l)°° H

Now, start with the equality

—1
n—ng 2 n—np 2 n—ng
X = X — | — X 7
n;\; <|1 e ”) n;z <lnhl1 ”) ngw <|1r1h|1 ”)

n—np
X
‘ n;oo (1 hW)

= |Ink*"'§ (xz) (0)+0 ‘

Since the function § (x?) is even:

5 Xz(Lw):fxz(Lw) Bt - S L
n=1

e\ Ink|*Y IInh|'=7 =0+ mglf

15



And,

o 0 du
By [Infr| 1=k <Blnh“”k/ _an
B L <m0 [
_ (1-)k-1) B 1
[In 7| (k—1)n’6—1'

Now, since for h — 0 we have ng ~ % , we get, forh — 0

(1-9"k  Bx 1 By k-1 (1—")k
[In k| (= 1) o — Nkfl(k—l)h [In k|
consequently
-1
» [ n—np 1 ’
LN )=0 :
n:z_:oox <1nh1—”f ) In(h)>

So, we proove that

2

n—np 1—y/ 2 1
X| ——— =|Ink]""" F(x7) (0)+O =
H (|1’“h|1 7) 2(N) ( ) In(k)
hence K;, = 1 r + O’l e ‘ For finish, we have
2 2 1-y/ 2 1 1
lan[Fa ) = K [In S(x)(0)+0 =] = 1O |

4.3 The set A

Definition 4.13. Let us define the sets of integers A = A(h,E) and I’ =T'(h, E)

by:
A:={neN,|n—no <|n(h)]"} CN

and
I''=IN-A

where 7 is a real number such that y < 1and v+’ > 1.

Remark 4.14. Since v < 1, we have [In(h)|” < [In(k)|, hence for h — 0 we have
Card (I)) ~ |In(h)]|.

So, for h small enough we obtain A C Ij,. On the other hand, since ¥+ 9" > 1

we have |In(h) \177, < |In(h)|”; this mean that the set A is larger than the
localization of initial state.

Lemma 4.15. We have

Z‘“n| =

nel

(1) }

16



Proof. The starting point is the following inequality :

Z |an‘2 < Z |an‘2~

nel’ nez, |n—np|>ho-1
Next, with the same argument as in the lemma 4.11, we show that for all integer

N=1 2N
n—np 2
Y (W) |an|” = O(1).

nez
Without loss generality, we may suppose that 1y = 0. Next we write :

2 _ ON('-1 o n \N 1

). jan|* = BPNED Y |an] <h‘5’1) 2N

nez, |n|>h-1 nezZ, |n|>h-1
J2N(8'-1) n \2N N
_ (6'=9)
S NG 2|a"‘ <h‘5’ 1) _O<h )
Since &' > &, we obtain ) | |au|* = O(h™). O

nel

5 Order 1 approximation : hyperbolic period

5.1 Introduction

The aim of this section is to study the series :
a:t— Y |ay |2 e~ it A(27n)
nelN

Unfortunately this function is too difficult to understand. So, in this section we
use an approximation of t — a(t), the tricks is explained in section 2.3. Here,
by a Taylor’s formula we get :
a(t) = Z |2 |2 e—it(.Ah(27In0)+.A;l(27‘(110)27'((11—110)+AZ(C)2H2(n—n0)2)
nelN

where { = ((n,h,E) € Yy, ([-1,1]).
Next, we need the following lemma.

Lemma 5.1. Uniformly, on the compact set [—1, 1] we have :

1
n(h)3 |

= (A o) (A) =0

Proof. Derivatives formulas gives for all x € )}, ([—1,1]), the equality

[—
I ( o Ah) (x)
A = —/
7 (%) (yh 5 Ah) )

hence, for A € [—1,1]

17



First, forall A € [—1,1]

L0 (AR) + 6" (Ah)
2

o (1 (5 50)) - e e (i)

And, forall A € [-1,1] we have

Vi) = —h

+ he'' (Ah) In(h)

_hzex(Ah);eg(Ah) _ o)

and
he" (Ah) In(h) = O(h1n(h)).

Next, we study the term aa—)é {arg (F (% + ig(i;h)) } : forall A € [-1,1] we

have:

)
(e (2+442)] - o

o (1 (345
(1 (3+550))]

= he’(Ah)Re (‘Y (% - i£<2h)>) — (¢(Ah))*Im <‘I’(1) <% + is(zh)» ,

wher ¥(1) is the first-derivative of di-Gamma function (¥ (z) := m, see [Ab-

I'(z)
St]). Hence the function

A % [e/(Ah)Re (‘I’ (% +i8(2h)))}

is equal to O(1) on the compact set [—1, 1]. For finish, we estimate the term :
2
A= 8—2 arccos cos (8n(1) ;
oA V/1+exp (2re(Ah) /h)

18




for all A € [—1,1] we obtain

_ Nu(d)
Dy(7)

2
9 arccos cos (gu(A))
oA? V/1+exp (2me(Ah)/h)
where Nj(A) is a polynomial (with coefficients does not depends on &) in the
variables :

2
(cos (g3(A))sin (5410 37 (53(4)) 355 (1)

P} 2
ax EA/), 532

Hence A — Nj,(A) = O(1) on the compact set [—1,1] . Next we have

(e(Ah)/h) ,exp (Zﬂe()\h)/h)) .

