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Abstract. In this paper, belief functions, defined on the lattice of par-
titions of a set of objects, are investigated as a suitable framework for
combining multiple clusterings. We first show how to represent clustering
results as masses of evidence allocated to partitions. Then a consensus
belief function is obtained using a suitable combination rule. Tools for
synthesizing the results are also proposed. The approach is illustrated
using two data sets.

1 Introduction

Ensemble clustering methods aim at combining multiple clustering solutions into
a single one, the consensus, to produce a more accurate clustering of the data.
Several studies have been published on this subject for many years (see, for exam-
ple, the special issue of the Journal of Classification devoted to the “Comparison
and Consensus of Classifications” published in 1986 [4]). The recent interest of
the machine learning and artificial intelligence communities for ensemble tech-
niques in clustering can be explained by the success of such ensemble techniques
in a supervised context. As recalled in [12, 13], various ways of generating clus-
ter ensembles have been proposed. We may use different clustering algorithms
or the same algorithm while varying a characteristic of the method (starting
values, number of clusters, hyperparameter) [9]. We may also resample the data
set [8]. This approach is called bagged clustering. Another well-known applica-
tion of cluster ensembles is called distributed clustering, which refers to the fact
that clusterings are performed using different (overlapping or disjoint) subsets of
features [21, 22, 1]. A member of the ensemble is called a clusterer. Once several
partitions are available, they have to be aggregated into a single one, providing a
better description of the data than individual partitions. A variety of strategies
have been proposed to achieve this goal: voting schemes [7], hypergraph parti-
tioning [21], pairwise or co-occurrence approach [9, 11]. This last approach, which
will be shown to have some connections with what is proposed in this paper, is
perhaps the simplest approach. The collection of partitions can be be mapped
into a squared co-association matrix where each cell (i, j) represents the fraction
of times the pair of objects (xi, xj) has been assigned to the same cluster. This
matrix is then considered as a similarity matrix which can be in turn clustered.



A hierarchical clustering algorithm is the most common algorithm used for this
purpose.

In this paper, we propose a new approach based on belief functions theory.
This theory has been already successfully applied to unsupervised learning prob-
lems [15, 6, 16, 17]. In those methods, belief functions are defined on the set of
possible clusters, the focal elements being subsets of this frame of discernment.
The idea here is radically different. It consists in defining and manipulating belief
functions on the set of all partitions of the data set. Each clustering algorithm is
considered as a source providing an opinion about the unknown partition of the
objects. The information of the different sources are converted into masses of
evidence allocated to partitions. These masses can be combined and synthesized
using some generalizations of classical tools of the belief functions theory.

The rest of the paper is organized as follows. Section 2 gives necessary back-
grounds about partitions of a finite set and belief functions defined on the lattice
of partitions of a finite set. Section 3 describes how to generate the belief func-
tions, how to combine them and how to synthesize the results. The methodology
is illustrated using a simple example. The results of some experiments are shown
in Section 4. Finally, Section 5 concludes this paper.

2 Background

2.1 Partitions of a Finite Set

Let E denote a finite set of n objects. A partition p is a set of non empty subsets
E1,...,Ek of E such that:

1) the union of all elements of p, called clusters, is equal to E;
2) the elements of p are pairwise disjoint.

Every partition can be associated to an equivalence relation (i.e., a reflexive,
symmetric, and transitive binary relation), on E, denoted by Rp, and character-
ized, ∀x, y ∈ E, by:

Rp(x, y) =

{

1 if x and y belong to the same cluster in p
0 otherwise.

Example. Let E = {1, 2, 3, 4, 5}. A partition p of E, composed of two clusters,
the clusters of which are {1, 2, 3} and {4, 5} will be denoted as p = (123/45).
The associated equivalence relation is:

Rp =













1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1













.

The set of all partitions of E, denoted by P(E), can be partially ordered using
the following ordering relation: a partition p is said to be finer than a partition



p′ on the same set E (or, equivalently p′ is coarser than p) if the clusters of p
can be obtained by splitting those of p′ (or equivalently, if each cluster of p′ is
the union of some clusters of p). In, this case, we write:

p � p′.

Note that this ordering can be alternatively defined using the equivalence rela-
tions associated to p and p′:

p � p′ ⇔ Rp(x, y) ≤ Rp′(x, y) ∀(x, y) ∈ E2.

The finest partition in the order (P(E),�), denoted p0 = (1/2/.../n), is the
partition where each object is a cluster. The coarsest partition is pE = (123..n),
where all objects are put in the same cluster. Each partition precedes in this
order every partition derived from it by aggregating two of its clusters. Similarly,
each partition succeeds (covers) all partitions derived by subdividing one of its
clusters in two clusters. The atoms of (P(E),�) are the partitions preceded by
p0. There are n(n−1)/2 such partitions, each one having (n−1) clusters with one
and only one cluster composed of two objects. Atoms are associated to matrices
Rp with only one off-diagonal entry equal to 1.