(SIS}

Dy(A) = (1+exp (2me(Ah) /h))? (1 + exp (2e(Ah) /h) — cos? (gh(/\))) ;

since the function A — exp (27te(Ah)/h) > 0 is equal to O(1) on the compact
set [—1,1], we see easily that on the compact set [—1, 1] we have

Next, on the set [—1,1]

2
A 8—2 arccos cos (g()) =0(1).
oA 1+ exp (2rte(Ah) /h)
Then on the compact set [—1,1] we obtain that A — )}/(A) = O(1). For finish,
since, uniformly on the compact set [—1, 1] we have the equality

M = L+ oq);
—V” (O)
we deduce that A — (A} oY) (A) =0 ‘ ln(lh) n[—1,1]. O

5.2 Definition of a first order approximation time scale
We have the following approximation result :

Proposition 5.2. Let « a real number such that &« < 3 — 2vy. Then, uniformly for all
t € [0, [In(h)|"] we have :

a(t) = Z ‘a |2 —it(Ay(2mtng)+Aj, (27tm9) 27t (n—nq) ) +0 (|1n(h)‘a+2773) '
nelN

Proof. Let us introduce the difference €(t) := ¢(t,h) defined by :

S( = Z |a | e —it Ay (27tn) Z |€l ‘ e~ A;,(Znno +.A'(27In0)27'c(n 7’10))|
nelN nelN

19



Taylor-Lagrange’s formula give the existence of a real number { = (n,h,E) €
Yy ([-1,1]) such that

Ay (2rtn) = Ay (27tng) + A, (2tng)27t(n — ng) + Aj(0)27% (n — ng)?;

hence for all t > 0 we get

Z ‘ﬂn| e it (Ay (27tn9)+Af, (27n0) 27t (n—ng) +Afl (§)27%(n—ng)?)
nelN

. Z ‘a ‘2 —it Ah 2710) +.A}’7(27m0)271(n7n0))
nelN

Z ‘ﬂn|2 e—it(Ah(27rn0)+A§7(27rn0)27r(n—n0)) [e—itAZ’(g)an(n—ng)z . 1} )
nelN

With the sets I',A and by triangular inequality, we obtain for all t > 0

Z |€l ‘ e~ .A;, 27tn0) +.Aj (27t10) 27T (1 — ng)) [efitAZ(§)2n2(n7no)2 N 1:|
nei

)

Z ‘a | e~ .Ah 27tng)+Aj (27tng )27 (n— no)) [efitAil’(g')Zn%nfno)z N 1} ]
nel’

First, look at the term the right part of the inequality above, for all t > 0 we
have

Z |an‘2efit(Ah(27'(n0)+./4,’7(27m0)271(n7n0)) {efitA;{(éﬂrﬂ(nfno)z . 1}
nel

<2 nf = 0| s

nel
by the lemma 4.15.
Now look at the left term of the inequality above. With the lemma 5.1: for
all integer n € A and for all real number ¢ € [0, [In(h)|"] we have

EAY ()27 (n = ng)* < M [In(h)|**7°

where M > 0. Consequently, for all integer n € A and for all t € [0, [In(h)|"]

we have . R R
e—lt.Ah(C)Zn (n—ng)* _ 1=0 (‘ln(h)|a+2'y—3) ;

hence for all t € [0, [In(h)|"]

Z ‘a | e~ .Ah 27tng)+Aj (27tng )27 (n— no)) [efitAil’(g')Zn%nfno)z B 1}
neA

<0 (‘ln(h)|oc+27*3) Z |an‘2

nea

20



<0 (JIn(m)[?7) T Jaul = 0 (In()>7).
nelN

So, forall t € [0, |In(h)|"] we get finally
et) =0 ( \1n(h)\"‘+2“f—3) .
O

We conclude that, the principal term of the partial autocorrelation a(t) in
the time-scale [0, [In(h)|"] is:
Definition 5.3. The principal term of the partial autocorrelation a(t) is defined
by :

ap it 2 ‘an|2e*it(-Ah(27T"0)+A;’7(27T”0)27T(”*”0)).

nelN
We also define the function a7 by

ay it Z |ﬂn‘2 e it A}, (2mtng) 27 (n 7’10)'
nelN

Hence ‘
al(t) _ efztAh(27'm0)a~1(t)'

Now, we study this serie in details.

5.3 Periodicity of the principal term

Clearly, the function t — |aq(t)| is 1/.A} (271 )-periodic, so the approximation
ap defines an important characteristic time scale :
Definition 5.4. Let us define the hyperbolic period Ty, = Ty, (h, E) by
1
y P —
P A (2mtng)

Note that, since A} ({) = 27t/ <% + O(1)> ; hence for i — 0 we have

Thyp ~ K|In(h)|; where K > 0 (not depends on h).

5.4 Geometric interpretation of the period

The period Tj,,, correspond to the period of the classical flow. The term [In(F)|
is the signature of the hyperbolic singularity : indeed, the term [In(h)| cor-
respond to the period of the classical flow with a initial point on the disc

D(O,Vh) := {(x,gf) ER?, \/x2 2 = \/E}

Theorem 5.5. [Lab3]. Let us consider the point m; = (\/E, O) € T*RR. Then

the Hamiltonian’s flow associated to the function p and with initial point m, is
periodic and the period T, verify, for i — 0, the following equivalent :

[In ()]
T K
where the constant K # 0 and not depend on #.

Remark 5.6. See also the paper [DB-Ro] for a similar result.
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5.5 Comparison between hyperbolic period and the time scale
[0, [In(7)|"]

Since v < 1, we have 1 < 3 — 2; hence there exist a real number « such that
a € ]1,3 — 27[. Consequently, we get

In(h)| < |In(k)|* < [In(h)[>~27.

So, we can make a “good choice” for a : for & small enough we have :
10, Thyp| € [0, In()["].

5.6 Behaviour of autocorrelation function on a hyperbolic pe-
riod
Now, let us study in details the function a;(t) on the period [O, Thyp} . Start by

a technical proposition :

Proposition 5.7. For all t > 0, we have the equality :

—it2m(n—nq)
2 |an‘2

hlyp ZS( ) <—lnh1—7/ <£—|— L)) .
nez er Thyp

Proof. Let us consider the function () defined by

R—C
Qti

—if27(x—ng) 7A—
X |ax\2e Thyp

where t € R is a parameter, and let us recall a, is defined by

1 X —ng
Ay = 11— X ( 1_'Y/> ;
V3 (@) ()| 27 \link]

thus
—it2t(n—n
Y lanf*e T = ¥ o)

nez nez

So clearly, the function () € S(IR), then the Fourier transform § (€)) is equal,
forall € R, to

1 it27—[”0% 2 X —nNnp *itZﬂx%
Q = ; hyp ; hyp )
e OO S(’“ <|1nh|”>e )(@

— 1 o 2imnol —nkY _t
-3 () (0) 2 S(X2)< i 7<§+Thw>>'

With the Poisson formula we get

Yo O(n) =) F(u)(0)

nez leZ
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1 2 1—/ t
= — Six —|Ink|"77 [+ — .
s 58 () ( it Trp
So, now, our goal is to study the behaviour of the serie :

»—>71 2) [ = ik L
¢ g(XZ)(O)EEZZ&(xN k| 7<£+Thyp>>.

Since the function § (x*) € S(R), it’s clear that the only index ¢ € Z such that

(f + ﬁ) is close to zero are important. More precisely :

Definition 5.8. Forall t € R, let us define /(t) = ¢(t, h, E) the closest integer to
the real number —t/Thyp; e.g:

KUV+7£;::d(h7%mZ);

where d(.,.) denote the Euclidiean distance on RR.

Remark 5.9. Without loss of generality, we may suppose £(t) is unique. On the
other hand, for all integer ¢ € Z such that ¢ # {(t) we get:

0+

1
> -
Thyp 2

Lemma 5.10. For a function ¢ € S(R) and ¢ € 10, 1] then, uniformly for u € R we
have : '
+u 00
£ (e o
(€7, |t+u|>1
Proof. We see easily that, uniformly for u € R we have

£ ()00

(€7, |(+u|>}
Indeed, since ¢ € ]0, 1], without loss of generality, we may suppose u € [—1,1].
And since for all u € [—1,1] we have

C+u - M _ &M
P\ )T T 2+ up

&2

M M

< — .
T (w20

and we conclude.

Next,

LB b
- 2N

tez, |t+ul>} € tez, |truzd N € € (E+u)



2N
§82N4N Z (€+H)
S

leZ

p (f + u) ’
€
To conclude the proof, we apply that to the function ¢(x) := x*Ng(x). O
Theorem 5.11. Uniformly for ¢t > 0 we have :
—it2r(n—ng)

¥ laPe W = s () (_unhlw'd(t,Thy,,z))+o]m<;)w\.

nelN

Proof. Since the proposition 5.7 and with the lemma above we get for all t > 0

¥ lmfe 0 — s T (x )<‘ ' (“TLD

nez ZeZ hyp

- mg () (— ikl d (1 Ty,Z) ) +0 ’m(z)oo‘ .