2.2 Lattice of the Partitions of a Finite Set

The set P(E) endowed with the �-order has a lattice structure [18]. Meet (∧)
and join (∨) operations can be defined as follows. The partition p ∧ p′, called
the infimum of p and p′, is defined as the coarsest partition among all partitions
finer than p and p′. The clusters of p ∧ p′ are obtained by considering pairwise
intersections between clusters of p and p′. The equivalence relation Rp∧p′ is
simply obtained by taking the minimum of Rp and Rp′ . The partition p ∨ p′,
called the supremum of p and p′, is similarly defined as the finest partition among
the ones that are coarser than p and p′. The equivalence relation Rp∨p′ is given
by the transitive closure of the maximum of Rp and Rp′ .

2.3 Belief Functions on the Lattice of Partitions

Belief functions [19, 20] are most of the time defined on the Boolean lattice of
subsets of a finite set. However, following the first investigations of Barthélemy
[2], Grabisch [10] has shown that it is possible to extend these notions to the
case where the underlying structure is no more the Boolean lattice of sub-
sets, but any lattice. In particular, considering the lattice of partitions, some of
the classical constructions and definitions of belief functions (mass assignment,
mass combination, commonalities,...) remain valid, up to some adaptations. Let
L = (P(E),�) denote a lattice of partitions endowed with the meet and join
operations defined in section 2.2. A basic belief assignment (bba) is defined as a
mass function m from L to [0;1] verifying:

∑

p∈L

m(p) = 1. (1)



A bba m is said to be normal if m(p0) = 0. In the rest of this paper, only
normal mass functions will be considered. Each partition p that receives a mass
m(p) > 0 is called a focal element of m. A bba m is said to be categorical is there
is a unique focal element p with m(p) = 1. A bba m is said to be of simple support

if there exists p ∈ L and w ∈ [0; 1] such that m(p) = 1 − w and m(pE) = w,
all other masses being zero. The bba m can be equivalently represented by a
credibility function bel, and a commonality function q defined, respectively, by:

bel(p) ,
∑

p′�p

m(p′), (2)

q(p) ,
∑

p�p′

m(p′), (3)

∀p ∈ L. When the reliability of a source (e.g., a clustering algorithm) is doubtful,
the mass provided by this source can be discounted using the following operation
(discounting process):

{

mα(p) = (1 − α)m(p) ∀p 6= pE ∈ L,
mα(pE) = (1 − α)m(pE) + α,

(4)

where 0 ≤ α ≤ 1 is the discount rate. This discount rate is related to the
confidence held by an external agent in the reliability of the source.

Two bbas m1 and m2 induced by distinct items of evidence on L can be
combined using the normalized Dempster’s rule of combination. The resulting
mass function m1 ⊕ m2 will be defined by:

(m1 ⊕ m2)(p) ,
1

1 − K

∑

p′∧p′′=p

m1(p
′)m2(p

′′) ∀p ∈ L, p 6= p0 (5)

with
K =

∑

p′∧p′′=p0

m1(p
′)m2(p

′′). (6)

Alternatively, one may use the average of m1 and m2 defined by:

(mav)(p) ,
1

2
(m1(p) + m2(p)) ∀p ∈ L. (7)

3 Ensemble Clustering

3.1 General Approach

Belief functions, as defined in the previous section, offer a general framework
for combining and synthesizing the results of several clustering algorithms. We
propose to use the following strategy for ensemble clustering:

1) Mass generation: Given r clusterers, build a collection of r bbas m1,m2,...,mr;
2) Aggregation: Combine the r bbas into a single one using an appropriate

combination rule;
3) Synthesis: Provide a summary of the results.



Mass generation. This step depends on the clustering algorithm used to build
the ensemble. The simplest situation is encountered when a clusterer produces a
single partition p of the data set. To account for the uncertainty of the clustering
process, this categorical opinion can be transformed into a simple support mass
function using the discounting operation (4). We propose to relate the discount-
ing factor of the source to a cluster validity index, measuring the quality of the
partition. Various cluster validity indices can be used for this purpose (see, for
instance, [23] for a review of fuzzy cluster validity). In the experiments reported
in Section 4, we have used the fuzzy c-means algorithm (converting the fuzzy
partition into a hard one) and a partition entropy to define the discounting fac-
tor as follows. Let µjk denote the fuzzy membership degree assigned to the jth
object and the kth cluster and c denote the number of clusters (note that c may
vary from a clusterer to another). The normalized partition entropy is a value
0 ≤ h ≤ 1 defined by:

h =
1

n log(c)

n
∑

j=1

c
∑

k=1

µjk log(µjk). (8)

This quantity is maximal (equal to 1) when the quality of the partition is poor,
i.e., when all membership values are equal to 1/c. This value can be used as a
discounting factor of the clusterer. This strategy leads to the generation of a bba
m, with two focal elements, defined by:

{

m(p) = 1 − h,
m(pE) = h.