Next, forallt > 0
—it27 (n—ng) =L

Y lanle Thup
nelN
—it2m(n— 7’10)T1 1 ) —itZH(H—HO)%
Z |ﬂn\ hyp — Z |lan|” e hyp .

nez n=-—oo

- = X) Zég( )(- k)= <z+#w>>

-1

- ) |an\ze

n—=—0oo

*it2ﬂ(”*”0)ﬁw

Hence, by triangular inequality, we have for all t > 0

ng\]‘ﬂﬂ . —it27(n— nO)Thlyp _ mg (XZ) (_ \1nh|177,d (t, ThWZ))|
1 At
< % |yt () (- (et ) )+ Eeo

Since, for all t > 0, we have

1 2 1-/ 1
L T (x —|Ink|""" [+ =— =0 —|;
S0, #Zw) () ( [l | Thw (i)

and .
1eS) ) 1
X lo-af =0
So we prove the theorem. O
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Now, we can formulate the main result of the section 5 :

Corollary 5.12. We have :
(i) for t such that t € Ty, ,Z we get

. 21 (n—ng)

¥ e —1,

nelN

(ii) For all ¢ > 0 such that e < 1—+, and for t such that ’d (t, ThyPZ)’ >
In k| =1 we get

. 2m(n—ng)

Z |ay] 671 Ty =0
nelN

1
In(h)* |
Proof. The first point is clear. For the second : if

‘— n k=" (0(t) +t.A§1(27m0))‘ > [Inh|*

thus, we have :

s Bk
F(x%) (= k"7 (£(t) + LA, (27tng)) ) | € ——F——
502 (- 0 )| <
< By |Inh| "%,
for all integer k > 1; so we prove the second point. O

6 Second order approximation : revival period

6.1 Introduction

In this this section, we use a second order approximation of the function t
a(t), indeed by a Taylor’s formula we have for all t > 0

03
a®) = T JanP efit <Ah (27m0)+ Al (27t10) 27t (n—ng)+ A (27m0) 272 (n—ng) 2 +AL) (¢) 22 (n7n0)3>
nelN
where { = {(n,h,E).
We need the :

Lemma 6.1. Uniformly, on the compact set [—1, 1] we have

1

A (Af’)oyh) () :O‘W .

Proof. With the derivatives formulas, we have forall x € Y, ([-1,1])

(37;([3) o Ah) () 3 oA’ (x)
+ 5 ;

A(?’)(x _ ;
VoA (x) (Vo) (x)

h
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hence, forall A € [—1,1] we get

S0 | 3R
RSN I C/AREON

(4% om) (1) =

First, let us estimate the function A — y}?) (A). Forall A € [—1,1] we have

0% (A) + 6 (AR)
2

3 o (1 42) - e e

Uniformly, on the compact set [—1,1] we have

YI) = -1 + h2eB) (Ah) In(h)

0 () + 0% () _ o)
2

_i3

and
A — h2e®) (AR) In(h) = O(K2In(h)).

Next, let us estimate the function A — aa—; {arg (F (% +i %) )} cforall A €

11
R )
[hs” (Ah)Re (w (; )) (¢ (A))?Im <‘§[J(1) (% +i€(2h)>>}
— 12 () Re( (%ﬂ-s ))mw) 2 [Re(w(%ﬂs(zmm
—2he! (Ah)e" (Ah) Im(‘f ( +it )))—(s’(/\h))z%{lm(
= 1% (AnR (‘I’( 20 )) 3he" (Ah)e (Ah)m(w (%w“i’”))
=) Re (¥ (342

thus, the function A — aa—; {arg (F (% + ig(zh)))} is equal to a O(1) on the
compact set [-1,1]. Now, for finish, let us estimate the function

&’ cos (g(A)) .
A A3 [arccos <\/1 +exp (27T£()\h)/h)>‘| ’

with the notations introduced in the proof of lemma 5.1, for all A € [—1,1] we
have
3
ER . cos (gi(1)) 2 <Nh)
dA3 V/1+exp (2me(Ah) /h) oA

26
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_ NJ(W)DL(A) — Ny()DY(A)
- DZ(1) /

we have seen into the proof of lemma 5.1, that, on the compact set [—1, 1]

By the same argument as into the prof of lemma 5.1, we show that A — Nj (A)Dj,(A) —
Nj,(A)Dj,(A) is to equal to a O(1) on the compact set [—1,1]. Consequently for
all A € [—1, 1] the function

3
A= > arccos cos (8u(A))
dA3 V/1+exp (2me(Ah) /h)
is to equal to a O(1) on the compact set [—1,1]. Thus, on [—1,1] we have A —
P =0().

Since, we have, uniformly, on the compact set [—1, 1] the equality

V(M) = —=—=+0(1),
_VH (O)
we deduce, that the function
EVICIY
A — yh4( ) =0 L 7
Oty il

on the compact set [—1,1].
In the proof of lemma 5.1 we have seen, that, on the compact set [—1,1] :

1

1 . .

A=Yy (AM)=0 ln(h)3 ;
hence, on the compact set [—1, 1], we get
2
A
)U—>(yh)5()—o 15;
(Vi) (A) In(h)

thus
(3) "2
A (A% o) (A _ = (/\)Jr?’(yh) (A)
( ' h)< ) S NS IR0

on the set [—1,1] . O

isequaltoa O ’W

Notation 6.2. Let us denote by Q»(X) = Qaz(h, 1y, X) the polynomial of R;[X]
defined by :

Q2 (X) := Ay (27tmg) + A}, (2tng)27t(X — ) + A (27tng )2 (X — )2
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6.2 Definition of a new time scale

Proposition 6.3. Let f be a real number such that B < 4 — 3. Then, uniformly for
all t € [O, |ln(h)|/5} we have :

a(t) = ¥ |aule "% 40 (In(m)|FH74).
nelN

Proof. Let us introduce the difference €(t) := &(t, 1) defined by :

(t) = |a(t) = ¥ Jan[?e Q20

nelN

Taylor-Lagrange’s formula gives the existence of a real number { = {(n,h,E) €
Yy, ([-1,1]) such that :

Ap(27tn) = Ay(27tng) + A} (27ng) 27t (n — ng)

(2m)°

5 (n—np)>;

+ A (27tng) 278 (n — ng)* + A,(f’)(C)

hence, for all t > 0 we get

3

—; ®) (2
T anle it(Qaln)+ AP (@) B (r-mo)?) T fanf?enC
nelN nelN

= | Y Jau[?emif@0) [‘”Aﬁ(o 6)3<n—no>3—1} .
nelN

With the sets I', A and by triangular inequality, we obtain for all ¢ > 0

Z |ﬂ ‘Ze—thz |: —ltAh (g)(ZTnS(”_”O)S — 1:|

neA

Y |an|? e Q) [e‘ff«‘l£3)(é)(2?3(n—no>3—1] .
nel
Since :
3
Y Ja et {zm () EE (n=mo)? ] <2) jaul* = 1 ‘
nel’ nel’ ( )

by the lemma 4.15.
On the other hand, with the lemma 6.1: for all integer n € A and for all real

number t € {0, |1n(h)ﬂ

(2m)°

: < M [in(i) P77

(n—ng)?

’m,@@
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where M > 0. Thus, for all integer n € A and for all real number t € [O, ln(k)|P }
we have

it A O -m) 1 o (In () [P+27=4)

hence for all t € [O, |1n(h)|’5} we get

Y Jan |2 etQa(m [—ztA (C)(zg)s(”—”o)s—l]

neA

<0 (\ln(h)\ﬁ“'y_‘l) Z |ﬂn\2

nen

<O (InmP17) ¥ JauP = 0 (In() 774 .

nelN

So, forallt € {0, IIn(h) |ﬁ } we get finally

e(t) = O (\1n(h)|ﬁ+37*4) .
O

Definition 6.4. Let us define the second order approximation of the partial
autocorrelation a(t) by :

ay it Y fay|tem Q)
neN

And we also define the function

a:tio Z ‘ﬂn|2 efit<./4,’7(27'(710)27'((717710)+AZ(2nn0)2n2(n7n0)2).
neN

Thus, we get
az(t) _ efzt.Ah(27'm0)a~2(t)

and, we have also
‘a2<t)| _ |a2 ‘ _ Z ‘a | e~ Ah(Znno 27 (n—ng)+All (2mng)2m? (n— 7’10)2) )
nelN
6.3 Full revival theorem
Let us start by some notations.
Definition 6.5. Let us define the revival time Tyep = Treo(h, E) by :

1

Trev := 77'(.«4;[(27'[710)
and we also denote the integer Nj, = N (h) defined by :

TVEU
Thyp

N,,:E[ ]GN.
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Hence, there exists an unique real number @, € [0, 1[ such that :

Proposition 6.6. If we suppose that
lim (V) o Ay) (27tng) = K

where K # 0 is a constant, then

3
T = —OL 4 01
K(=v"(0))?
Proof. Since
Treo = — (o An)” (2rm)

7 (V) o Ap) (27tng)’
if we suppose that
%irrb (V) o Ay) (21tng) = K;

then we deduce
—In(h)3

Trep = 3
K(=v"(0))*

+0(1).

The full revival theorem is the following :

Theorem 6.7. With the previous notations we have :
(i) if ©, = 0; then forallt > 0:

a~2(t + NhThyp) = a~2(tL + Trev) = a~2(t)}

(ii) if ©, €]0,1], then forall t > 0

- - 1
ax(t+ NhThyp) =ay(t) + O‘ln<h)22v ’
in particular, we have
‘a (t+ N, T )‘:\a )] +0|——
2 hthyp 2 In(h)2-27|"

Proof. Forallt >0

Ny Ty

. —2im (n—ng) _pir WHTreo=Thyy®) o
ar(t+ Ny Tyyp) = Y Janl*e Ty e AT Ty (1m0
nelN
—2im =t (n—n, U ThypOn) 2
3 e i

nelN

30



If we suppose that @), = 0; then for all t > 0
a(t+ NhThyp) = ax(t).