(9)

Suppose now that a clusterer expresses its opinion by a hierarchical clus-
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Fig. 1. Example of a small dendrogram (left) and associated nested partitions (right).

tering [14]. This kind of algorithm produces a sequence of nested partitions,
p0 � ... � pE . At each intermediate stage, the method joins together the two
closest clusters. In the single linkage approach, the distance between clusters is
defined as the distance between the closest pair of objects. The result of this
algorithm is commonly displayed as a dendrogram (or classification tree) such
as represented in Figure 1. The aggregation levels, used for the representation of
the dendrogram, are usually equal to the distances computed when merging two



clusters. Note that aggregation levels may be normalized so that the first level
is 0 and the last level is 1. This normalization will be assumed in the sequel.
Cutting the tree at different levels of the hierarchy gives a sequence of nested
partitions {p0, p1, p2, ..., pK} (a chain in the lattice of the partitions) associated
to levels {0, i1, i2, ..., iK} with pK = pE and iK = 1. The masses associated
to the different partitions can be computed from the levels of the hierarchy as
follows. The size of a step between two consecutive levels of the hierarchy in
the dendrogram is often considered as an indication on the appropriate number
of clusters and on the height at which the dendrogram should be cut. So, we
propose the following mass allocation:

{

m(pE) = 0
m(pk) = ik+1 − ik k = 0, . . . ,K − 1.

(10)

For example, cutting the dendrogram of Fig. 1 at different levels produces the bba
given in Table 1. It can be seen that the highest mass is allocated to the partition
that seems the most natural with respect to the shape of the dendrogram.

Table 1. Bba derived from the dendrogram of Fig. 1.

k pk ik m(pk)

0 p0 = (1/2/3/4/5) 0 0.2
1 p1 = (12/345) 0.2 0.1
2 p2 = (12/34/5) 0.3 0.1
3 p3 = (1234/5) 0.4 0.6
4 p4 = (12345) 1 0

Note that many other clustering methods can be described in the same frame-
work. For instance, fuzzy equivalence relations, used for cluster analysis [3], are
naturally represented by consonant belief functions on the lattice of partitions.

Combination and synthesis. Once r bbas are available, they can be aggregated
into a single one using one of the combination rules recalled in Section 2.3. The
interpretation of the results is a more difficult problem, since, depending on the
number of clusterers in the ensemble, on their nature anf the conflict between
them, and on the combination rule, a potentially high number of focal elements
may be found. If the number of focal elements in the combined bba is too high
to be explored, a first way to proceed is to select only the partitions associated
with the highest masses or use a simplification algorithm such as described in
[5]. We propose another approach which consists in building a matrix Q = (qij)
whose elements are the commonalities associated to each atom of the lattice
of partitions. This approach amounts computing, for each pair of object (i, j),
a new similarity measure qij by accumulating the masses which support the
association between i and j:

qij =
∑

p

m(p)Rp(i, j). (11)



Matrix Q can be in turn clustered using, for instance, a hierarchical clustering
algorithm. If a partition is needed, the classification tree can be cut at a specified
level or so as to insure a user-defined number of clusters. Note that the co-
association method proposed in [9] is recovered as a special case of our approach
if the consensus has been obtained by averaging the masses of the individual
clusterers.

3.2 Toy Example

Let E = {1, 2, 3, 4, 5} be a set composed of 5 objects. We assume that two
clustering algorithms have produced partitions p1 = (123/45) and p2 = (12/345).
As it can be seen, the partitions disagree on the third element which is clustered
with {1, 2} in p1 and {4, 5} in p2. As proposed in Section 3.1, we construct two
simple mass functions by discounting each clusterer i by a factor αi. In a first
situation, we consider that we have an equal confidence in the two clusterers, so
we fix α1 = α2 = 0.1. We have:

m1(p1) = m2(p2) = 0.9 m1(pE) = m2(pE) = 0.1,

with pE = (12345). Applying Dempster’s rule of combination (5)-(6) leads to
the following combined bba m = m1 ∩©m2:

Focal elements mass m bel
p1 ∧ p2 = (12/3/45) 0.81 0.81
p1 = (123/45) 0.09 0.90
p2 = (12/345) 0.09 0.90
pE = (12345) 0.01 1