Suppose that ©), €]0,1], then for all t € R
‘a~2(tL + NhThyp) - a}(t)‘

—2im gt (n—ng) _p; Thyp®h) (o
_ Z \an|2e Thyp( )e 2im (n—ny)

Trev

nelN

=Y lal?e ATy (110) il (n-no)?

nelN
2
(6217T®hTW n—ng) 1)‘

Z ‘ﬂn|2€_ n— Ylo
Z |an‘ . =207 — Tiyp (n—ny) 7217'(Tm} n—mng) (6217'[@;, Trea (n—np)? _ 1)‘
n— l’lo

21'71';(}’1—}’10) _
= Thy.” zm:Trea

nelN
nea

+ Z|a7’l‘ e l T (n=no) 7217‘(Trev

it (n—
2 —2im vp (e2z7r®hTyp n—ng)? 1) )
nel

For all integer n € A we have (n — n0)2 < |In(h) |2'Y, hence, for h — 0, we get,
for all integer n € A

. Ty
R e

Thus, forall t > 0

—2imt—(n—n ot 2 i Thyp 2
Z |an\2e Thyp( 0)67217(%("7"0) (6217'[@;,%](71710) 1

nea

<0 (") ¥ lanl

neA
<0 (Im(mP?) - lanP =0 (jin() 7).
nelN
On the other hand, we have

—2imt—(n—n ot 2 . Thyp 5
Z |an\2e Thyp( 0)(3721”%(”7”0) <e21”®hm(””0) 1

nel

<22|an\

‘ ; ‘
nel

In(f)e
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Remark 6.8. For h — 0, we have

NhThyp _ Trev — ®hThyp —1— ®hThyp 1

T?‘CU TT’EZJ rev

thus, for i — 0 we have also

NiThyp ~ Treo-

The previous theorem show that the function t — ay(t), is, modulo O (\ln(h) \2772) ,

periodic, with a period equivalent ( for # — 0) to Tyep. This is the full revival
phenomenon.

6.4 Fractional revivals theorem

The aim of this section is to study the dynamics for time close to STrev , where
% €Q.

6.4.1 Preliminaries

Notation 6.9. For all (p,q) € Z x IN* let us consider the sequence (o}, (p,q))
defined by :

(On(p, )y = 2 ez,

The periodicity of this sequence is caracterised by the following easy propo-
sition.

Proposition 6.10. For all (p,q) € Z x IN¥, the sequence (0y,(p,q)),, is {-periodic if
and only if the integer ¢ satisfy the equation :

2
vm e Z, 22om + P2 2 0 (mod 1),
q q
Now, we solve this equation.
Proposition 6.11. Suppose p A\ q =1, then the set £ of solutions £ such that :
2

Vm € Z, %ﬂm—k%zo(ﬂzod])

is caracterised by :
(i) if qis odd then £ = {qZ};
(ii) si q even and % odd then & = {qZ} ;
(iii) si g even et § even then € = {1Z} .

Proof. Let us start by a remark : to be a multiple of g is always a necessary
condition to be a solution. Now, let us study sufficient conditions. We have

2
e &&VmeZ, %pém—i-%

=0 (mod1)
= Vm e Z, q|(2ptm + pl?);
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and, since p A q = 1, by Gauss lemma we have
(& YmeZ, q|(2im+2).

Let ¢ an integer solution of &; then if we take m = 0 we see that g|¢?, hence
there exist & € Z such that 2 = ag. On the other hand, since for all m € Z
we have g|(2¢m + (%) we deduce that for all m € Z, there exists B, € Z such
that 2¢m + (> = B,q. Thus, since (> = ag, we get for all m € Z the equality
20m + aq = Bmq. In particular, with m = 1 we deduce that :

20 = (Br — a)q.
o If q is odd : & is even; _ (i)
qis odd : then a B — a is even; thus ¢ = A and ¢|¢, thus
—
€z

E=1{q2Z}.
olf qis even: then ¢ = (B1 — a)%; thus Z|(. If we write ¢ = k] withk € Z,

then
2pl pl?

2
VmeZ, —m+ — Pk
q q

=k —.
pm + 1

Thus )
pkoq 2
Vm € Z, kpm + 1 € Z & pkiq € 4Z.

And, since p is odd, finaly we get, with £ = k1 :

2
Vm € Z, ZTMer% €Z < kPq € AZ.

Then, we have two cases :

e if 1 is odd : then k?q € 4Z < k? is even, equivalent to k even, hence
¢ = k% is a multiple of g, hence & = {gZ}.

o If 1 is even : then g = 4¢" where ' € Z*, hence for all k € Z; k*q =
k*4q € 47 ,thus € = {]Z}. O

For a period ¢ € Z, let us defined the set of sequences {—periodic with a
scalar product.

Definition 6.12. For a integer /€ Z*; let us denote by &,(Z) set of sequences
{—periodic :
Sy(Z) = {un cC%,Vnez, Upig = un}.

So we have the :

Proposition 6.13. The application

is a Hermitean product on the space &S;(Z) .
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Proof. The proof is elementary. O

2irtkn

~0 where (k,n) € Z2; then the family
{ <¢’,§) ez }k o is an orthonormal basis of the space vector &,(Z).

Proposition 6.14. Let us consider ¢k := e

Proof. For £ > 0, the family { (4)’7‘,) . }k ot is clearly a familly of ¢ vectors
ne =0...0—

of 64(Z). Next, for all pair (p,q) € {0...£ —1}* we have
p q 2ir( q 4 k
9", ¢, gZ‘Pk(Pk €Z< ) = Opg-
0 { (¢>ﬁ) } is a orthonormal basis of the space vector §,(Z). O
n€z) k=0..-1

6.4.2 The main theorem

Theorem 6.15. Forall (p,q) € Z x IN* such that p A g = 1; there exists a family
of £ complex numbers (b~k(€ )) where the integer ¢ € Z is solution of
' ke{0..0-1}
2pl
Vm e Z, %m—kp— =01[1];

such that for all t € [0, |In(h)|*] we get :

~ p _ &~ ~ k P a427-3
B (4 ENiTigp ) = Y b(O)ar (t+ Ty, 7N +O(\1n(h)| )
k=0

The numbers by (/) are called fractionnals coefficients; and for all k € {0...0 — 1}

2imtkng

bi(0) = e~ 77 by (¢)

where

bk(€)=bk(h,€):<ah(p, ¢ >65_%i 2 (nno)? ,— 2zt

Moreover, if we suppose Trew
1

7% € Q, then we have
hyp

k
(t + qTrev) Z bk a1 (i’ + Thyp (z + gNh)) .

Proof. Let us denote the integer 7 := n — ng; and let us consider / € Z a
solution of the equation £. So, we have for all > 0

— P ~2 _ _oiep N hyn~2
ar (t—l— ENthl> Z |€ln‘ e Thyp sznm 2imt? nNh 217I Tren .
q nelN

And, since Ty,y = Nj, Thyp + Oy, Thyp we have

—2irmk NiThyp 52 o2 2inh; OnThyp 52

e Trev = Trev
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and P2 P 2
e—Zmﬁn _ e—Zlnﬁ(n—no) c GZ(Z),’
. . . —2imE (n—ng)?
hence, there exist a unique decomposition of the sequence (e =7 on

n
the basis (4;") ke{O...ﬂ—l}:

o ) /-1
67217'(5712 _ 67217'(%("*"0)2 = Z <Uh(P1 q) ¢ > Pn
k=0

-1 -
= Z bk(f)e*m”ﬂ‘.
k=0
Thus, forall t > 0
ap <t + gNhThyp>

“2int T it =2 _gipan, [ ik 2 r h OnThyp =2
_ Z \an|26 Thyp" o 20 1 o 27q Ny Zbk(g)e 2irn Iy Trn
k=0

nelN
] it 2 —2igPh ko oik O Thyp o
Z Zbk ‘an| Thyp e*2lﬂmn e zlnquhe—zlnanZUTq Trew n
nelN k=0
For all t > 0 we have
A k T;ﬁ —21'7'fliﬁ 72i7T£Nhﬁ
ap (t+ Thyp £+ N Z |an\ hyp 27Ty T4y
q nelN
thus,
=1 _ Kk p
k=0 q
-1 217rkn0 ke o P
— Ze Z ‘a}’l| Th}/p 6_217(?”6 217TthYl
k=0 nelN
kn _ P
S e )
nelN k=0
Hence
/-1
~ p ~ k p
a (t+ NiTyp | = Y (D)@ ( £+ Ty (5 + 2N
1 k=0 q
—2inPy irck t =2 p OnThyp >
Z Z ‘a”| bk Thypn ZIHqHNhE’iW ( _217(%” +21n Trev —1) ;
nelN k=0

with the sets A, I and by triangular inequality we get :

/-1 S )
21 _ni Py 2ink b2 p On hyp~2
2 , 2 , |an\2 b(Oe — e A T < A e

nel k=0
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it _inli ' o OnTnyp
2im n _2igk irtkn T ) r yp ~2
2: 2:|an‘ bk Thyp e mnqnh&ef 7 <6 ZNann é+mnq Tron DTl __1>"

neA k=

Increase the first serie :

n _oixPs 2imkn t =2 p OnThyp -
Z ZW‘ by (¢ Thjp 2t g nNy ,— 27 ( ~2inplon? F2in g ot

gz(%mz) (Zbk ) =

Next, for the second serie, observe the following term :

1
In(h)~ ‘

0,7
ot =2 P 2 hyp o o Py 1 22
E_2I7ITrevn €+21n’7 Tro T = e 21n<t+®hThypq)T”’”n .