Suppose now that the confidence is less in the second clusterer than in the first
one. We fix α1 = 0.1 and α2 = 0.2. In that case, we obtain a bba m′ characterized
by:

Focal elements mass m′ bel’
p1 ∧ p2 = (12/3/45) 0.72 0.72
p1 = (123/45) 0.18 0.90
p2 = (12/345) 0.08 0.80
pE = (12345) 0.02 1

The commonalities of the atoms of the lattice are given for the two situations
by the following matrices:

Q =













1 1 0.1 0.01 0.01
1 1 0.1 0.01 0.01

0.1 0.1 1 0.1 0.1
0.01 0.01 0.1 1 1
0.01 0.01 0.1 1 1













Q′ =













1 1 0.2 0.02 0.02
1 1 0.2 0.02 0.02

0.2 0.2 1 0.1 0.1
0.02 0.02 0.1 1 1
0.02 0.02 0.1 1 1













Applying the single linkage algorithm to these two matrices gives the hier-
archical clusterings represented in Figure 2. The dendrogram may be seen as a



good synthesis of the information (consensual and conflicting) provided by the
clusterers. On the left, we can see that no cut is able to recover a partition in
which object 3 is associated to the other objects (except in the root of the tree).
On the right, cutting the tree at a level greater than 0.8, allows us to recover the
partition given by m1, reflecting the fact that a greater confidence is allocated
to this source.
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Fig. 2. Dendrograms computed from Q (left) and Q′ (right) for the toy example.

4 Two Examples

4.1 Distributed Clustering

In a distributed computing environment, the data set is spread into a number of
different sites. In that case, each clusterer has access to a limited number of fea-
tures and the distributed computing entities share only higher level information
describing the structure of the data such as cluster labels. The problem is to find
a clustering compatible with what could be found if the whole set of features
was considered. To illustrate this point, we used a dataset named 8D5K found
in [21]. This dataset is composed of five Gaussian clusters in dimension 8. Out of
the 1000 points of the original data set, we retain only 200 points (40 points per
cluster). We created five 2D views of the data by selecting five pairs of features.
We applied the fuzzy c-means algorithm in each view (each one with c = 5) to
obtain five hard partitions computed from the fuzzy partitions. These partitions
are represented in Figure 3. The left row shows the partitions in the 2D views,
and the right row shows the same partitions projected onto the first two princi-
pal components of the data. An ensemble of five mass functions was constructed
using the approach proposed in Section 3.1: each clusterer, discounted according
the entropy of partition (8), was represented by a mass function with two focal
elements. A “consensus” clustering was obtained by applying Dempster’s rule
of combination, computing the matrix Q and the associated tree using single
linkage, and cutting the tree to obtain five clusters. The consensus clustering is
presented in Figure 3. It may be seen that a very good clustering is obtained,
although some of the partitions provided by the clusterers were poor in the space
described by the eight features.
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Fig. 3. 8D5K data set [21]. The ensemble is composed of five individual clustering
solutions obtained from five 2D views of the data. The left row shows the partition
obtained in each two-dimensional features space and the right row shows the corre-
sponding partition in the plane spanned by the two first principal components.



4.2 Non Elliptical Clusters

This section is intended to show that the proposed approach is able to detect
clusters with complex shapes. The half-ring data set is inspired from [9]. It
consists of two clusters of 100 points each in a two-dimensional space. To build
the ensemble, we use the fuzzy c-means algorithm with a varying number of
clusters (3 to 7). The hard partitions are represented in Figure 4.

As in the previous example, each partition was discounted using the entropy
of partition and five mass functions with two focal elements each were combined
using Dempster’s rule of combination. A tree was computed from the common-
ality matrix using the single linkage algorithm and a partition in two clusters
was derived from the tree. This partition is also represented in Figure 4. We can
see that the natural structure of the data is perfectly recovered.
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Fig. 4. Half-rings data set. Figures (a) to (e) show the individual clusterings in the 2D
views; the last figure shows the consensual clustering.

5 Conclusion

We have proposed in this paper a new approach for aggregating multiple cluster-
ings. This approach is based on the use of belief functions defined on the lattice



of partitions of the set of objects to be clustered. In this framework, it possible
to assign masses of evidence to partitions. We have shown that a wide variety
of clusterers can be naturally represented in this framework and that combina-
tion tools can provide a “consensual ” description of the data. The preliminary
experiments on several data sets have shown the usefulness of the method. A
drawback of the conjonctive combination, especially when the conflict between
the clusterers is important, is to potentially generate a large number of focal
elements. A similar problem was already encountered in [15]. Future work will
investigate how to simplify the result by merging similar or unimportant focal
elements using a procedure similar to the one proposed in [5].
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