Foralln € Aand forall t € [0, [In(/)|"] there exist a constant C > 0 such that

o,T) 2
‘(t h hypp) (n—nyp) ‘ <C (|lr1(h)|2773+“+ \ln(h)\z%z) < 2C\1n(h)|2772.
q Trev

Hence, there exist A > 0 such that for all t € [0, |In(h)|"]

=2
il j 2 OnTihyp"
Z Z ‘an| bk Thyp" *21”5”Nh672’7£k” ( _2171Tm} e+2 T _1>
neN k=
< Afn(W)[P72 Y |auf? < AlIn(h) 27~ ZZ\a 2.
nen
For finish, the case where t = 0 and % € Qis clear. 0
yp

Corollary 6.16. We have the equality :

(=1 )
Y (O =1.
k=0
Proof. Since by(¢) = <(7h(p, ), gbk> <4>k)k€{0 - }15 a orthomoral basis

of the space vector 6,(Z), by Pythagorean equality we get

/-1
Y 16O = llow(p, )15, = 1.
k=0

Now, let us examine the case £ § = = 1 and the case Z %

Corollary 6.17. With the same notation as in the theorem 6.15, we have
@) forall t € [0, [In(h)|"]

& (t+ NyTyyp) = a1(t) +0 (\1n(h)|“+27‘3) ;

36



(ii) forall t € [0, [In(h)|"]

-~ NiThyp ~ Ny +1 +27-3
3 (1+522) (1 (572) ) v ).

in particular, if Ny, is odd, then :

N, T
a (t 4 e Z’W) —a()+0 (|1n(h)|“+27*3)

and if Ny, is even, then :

NiiThyp

~ _ = Tnyp a+2y-3
ar (t—l—T) —a (t—l—T)—l—O(ln(hﬂ )

Proof. In the case (i) : p = 1, g = ¢ = 1; thus by the previous theorem we get,
forallt € [0, [In(h)|“] :

i (t + gNhThyp) — ho(1)a (t + ThypNh) +0 (|1n(h)\”‘+27*3)
= bo(1)au(t) + 0 (|n(m)[*+77?)
and by(1) = %e’mm% =1, thus
bo(1) = 1.

Next, for the case (i) : p =1, g = ¢ =2, then

ap <t+ gNhThW’) =

bo(2)a; (t + ThygNh) +b(2)a (t + Thyp (% + %)) +0 (\1n(h)|“+27*3) .
Hehave bo(2) = %6721‘7(%716 + %6721‘71%(17710)2 -0
thus [,6(2) Y
i b(2) = =20 o250 + %efzm%(lf’m)ze%n
= L (e 4 (Cager im0 1) < (aye
then
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6.5 Explicit values of modulus for revivals coefficients

About the coefficients by (¢) we just know that :

=1, 2
y ’bk(é)‘ ~ 1
k=0
But we can say more. We can calculate ‘I;k(f)} = |bx(¢)| for all k. From the

proposition 6.11 we consider two cases : the case £ = g and the case ¢ = .

6.5.1 Casel!=q
If the integer g is odd we have :
Theorem 6.18. [Lab2]. For all integers p and g, such that p A g = 1 and g odd,
then forall k € {0..g — 1} we get:
1
be(q))* = =.
bela)” =

And in the case g even :

Theorem 6.19. [Lab2]. For all integers p and g, such that p A g = 1 and g even,
then for all k € {0... — 1} we get:

% if kis even
If g iseven, then : |bk(q)|2 =

0 else.

0 if kis even
If g isodd, then : \bk(q)|2 =

2
= else.
q

6.52 Casel =1
It is the case g € 47Z.

Theorem 6.20. [Lab2]. For all integers p and g, such that p Aq = 1and g € 4Z%;
forallk € {0..7 — 1} we have
7* =2
m G =4

6.6 Comparison between time scale approximation, hyperbolic
period and revivals periods

Since v < 1 we have 1 < 3 — 27, thus there exist a such that « € |1,3 —27[;
hence :
In(h)| < [In(h)[* < |In(k)[>~>".
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So we can choose « such that : for & small enough :
[0, Ty < [0, In(m)["] .

Next, with ¢ < % we get 3 < 4 — 37 and there exist B such that € |1,4 — 3]
hence :
n(i) > < [In(h)|P < [n(h)[*7;

so, for h small enough we have :

[0, Tyeo] C [o, |1n(h)|ﬁ] .
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